1 /* 2 * BCM2835 CPRMAN clock manager 3 * 4 * Copyright (c) 2020 Luc Michel <luc@lmichel.fr> 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 /* 10 * This peripheral is roughly divided into 3 main parts: 11 * - the PLLs 12 * - the PLL channels 13 * - the clock muxes 14 * 15 * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more 16 * channels. Those channel are then connected to the clock muxes. Each mux has 17 * multiples sources (usually the xosc, some of the PLL channels and some "test 18 * debug" clocks). A mux is configured to select a given source through its 19 * control register. Each mux has one output clock that also goes out of the 20 * CPRMAN. This output clock usually connects to another peripheral in the SoC 21 * (so a given mux is dedicated to a peripheral). 22 * 23 * At each level (PLL, channel and mux), the clock can be altered through 24 * dividers (and multipliers in case of the PLLs), and can be disabled (in this 25 * case, the next levels see no clock). 26 * 27 * This can be sum-up as follows (this is an example and not the actual BCM2835 28 * clock tree): 29 * 30 * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals 31 * | |->[PLL channel] muxes takes [mux] 32 * | \->[PLL channel] inputs from [mux] 33 * | some channels [mux] 34 * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux] 35 * | \->[PLL channel] ...-->[mux] 36 * | [mux] 37 * \-->[PLL]--->[PLL channel] [mux] 38 * 39 * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock 40 * tree configuration. 41 * 42 * The CPRMAN exposes clock outputs with the name of the clock mux suffixed 43 * with "-out" (e.g. "uart-out", "h264-out", ...). 44 */ 45 46 #include "qemu/osdep.h" 47 #include "qemu/log.h" 48 #include "migration/vmstate.h" 49 #include "hw/qdev-properties.h" 50 #include "hw/misc/bcm2835_cprman.h" 51 #include "hw/misc/bcm2835_cprman_internals.h" 52 #include "trace.h" 53 54 /* PLL */ 55 56 static void pll_reset(DeviceState *dev) 57 { 58 CprmanPllState *s = CPRMAN_PLL(dev); 59 const PLLResetInfo *info = &PLL_RESET_INFO[s->id]; 60 61 *s->reg_cm = info->cm; 62 *s->reg_a2w_ctrl = info->a2w_ctrl; 63 memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana)); 64 *s->reg_a2w_frac = info->a2w_frac; 65 } 66 67 static bool pll_is_locked(const CprmanPllState *pll) 68 { 69 return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN) 70 && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST); 71 } 72 73 static void pll_update(CprmanPllState *pll) 74 { 75 uint64_t freq, ndiv, fdiv, pdiv; 76 77 if (!pll_is_locked(pll)) { 78 clock_update(pll->out, 0); 79 return; 80 } 81 82 pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV); 83 84 if (!pdiv) { 85 clock_update(pll->out, 0); 86 return; 87 } 88 89 ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV); 90 fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC); 91 92 if (pll->reg_a2w_ana[1] & pll->prediv_mask) { 93 /* The prescaler doubles the parent frequency */ 94 ndiv *= 2; 95 fdiv *= 2; 96 } 97 98 /* 99 * We have a multiplier with an integer part (ndiv) and a fractional part 100 * (fdiv), and a divider (pdiv). 101 */ 102 freq = clock_get_hz(pll->xosc_in) * 103 ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv); 104 freq /= pdiv; 105 freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH; 106 107 clock_update_hz(pll->out, freq); 108 } 109 110 static void pll_xosc_update(void *opaque, ClockEvent event) 111 { 112 pll_update(CPRMAN_PLL(opaque)); 113 } 114 115 static void pll_init(Object *obj) 116 { 117 CprmanPllState *s = CPRMAN_PLL(obj); 118 119 s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update, 120 s, ClockUpdate); 121 s->out = qdev_init_clock_out(DEVICE(s), "out"); 122 } 123 124 static const VMStateDescription pll_vmstate = { 