xref: /openbmc/qemu/hw/misc/bcm2835_cprman.c (revision effd60c8)
1 /*
2  * BCM2835 CPRMAN clock manager
3  *
4  * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 /*
10  * This peripheral is roughly divided into 3 main parts:
11  *   - the PLLs
12  *   - the PLL channels
13  *   - the clock muxes
14  *
15  * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
16  * channels. Those channel are then connected to the clock muxes. Each mux has
17  * multiples sources (usually the xosc, some of the PLL channels and some "test
18  * debug" clocks). A mux is configured to select a given source through its
19  * control register. Each mux has one output clock that also goes out of the
20  * CPRMAN. This output clock usually connects to another peripheral in the SoC
21  * (so a given mux is dedicated to a peripheral).
22  *
23  * At each level (PLL, channel and mux), the clock can be altered through
24  * dividers (and multipliers in case of the PLLs), and can be disabled (in this
25  * case, the next levels see no clock).
26  *
27  * This can be sum-up as follows (this is an example and not the actual BCM2835
28  * clock tree):
29  *
30  *          /-->[PLL]-|->[PLL channel]--...            [mux]--> to peripherals
31  *          |         |->[PLL channel]  muxes takes    [mux]
32  *          |         \->[PLL channel]  inputs from    [mux]
33  *          |                           some channels  [mux]
34  * [xosc]---|-->[PLL]-|->[PLL channel]  and other srcs [mux]
35  *          |         \->[PLL channel]           ...-->[mux]
36  *          |                                          [mux]
37  *          \-->[PLL]--->[PLL channel]                 [mux]
38  *
39  * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
40  * tree configuration.
41  *
42  * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
43  * with "-out" (e.g. "uart-out", "h264-out", ...).
44  */
45 
46 #include "qemu/osdep.h"
47 #include "qemu/log.h"
48 #include "migration/vmstate.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/misc/bcm2835_cprman.h"
51 #include "hw/misc/bcm2835_cprman_internals.h"
52 #include "trace.h"
53 
54 /* PLL */
55 
56 static void pll_reset(DeviceState *dev)
57 {
58     CprmanPllState *s = CPRMAN_PLL(dev);
59     const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
60 
61     *s->reg_cm = info->cm;
62     *s->reg_a2w_ctrl = info->a2w_ctrl;
63     memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
64     *s->reg_a2w_frac = info->a2w_frac;
65 }
66 
67 static bool pll_is_locked(const CprmanPllState *pll)
68 {
69     return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
70         && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
71 }
72 
73 static void pll_update(CprmanPllState *pll)
74 {
75     uint64_t freq, ndiv, fdiv, pdiv;
76 
77     if (!pll_is_locked(pll)) {
78         clock_update(pll->out, 0);
79         return;
80     }
81 
82     pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
83 
84     if (!pdiv) {
85         clock_update(pll->out, 0);
86         return;
87     }
88 
89     ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
90     fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
91 
92     if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
93         /* The prescaler doubles the parent frequency */
94         ndiv *= 2;
95         fdiv *= 2;
96     }
97 
98     /*
99      * We have a multiplier with an integer part (ndiv) and a fractional part
100      * (fdiv), and a divider (pdiv).