125 .name = TYPE_CPRMAN_PLL, 126 .version_id = 1, 127 .minimum_version_id = 1, 128 .fields = (const VMStateField[]) { 129 VMSTATE_CLOCK(xosc_in, CprmanPllState), 130 VMSTATE_END_OF_LIST() 131 } 132 }; 133 134 static void pll_class_init(ObjectClass *klass, void *data) 135 { 136 DeviceClass *dc = DEVICE_CLASS(klass); 137 138 dc->reset = pll_reset; 139 dc->vmsd = &pll_vmstate; 140 } 141 142 static const TypeInfo cprman_pll_info = { 143 .name = TYPE_CPRMAN_PLL, 144 .parent = TYPE_DEVICE, 145 .instance_size = sizeof(CprmanPllState), 146 .class_init = pll_class_init, 147 .instance_init = pll_init, 148 }; 149 150 151 /* PLL channel */ 152 153 static void pll_channel_reset(DeviceState *dev) 154 { 155 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev); 156 const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id]; 157 158 *s->reg_a2w_ctrl = info->a2w_ctrl; 159 } 160 161 static bool pll_channel_is_enabled(CprmanPllChannelState *channel) 162 { 163 /* 164 * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does 165 * not set it when enabling the channel, but does clear it when disabling 166 * it. 167 */ 168 return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE) 169 && !(*channel->reg_cm & channel->hold_mask); 170 } 171 172 static void pll_channel_update(CprmanPllChannelState *channel) 173 { 174 uint64_t freq, div; 175 176 if (!pll_channel_is_enabled(channel)) { 177 clock_update(channel->out, 0); 178 return; 179 } 180 181 div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV); 182 183 if (!div) { 184 /* 185 * It seems that when the divider value is 0, it is considered as 186 * being maximum by the hardware (see the Linux driver). 187 */ 188 div = R_A2W_PLLx_CHANNELy_DIV_MASK; 189 } 190 191 /* Some channels have an additional fixed divider */ 192 freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider); 193 194 clock_update_hz(channel->out, freq); 195 } 196 197 /* Update a PLL and all its channels */ 198 static void pll_update_all_channels(BCM2835CprmanState *s, 199 CprmanPllState *pll) 200 { 201 size_t i; 202 203 pll_update(pll); 204 205 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { 206 CprmanPllChannelState *channel = &s->channels[i]; 207 if (channel->parent == pll->id) { 208 pll_channel_update(channel); 209 } 210 } 211 } 212 213 static void pll_channel_pll_in_update(void *opaque, ClockEvent event) 214 { 215 pll_channel_update(CPRMAN_PLL_CHANNEL(opaque)); 216 } 217 218 static void pll_channel_init(Object *obj) 219 { 220 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj); 221 222 s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in", 223 pll_channel_pll_in_update, s, 224 ClockUpdate); 225 s->out = qdev_init_clock_out(DEVICE(s), "out"); 226 } 227 228 static const VMStateDescription pll_channel_vmstate = { 229 .name = TYPE_CPRMAN_PLL_CHANNEL, 230 .version_id = 1, 231 .minimum_version_id = 1, 232 .fields = (const VMStateField[]) { 233 VMSTATE_CLOCK(pll_in, CprmanPllChannelState), 234 VMSTATE_END_OF_LIST() 235 } 236 }; 237 238 static void pll_channel_class_init(ObjectClass *klass, void *data) 239 { 240 DeviceClass *dc = DEVICE_CLASS(klass); 241 242 dc->reset = pll_channel_reset; 243 dc->vmsd = &pll_channel_vmstate; 244 } 245 246 static const TypeInfo cprman_pll_channel_info = { 247 .name = TYPE_CPRMAN_PLL_CHANNEL, 248 .parent = TYPE_DEVICE, 249 .instance_size = sizeof(CprmanPllChannelState), 250 .class_init = pll_channel_class_init, 251 .instance_init = pll_channel_init, 252 }; 253 254 255 /* clock mux */ 256 257 static bool clock_mux_is_enabled(CprmanClockMuxState *mux) 258 { 259 return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE); 260 } 261 262 static void clock_mux_update(CprmanClockMuxState *mux) 263 { 264 uint64_t freq; 265 uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC); 266 bool enabled = clock_mux_is_enabled(mux); 267 268 *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled); 269 270 if (!enabled) { 271 clock_update(mux->out, 0); 272 return; 273 } 274 275 freq = clock_get_hz(mux->srcs[src]); 276 277 if (mux->int_bits == 0 && mux->frac_bits == 0) { 278 clock_update_hz(mux->out, freq); 279 return; 280 } 281 282 /* 283 * The divider has an integer and a fractional part. The size of each part 284 * varies with the muxes (int_bits and frac_bits). Both parts are 285 * concatenated, with the integer part always starting at bit 12. 286 * 287 * 31 12 11 0 288 * ------------------------------ 289 * CM_DIV | | int | frac | | 290 * ------------------------------ 291 * <-----> <------> 292 * int_bits frac_bits 293 */ 294 div = extract32(*mux->reg_div, 295 R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits, 296 mux->int_bits + mux->frac_bits); 297 298 if (!div) { 299 clock_update(mux->out, 0); 300 return; 301 } 302 303 freq = muldiv64(freq, 1 << mux->frac_bits, div); 304 305 clock_update_hz(mux->out, freq); 306 } 307 308 static void clock_mux_src_update(void *opaque, ClockEvent event) 309 { 310 CprmanClockMuxState **backref = opaque; 311 CprmanClockMuxState *s = *backref; 312 CprmanClockMuxSource src = backref - s->backref; 313 314 if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) { 315 return; 316 } 317 318 clock_mux_update(s); 319 } 320 321 static void clock_mux_reset(DeviceState *dev) 322 { 323 CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev); 324 const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id]; 325 326 *clock->reg_ctl = info->cm_ctl; 327 *clock->reg_div = info->cm_div; 328 } 329 330 static void clock_mux_init(Object *obj) 331 { 332 CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj); 333 size_t i; 334 335 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) { 336 char *name = g_strdup_printf("srcs[%zu]", i); 337 s->backref[i] = s; 338 s->srcs[i] = qdev_init_clock_in(DEVICE(s), name, 339 clock_mux_src_update, 340 &s->backref[i], 341 ClockUpdate); 342 g_free(name); 343 } 344 345 s->out = qdev_init_clock_out(DEVICE(s), "out"); 346 } 347 348 static const VMStateDescription clock_mux_vmstate = { 349 .name = TYPE_CPRMAN_CLOCK_MUX, 350 .version_id = 1, 351 .minimum_version_id = 1, 352 .fields = (const VMStateField[]) { 353 VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState, 354 CPRMAN_NUM_CLOCK_MUX_SRC), 355 VMSTATE_END_OF_LIST() 356 } 357 }; 358 359 static void clock_mux_class_init(ObjectClass *klass, void *data) 360 { 361 DeviceClass *dc = DEVICE_CLASS(klass); 362 363 dc->reset = clock_mux_reset; 364 dc->vmsd = &clock_mux_vmstate; 365 } 366 367 static const TypeInfo cprman_clock_mux_info = { 368 .name = TYPE_CPRMAN_CLOCK_MUX, 369 .parent = TYPE_DEVICE, 370 .instance_size = sizeof(CprmanClockMuxState), 371 .class_init = clock_mux_class_init, 372 .instance_init = clock_mux_init, 373 }; 374 375 376 /* DSI0HSCK mux */ 377 378 static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s) 379 { 380 bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD); 381 Clock *src = src_is_plld ? s->plld_in : s->plla_in; 382 383 clock_update(s->out, clock_get(src)); 384 } 385 386 static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event) 387 { 388 dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque)); 389 } 390 391 static void dsi0hsck_mux_init(Object *obj) 392 { 393 CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj); 394 DeviceState *dev = DEVICE(obj); 395 396 s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update, 397 s, ClockUpdate); 398 s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update, 399 s, ClockUpdate); 400 s->out = qdev_init_clock_out(DEVICE(s), "out"); 