101      */
102     freq = clock_get_hz(pll->xosc_in) *
103         ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
104     freq /= pdiv;
105     freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
106 
107     clock_update_hz(pll->out, freq);
108 }
109 
110 static void pll_xosc_update(void *opaque, ClockEvent event)
111 {
112     pll_update(CPRMAN_PLL(opaque));
113 }
114 
115 static void pll_init(Object *obj)
116 {
117     CprmanPllState *s = CPRMAN_PLL(obj);
118 
119     s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
120                                     s, ClockUpdate);
121     s->out = qdev_init_clock_out(DEVICE(s), "out");
122 }
123 
124 static const VMStateDescription pll_vmstate = {
125     .name = TYPE_CPRMAN_PLL,
126     .version_id = 1,
127     .minimum_version_id = 1,
128     .fields = (const VMStateField[]) {
129         VMSTATE_CLOCK(xosc_in, CprmanPllState),
130         VMSTATE_END_OF_LIST()
131     }
132 };
133 
134 static void pll_class_init(ObjectClass *klass, void *data)
135 {
136     DeviceClass *dc = DEVICE_CLASS(klass);
137 
138     dc->reset = pll_reset;
139     dc->vmsd = &pll_vmstate;
140 }
141 
142 static const TypeInfo cprman_pll_info = {
143     .name = TYPE_CPRMAN_PLL,
144     .parent = TYPE_DEVICE,
145     .instance_size = sizeof(CprmanPllState),
146     .class_init = pll_class_init,
147     .instance_init = pll_init,
148 };
149 
150 
151 /* PLL channel */
152 
153 static void pll_channel_reset(DeviceState *dev)
154 {
155     CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
156     const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
157 
158     *s->reg_a2w_ctrl = info->a2w_ctrl;
159 }
160 
161 static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
162 {
163     /*
164      * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
165      * not set it when enabling the channel, but does clear it when disabling
166      * it.
167      */
168     return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
169         && !(*channel->reg_cm & channel->hold_mask);
170 }
171 
172 static void pll_channel_update(CprmanPllChannelState *channel)
173 {
174     uint64_t freq, div;
175 
176     if (!pll_channel_is_enabled(channel)) {
177         clock_update(channel->out, 0);
178         return;
179     }
180 
181     div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
182 
183     if (!div) {
184         /*
185          * It seems that when the divider value is 0, it is considered as
186          * being maximum by the hardware (see the Linux driver).
187          */
188         div = R_A2W_PLLx_CHANNELy_DIV_MASK;
189     }
190 
191     /* Some channels have an additional fixed divider */
192     freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
193 
194     clock_update_hz(channel->out, freq);
195 }
196 
197 /* Update a PLL and all its channels */
198 static void pll_update_all_channels(BCM2835CprmanState *s,
199                                     CprmanPllState *pll)
200 {
201     size_t i;
202 
203     pll_update(pll);
204 
205     for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
206         CprmanPllChannelState *channel = &s->channels[i];
207         if (channel->parent == pll->id) {
208             pll_channel_update(channel);
209         }
210     }
211 }
212 
213 static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
214 {
215     pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
216 }
217 
218 static void pll_channel_init(Object *obj)
219 {
220     CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
221 
222     s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
223                                    pll_channel_pll_in_update, s,
224                                    ClockUpdate);
225     s->out = qdev_init_clock_out(DEVICE(s), "out");
226 }
227 
228 static const VMStateDescription pll_channel_vmstate = {
229     .name = TYPE_CPRMAN_PLL_CHANNEL,
230     .version_id = 1,
231     .minimum_version_id = 1,
232     .fields = (const VMStateField[]) {
233         VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
234         VMSTATE_END_OF_LIST()
235     }
236 };
237 
238 static void pll_channel_class_init(ObjectClass *klass, void *data)
239 {
240     DeviceClass *dc = DEVICE_CLASS(klass);
241 
242     dc->reset = pll_channel_reset;
243     dc->vmsd = &pll_channel_vmstate;
244 }
245 
246 static const TypeInfo cprman_pll_channel_info = {
247     .name = TYPE_CPRMAN_PLL_CHANNEL,
248     .parent = TYPE_DEVICE,
249     .instance_size = sizeof(CprmanPllChannelState),
250     .class_init = pll_channel_class_init,
251     .instance_init = pll_channel_init,
252 };
253 
254 
255 /* clock mux */
256 
257 static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
258 {
259     return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
260 }
261 
262 static void clock_mux_update(CprmanClockMuxState *mux)
263 {
264     uint64_t freq;
265     uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
266     bool enabled = clock_mux_is_enabled(mux);
267 
268     *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
269 
270     if (!enabled) {
271         clock_update(mux->out, 0);
272         return;
273     }
274 
275     freq = clock_get_hz(mux->srcs[src]);
276 
277     if (mux->int_bits == 0 && mux->frac_bits == 0) {
278         clock_update_hz(mux->out, freq);
279         return;
280     }
281 
282     /*
283      * The divider has an integer and a fractional part. The size of each part
284      * varies with the muxes (int_bits and frac_bits). Both parts are
285      * concatenated, with the integer part always starting at bit 12.