401 } 402 403 static const VMStateDescription dsi0hsck_mux_vmstate = { 404 .name = TYPE_CPRMAN_DSI0HSCK_MUX, 405 .version_id = 1, 406 .minimum_version_id = 1, 407 .fields = (const VMStateField[]) { 408 VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState), 409 VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState), 410 VMSTATE_END_OF_LIST() 411 } 412 }; 413 414 static void dsi0hsck_mux_class_init(ObjectClass *klass, void *data) 415 { 416 DeviceClass *dc = DEVICE_CLASS(klass); 417 418 dc->vmsd = &dsi0hsck_mux_vmstate; 419 } 420 421 static const TypeInfo cprman_dsi0hsck_mux_info = { 422 .name = TYPE_CPRMAN_DSI0HSCK_MUX, 423 .parent = TYPE_DEVICE, 424 .instance_size = sizeof(CprmanDsi0HsckMuxState), 425 .class_init = dsi0hsck_mux_class_init, 426 .instance_init = dsi0hsck_mux_init, 427 }; 428 429 430 /* CPRMAN "top level" model */ 431 432 static uint32_t get_cm_lock(const BCM2835CprmanState *s) 433 { 434 static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = { 435 [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT, 436 [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT, 437 [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT, 438 [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT, 439 [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT, 440 }; 441 442 uint32_t r = 0; 443 size_t i; 444 445 for (i = 0; i < CPRMAN_NUM_PLL; i++) { 446 r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i]; 447 } 448 449 return r; 450 } 451 452 static uint64_t cprman_read(void *opaque, hwaddr offset, 453 unsigned size) 454 { 455 BCM2835CprmanState *s = CPRMAN(opaque); 456 uint64_t r = 0; 457 size_t idx = offset / sizeof(uint32_t); 458 459 switch (idx) { 460 case R_CM_LOCK: 461 r = get_cm_lock(s); 462 break; 463 464 default: 465 r = s->regs[idx]; 466 } 467 468 trace_bcm2835_cprman_read(offset, r); 469 return r; 470 } 471 472 static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s, 473 size_t idx) 474 { 475 size_t i; 476 477 for (i = 0; i < CPRMAN_NUM_PLL; i++) { 478 if (PLL_INIT_INFO[i].cm_offset == idx) { 479 pll_update_all_channels(s, &s->plls[i]); 480 return; 481 } 482 } 483 } 484 485 static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx) 486 { 487 size_t i; 488 489 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { 490 if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) { 491 pll_channel_update(&s->channels[i]); 492 return; 493 } 494 } 495 } 496 497 static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx) 498 { 499 size_t i; 500 501 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { 502 if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) || 503 (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) { 504 /* matches CM_CTL or CM_DIV mux register */ 505 clock_mux_update(&s->clock_muxes[i]); 506 return; 507 } 508 } 509 } 510 511 #define CASE_PLL_A2W_REGS(pll_) \ 512 case R_A2W_ ## pll_ ## _CTRL: \ 513 case R_A2W_ ## pll_ ## _ANA0: \ 514 case R_A2W_ ## pll_ ## _ANA1: \ 515 case R_A2W_ ## pll_ ## _ANA2: \ 516 case R_A2W_ ## pll_ ## _ANA3: \ 517 case R_A2W_ ## pll_ ## _FRAC 518 519 static void cprman_write(void *opaque, hwaddr offset, 520 uint64_t value, unsigned size) 521 { 522 BCM2835CprmanState *s = CPRMAN(opaque); 523 size_t idx = offset / sizeof(uint32_t); 524 525 if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) { 526 trace_bcm2835_cprman_write_invalid_magic(offset, value); 527 return; 528 } 529 530 value &= ~R_CPRMAN_PASSWORD_MASK; 531 532 trace_bcm2835_cprman_write(offset, value); 533 s->regs[idx] = value; 534 535 switch (idx) { 536 case R_CM_PLLA ... R_CM_PLLH: 537 case R_CM_PLLB: 538 /* 539 * A given CM_PLLx register is shared by both the PLL and the channels 540 * of this PLL. 541 */ 542 update_pll_and_channels_from_cm(s, idx); 