286      *
287      *         31          12 11          0
288      *        ------------------------------
289      * CM_DIV |      |  int  |  frac  |    |
290      *        ------------------------------
291      *                <-----> <------>
292      *                int_bits frac_bits
293      */
294     div = extract32(*mux->reg_div,
295                     R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
296                     mux->int_bits + mux->frac_bits);
297 
298     if (!div) {
299         clock_update(mux->out, 0);
300         return;
301     }
302 
303     freq = muldiv64(freq, 1 << mux->frac_bits, div);
304 
305     clock_update_hz(mux->out, freq);
306 }
307 
308 static void clock_mux_src_update(void *opaque, ClockEvent event)
309 {
310     CprmanClockMuxState **backref = opaque;
311     CprmanClockMuxState *s = *backref;
312     CprmanClockMuxSource src = backref - s->backref;
313 
314     if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
315         return;
316     }
317 
318     clock_mux_update(s);
319 }
320 
321 static void clock_mux_reset(DeviceState *dev)
322 {
323     CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
324     const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
325 
326     *clock->reg_ctl = info->cm_ctl;
327     *clock->reg_div = info->cm_div;
328 }
329 
330 static void clock_mux_init(Object *obj)
331 {
332     CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
333     size_t i;
334 
335     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
336         char *name = g_strdup_printf("srcs[%zu]", i);
337         s->backref[i] = s;
338         s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
339                                         clock_mux_src_update,
340                                         &s->backref[i],
341                                         ClockUpdate);
342         g_free(name);
343     }
344 
345     s->out = qdev_init_clock_out(DEVICE(s), "out");
346 }
347 
348 static const VMStateDescription clock_mux_vmstate = {
349     .name = TYPE_CPRMAN_CLOCK_MUX,
350     .version_id = 1,
351     .minimum_version_id = 1,
352     .fields = (const VMStateField[]) {
353         VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
354                             CPRMAN_NUM_CLOCK_MUX_SRC),
355         VMSTATE_END_OF_LIST()
356     }
357 };
358 
359 static void clock_mux_class_init(ObjectClass *klass, void *data)
360 {
361     DeviceClass *dc = DEVICE_CLASS(klass);
362 
363     dc->reset = clock_mux_reset;
364     dc->vmsd = &clock_mux_vmstate;
365 }
366 
367 static const TypeInfo cprman_clock_mux_info = {
368     .name = TYPE_CPRMAN_CLOCK_MUX,
369     .parent = TYPE_DEVICE,
370     .instance_size = sizeof(CprmanClockMuxState),
371     .class_init = clock_mux_class_init,
372     .instance_init = clock_mux_init,
373 };
374 
375 
376 /* DSI0HSCK mux */
377 
378 static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
379 {
380     bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
381     Clock *src = src_is_plld ? s->plld_in : s->plla_in;
382 
383     clock_update(s->out, clock_get(src));
384 }
385 
386 static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
387 {
388     dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
389 }
390 
391 static void dsi0hsck_mux_init(Object *obj)
392 {
393     CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
394     DeviceState *dev = DEVICE(obj);
395 
396     s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
397                                     s, ClockUpdate);
398     s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
399                                     s, ClockUpdate);
400     s->out = qdev_init_clock_out(DEVICE(s), "out");
401 }
402 
403 static const VMStateDescription dsi0hsck_mux_vmstate = {
404     .name = TYPE_CPRMAN_DSI0HSCK_MUX,
405     .version_id = 1,
406     .minimum_version_id = 1,
407     .fields = (const VMStateField[]) {
408         VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
409         VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
410         VMSTATE_END_OF_LIST()
411     }
412 };
413 
414 static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data)
415 {
416     DeviceClass *dc = DEVICE_CLASS(klass);
417 
418     dc->vmsd = &dsi0hsck_mux_vmstate;
419 }
420 
421 static const TypeInfo cprman_dsi0hsck_mux_info = {
422     .name = TYPE_CPRMAN_DSI0HSCK_MUX,
423     .parent = TYPE_DEVICE,
424     .instance_size = sizeof(CprmanDsi0HsckMuxState),
425     .class_init = dsi0hsck_mux_class_init,
426     .instance_init = dsi0hsck_mux_init,
427 };
428 
429 
430 /* CPRMAN "top level" model */
431 
432 static uint32_t get_cm_lock(const BCM2835CprmanState *s)
433 {
434     static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
435         [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
436         [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
437         [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
438         [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
439         [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
440     };
441 
442     uint32_t r = 0;
443     size_t i;
444 
445     for (i = 0; i < CPRMAN_NUM_PLL; i++) {
446         r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
447     }
448 
449     return r;
450 }
451 
452 static uint64_t cprman_read(void *opaque, hwaddr offset,
453                             unsigned size)
454 {
455     BCM2835CprmanState *s = CPRMAN(opaque);
456     uint64_t r = 0;
457     size_t idx = offset / sizeof(uint32_t);
458 
459     switch (idx) {
460     case R_CM_LOCK:
461         r = get_cm_lock(s);
462         break;
463 
464     default:
465         r = s->regs[idx];
466     }
467 
468     trace_bcm2835_cprman_read(offset, r);
469     return r;
470 }
471 
472 static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
473                                                    size_t idx)
474 {
475     size_t i;
476 
477     for (i = 0; i < CPRMAN_NUM_PLL; i++) {
478         if (PLL_INIT_INFO[i].cm_offset == idx) {
479             pll_update_all_channels(s, &s->plls[i]);
480             return;
481         }
482     }
483 }
484 
485 static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
486 {
487     size_t i;
488 
489     for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
490         if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
491             pll_channel_update(&s->channels[i]);
492             return;
493         }
494     }
495 }
496 
497 static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
498 {
499     size_t i;
500 
501     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
502         if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
503             (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
504             /* matches CM_CTL or CM_DIV mux register */
505             clock_mux_update(&s->clock_muxes[i]);
506             return;
507         }
508     }
509 }
510 
511 #define CASE_PLL_A2W_REGS(pll_) \
512     case R_A2W_ ## pll_ ## _CTRL: \
513     case R_A2W_ ## pll_ ## _ANA0: \
514     case R_A2W_ ## pll_ ## _ANA1: \
515     case R_A2W_ ## pll_ ## _ANA2: \
516     case R_A2W_ ## pll_ ## _ANA3: \
517     case R_A2W_ ## pll_ ## _FRAC
518 
519 static void cprman_write(void *opaque, hwaddr offset,
520                          uint64_t value, unsigned size)
521 {
522     BCM2835CprmanState *s = CPRMAN(opaque);
523     size_t idx = offset / sizeof(uint32_t);
524 
525     if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
526         trace_bcm2835_cprman_write_invalid_magic(offset, value);
527         return;
528     }
529 
530     value &= ~R_CPRMAN_PASSWORD_MASK;
531 
532     trace_bcm2835_cprman_write(offset, value);
533     s->regs[idx] = value;
534 
535     switch (idx) {
536     case R_CM_PLLA ... R_CM_PLLH:
537     case R_CM_PLLB:
538         /*
539          * A given CM_PLLx register is shared by both the PLL and the channels
540          * of this PLL.