543 break; 544 545 CASE_PLL_A2W_REGS(PLLA) : 546 pll_update(&s->plls[CPRMAN_PLLA]); 547 break; 548 549 CASE_PLL_A2W_REGS(PLLC) : 550 pll_update(&s->plls[CPRMAN_PLLC]); 551 break; 552 553 CASE_PLL_A2W_REGS(PLLD) : 554 pll_update(&s->plls[CPRMAN_PLLD]); 555 break; 556 557 CASE_PLL_A2W_REGS(PLLH) : 558 pll_update(&s->plls[CPRMAN_PLLH]); 559 break; 560 561 CASE_PLL_A2W_REGS(PLLB) : 562 pll_update(&s->plls[CPRMAN_PLLB]); 563 break; 564 565 case R_A2W_PLLA_DSI0: 566 case R_A2W_PLLA_CORE: 567 case R_A2W_PLLA_PER: 568 case R_A2W_PLLA_CCP2: 569 case R_A2W_PLLC_CORE2: 570 case R_A2W_PLLC_CORE1: 571 case R_A2W_PLLC_PER: 572 case R_A2W_PLLC_CORE0: 573 case R_A2W_PLLD_DSI0: 574 case R_A2W_PLLD_CORE: 575 case R_A2W_PLLD_PER: 576 case R_A2W_PLLD_DSI1: 577 case R_A2W_PLLH_AUX: 578 case R_A2W_PLLH_RCAL: 579 case R_A2W_PLLH_PIX: 580 case R_A2W_PLLB_ARM: 581 update_channel_from_a2w(s, idx); 582 break; 583 584 case R_CM_GNRICCTL ... R_CM_SMIDIV: 585 case R_CM_TCNTCNT ... R_CM_VECDIV: 586 case R_CM_PULSECTL ... R_CM_PULSEDIV: 587 case R_CM_SDCCTL ... R_CM_ARMCTL: 588 case R_CM_AVEOCTL ... R_CM_EMMCDIV: 589 case R_CM_EMMC2CTL ... R_CM_EMMC2DIV: 590 update_mux_from_cm(s, idx); 591 break; 592 593 case R_CM_DSI0HSCK: 594 dsi0hsck_mux_update(&s->dsi0hsck_mux); 595 break; 596 } 597 } 598 599 #undef CASE_PLL_A2W_REGS 600 601 static const MemoryRegionOps cprman_ops = { 602 .read = cprman_read, 603 .write = cprman_write, 604 .endianness = DEVICE_LITTLE_ENDIAN, 605 .valid = { 606 /* 607 * Although this hasn't been checked against real hardware, nor the 608 * information can be found in a datasheet, it seems reasonable because 609 * of the "PASSWORD" magic value found in every registers. 610 */ 611 .min_access_size = 4, 612 .max_access_size = 4, 613 .unaligned = false, 614 }, 615 .impl = { 616 .max_access_size = 4, 617 }, 618 }; 619 620 static void cprman_reset(DeviceState *dev) 621 { 622 BCM2835CprmanState *s = CPRMAN(dev); 623 size_t i; 624 625 memset(s->regs, 0, sizeof(s->regs)); 626 627 for (i = 0; i < CPRMAN_NUM_PLL; i++) { 628 device_cold_reset(DEVICE(&s->plls[i])); 629 } 630 631 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { 632 device_cold_reset(DEVICE(&s->channels[i])); 633 } 634 635 device_cold_reset(DEVICE(&s->dsi0hsck_mux)); 636 637 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { 638 device_cold_reset(DEVICE(&s->clock_muxes[i])); 639 } 640 641 clock_update_hz(s->xosc, s->xosc_freq); 642 } 643 644 static void cprman_init(Object *obj) 645 { 646 BCM2835CprmanState *s = CPRMAN(obj); 647 size_t i; 648 649 for (i = 0; i < CPRMAN_NUM_PLL; i++) { 650 object_initialize_child(obj, PLL_INIT_INFO[i].name, 651 &s->plls[i], TYPE_CPRMAN_PLL); 652 set_pll_init_info(s, &s->plls[i], i); 653 } 654 655 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { 656 object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name, 657 &s->channels[i], 658 TYPE_CPRMAN_PLL_CHANNEL); 659 set_pll_channel_init_info(s, &s->channels[i], i); 660 } 661 662 object_initialize_child(obj, "dsi0hsck-mux", 663 &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX); 664 s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK]; 665 666 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { 667 char *alias; 668 669 object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name, 670 &s->clock_muxes[i], 671 TYPE_CPRMAN_CLOCK_MUX); 672 set_clock_mux_init_info(s, &s->clock_muxes[i], i); 673 674 /* Expose muxes output as CPRMAN outputs */ 675 alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name); 676 qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias); 677 g_free(alias); 678 } 679 680 s->xosc = clock_new(obj, "xosc"); 681 s->gnd = clock_new(obj, "gnd"); 682 683 clock_set(s->gnd, 0); 684 685 