541          */
542         update_pll_and_channels_from_cm(s, idx);
543         break;
544 
545     CASE_PLL_A2W_REGS(PLLA) :
546         pll_update(&s->plls[CPRMAN_PLLA]);
547         break;
548 
549     CASE_PLL_A2W_REGS(PLLC) :
550         pll_update(&s->plls[CPRMAN_PLLC]);
551         break;
552 
553     CASE_PLL_A2W_REGS(PLLD) :
554         pll_update(&s->plls[CPRMAN_PLLD]);
555         break;
556 
557     CASE_PLL_A2W_REGS(PLLH) :
558         pll_update(&s->plls[CPRMAN_PLLH]);
559         break;
560 
561     CASE_PLL_A2W_REGS(PLLB) :
562         pll_update(&s->plls[CPRMAN_PLLB]);
563         break;
564 
565     case R_A2W_PLLA_DSI0:
566     case R_A2W_PLLA_CORE:
567     case R_A2W_PLLA_PER:
568     case R_A2W_PLLA_CCP2:
569     case R_A2W_PLLC_CORE2:
570     case R_A2W_PLLC_CORE1:
571     case R_A2W_PLLC_PER:
572     case R_A2W_PLLC_CORE0:
573     case R_A2W_PLLD_DSI0:
574     case R_A2W_PLLD_CORE:
575     case R_A2W_PLLD_PER:
576     case R_A2W_PLLD_DSI1:
577     case R_A2W_PLLH_AUX:
578     case R_A2W_PLLH_RCAL:
579     case R_A2W_PLLH_PIX:
580     case R_A2W_PLLB_ARM:
581         update_channel_from_a2w(s, idx);
582         break;
583 
584     case R_CM_GNRICCTL ... R_CM_SMIDIV:
585     case R_CM_TCNTCNT ... R_CM_VECDIV:
586     case R_CM_PULSECTL ... R_CM_PULSEDIV:
587     case R_CM_SDCCTL ... R_CM_ARMCTL:
588     case R_CM_AVEOCTL ... R_CM_EMMCDIV:
589     case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
590         update_mux_from_cm(s, idx);
591         break;
592 
593     case R_CM_DSI0HSCK:
594         dsi0hsck_mux_update(&s->dsi0hsck_mux);
595         break;
596     }
597 }
598 
599 #undef CASE_PLL_A2W_REGS
600 
601 static const MemoryRegionOps cprman_ops = {
602     .read = cprman_read,
603     .write = cprman_write,
604     .endianness = DEVICE_LITTLE_ENDIAN,
605     .valid = {
606         /*
607          * Although this hasn't been checked against real hardware, nor the
608          * information can be found in a datasheet, it seems reasonable because
609          * of the "PASSWORD" magic value found in every registers.
610          */
611         .min_access_size        = 4,
612         .max_access_size        = 4,
613         .unaligned              = false,
614     },
615     .impl = {
616         .max_access_size = 4,
617     },
618 };
619 
620 static void cprman_reset(DeviceState *dev)
621 {
622     BCM2835CprmanState *s = CPRMAN(dev);
623     size_t i;
624 
625     memset(s->regs, 0, sizeof(s->regs));
626 
627     for (i = 0; i < CPRMAN_NUM_PLL; i++) {
628         device_cold_reset(DEVICE(&s->plls[i]));
629     }
630 
631     for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
632         device_cold_reset(DEVICE(&s->channels[i]));
633     }
634 
635     device_cold_reset(DEVICE(&s->dsi0hsck_mux));
636 
637     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
638         device_cold_reset(DEVICE(&s->clock_muxes[i]));
639     }
640 
641     clock_update_hz(s->xosc, s->xosc_freq);
642 }
643 
644 static void cprman_init(Object *obj)
645 {
646     BCM2835CprmanState *s = CPRMAN(obj);
647     size_t i;
648 
649     for (i = 0; i < CPRMAN_NUM_PLL; i++) {
650         object_initialize_child(obj, PLL_INIT_INFO[i].name,
651                                 &s->plls[i], TYPE_CPRMAN_PLL);
652         set_pll_init_info(s, &s->plls[i], i);
653     }
654 
655     for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
656         object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
657                                 &s->channels[i],
658                                 TYPE_CPRMAN_PLL_CHANNEL);
659         set_pll_channel_init_info(s, &s->channels[i], i);
660     }
661 
662     object_initialize_child(obj, "dsi0hsck-mux",
663                             &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
664     s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
665 
666     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
667         char *alias;
668 
669         object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
670                                 &s->clock_muxes[i],
671                                 TYPE_CPRMAN_CLOCK_MUX);
672         set_clock_mux_init_info(s, &s->clock_muxes[i], i);
673 
674         /* Expose muxes output as CPRMAN outputs */
675         alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
676         qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
677         g_free(alias);
678     }
679 
680     s->xosc = clock_new(obj, "xosc");
681     s->gnd = clock_new(obj, "gnd");
682 
683     clock_set(s->gnd, 0);
684 
685     memory_region_init_io(&s->iomem, obj, &cprman_ops,
686                           s, "bcm2835-cprman", 0x2000);
687     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
688 }
689 
690 static void connect_mux_sources(BCM2835CprmanState *s,
691                                 CprmanClockMuxState *mux,
692                                 const CprmanPllChannel *clk_mapping)
693 {
694     size_t i;
695     Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
696     Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
697 
698     /* For sources from 0 to 3. Source 4 to 9 are mux specific */
699     Clock * const CLK_SRC_MAPPING[] = {
700         [CPRMAN_CLOCK_SRC_GND] = s->gnd,
701         [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
702         [CPRMAN_CLOCK_SRC_TD0] = td0,
703         [CPRMAN_CLOCK_SRC_TD1] = td1,
704     };
705 
706     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
707         CprmanPllChannel mapping = clk_mapping[i];
708         Clock *src;
709 
710         if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
711             src = s->gnd;
712         } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
713             src = s->dsi0hsck_mux.out;
714         } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
715             src = CLK_SRC_MAPPING[i];
716         } else {
717             src = s->channels[mapping].out;
718         }
719 
720         clock_set_source(mux->srcs[i], src);
721     }
722 }
723 
724 static void cprman_realize(DeviceState *dev, Error **errp)
725 {
726     BCM2835CprmanState *s = CPRMAN(dev);
727     size_t i;
728 
729     for (i = 0; i < CPRMAN_NUM_PLL; i++) {
730         CprmanPllState *pll = &s->plls[i];
731 
732         clock_set_source(pll->xosc_in, s->xosc);
733 
734         if (!qdev_realize(DEVICE(pll), NULL, errp)) {
735             return;
736         }
737     }
738 
739     for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
740         CprmanPllChannelState *channel = &s->channels[i];
741         CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
742         Clock *parent_clk = s->plls[parent].out;
743 
744         clock_set_source(channel->pll_in, parent_clk);
745 
746         if (!qdev_realize(DEVICE(channel), NULL, errp)) {
747             return;
748         }
749     }
750 
751     clock_set_source(s->dsi0hsck_mux.plla_in,
752                      s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
753     clock_set_source(s->dsi0hsck_mux.plld_in,
754                      s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
755 
756     if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
757         return;
758     }
759 
760     for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
761         CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
762 
763         connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
764 
765         if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
766             return;
767         }
768     }
769 }
770 
771 static const VMStateDescription cprman_vmstate = {
772     .name = TYPE_BCM2835_CPRMAN,
773     .version_id = 1,
774     .minimum_version_id = 1,
775     .fields = (const VMStateField[]) {
776         VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
777         VMSTATE_END_OF_LIST()
778     }
779 };
780 
781 static Property cprman_properties[] = {
782     DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
783     DEFINE_PROP_END_OF_LIST()
784 };
785 
786 static void cprman_class_init(ObjectClass *klass, void *data)
787 {
788     DeviceClass *dc = DEVICE_CLASS(klass);
789 
790     dc->realize = cprman_realize;
791     dc->reset = cprman_reset;
792     dc->vmsd = &cprman_vmstate;
793     device_class_set_props(dc, cprman_properties);
794 }
795 
796 static const TypeInfo cprman_info = {
797     .name = TYPE_BCM2835_CPRMAN,
798     .parent = TYPE_SYS_BUS_DEVICE,
799     .instance_size = sizeof(BCM2835CprmanState),
800     .class_init = cprman_class_init,
801     .instance_init = cprman_init,
802 };
803 
804 static void cprman_register_types(void)
805 {
806     type_register_static(&cprman_info);
807     type_register_static(&cprman_pll_info);
808     type_register_static(&cprman_pll_channel_info);
809     type_register_static(&cprman_clock_mux_info);
810     type_register_static(&cprman_dsi0hsck_mux_info);
811 }
812 
813 type_init(cprman_register_types);
814