memory_region_init_io(&s->iomem, obj, &cprman_ops, 686 s, "bcm2835-cprman", 0x2000); 687 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 688 } 689 690 static void connect_mux_sources(BCM2835CprmanState *s, 691 CprmanClockMuxState *mux, 692 const CprmanPllChannel *clk_mapping) 693 { 694 size_t i; 695 Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out; 696 Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out; 697 698 /* For sources from 0 to 3. Source 4 to 9 are mux specific */ 699 Clock * const CLK_SRC_MAPPING[] = { 700 [CPRMAN_CLOCK_SRC_GND] = s->gnd, 701 [CPRMAN_CLOCK_SRC_XOSC] = s->xosc, 702 [CPRMAN_CLOCK_SRC_TD0] = td0, 703 [CPRMAN_CLOCK_SRC_TD1] = td1, 704 }; 705 706 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) { 707 CprmanPllChannel mapping = clk_mapping[i]; 708 Clock *src; 709 710 if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) { 711 src = s->gnd; 712 } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) { 713 src = s->dsi0hsck_mux.out; 714 } else if (i < CPRMAN_CLOCK_SRC_PLLA) { 715 src = CLK_SRC_MAPPING[i]; 716 } else { 717 src = s->channels[mapping].out; 718 } 719 720 clock_set_source(mux->srcs[i], src); 721 } 722 } 723 724 static void cprman_realize(DeviceState *dev, Error **errp) 725 { 726 BCM2835CprmanState *s = CPRMAN(dev); 727 size_t i; 728 729 for (i = 0; i < CPRMAN_NUM_PLL; i++) { 730 CprmanPllState *pll = &s->plls[i]; 731 732 clock_set_source(pll->xosc_in, s->xosc); 733 734 if (!qdev_realize(DEVICE(pll), NULL, errp)) { 735 return; 736 } 737 } 738 739 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) { 740 CprmanPllChannelState *channel = &s->channels[i]; 741 CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent; 742 Clock *parent_clk = s->plls[parent].out; 743 744 clock_set_source(channel->pll_in, parent_clk); 745 746 if (!qdev_realize(DEVICE(channel), NULL, errp)) { 747 return; 748 } 749 } 750 751 clock_set_source(s->dsi0hsck_mux.plla_in, 752 s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out); 753 clock_set_source(s->dsi0hsck_mux.plld_in, 754 s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out); 755 756 if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) { 757 return; 758 } 759 760 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) { 761 CprmanClockMuxState *clock_mux = &s->clock_muxes[i]; 762 763 connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping); 764 765 if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) { 766 return; 767 } 768 } 769 } 770 771 static const VMStateDescription cprman_vmstate = { 772 .name = TYPE_BCM2835_CPRMAN, 773 .version_id = 1, 774 .minimum_version_id = 1, 775 .fields = (const VMStateField[]) { 776 VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS), 777 VMSTATE_END_OF_LIST() 778 } 779 }; 780 781 static Property cprman_properties[] = { 782 DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000), 783 DEFINE_PROP_END_OF_LIST() 784 }; 785 786 static void cprman_class_init(ObjectClass *klass, void *data) 787 { 788 DeviceClass *dc = DEVICE_CLASS(klass); 789 790 dc->realize = cprman_realize; 791 dc->reset = cprman_reset; 792 dc->vmsd = &cprman_vmstate; 793 device_class_set_props(dc, cprman_properties); 794 } 795 796 static const TypeInfo cprman_info = { 797 .name = TYPE_BCM2835_CPRMAN, 798 .parent = TYPE_SYS_BUS_DEVICE, 799 .instance_size = sizeof(BCM2835CprmanState), 800 .class_init = cprman_class_init, 801 .instance_init = cprman_init, 802 }; 803 804 static void cprman_register_types(void) 805 { 806 type_register_static(&cprman_info); 807 type_register_static(&cprman_pll_info); 808 type_register_static(&cprman_pll_channel_info); 809 type_register_static(&cprman_clock_mux_info); 810 type_register_static(&cprman_dsi0hsck_mux_info); 811 } 812 813 type_init(cprman_register_types); 814