1 /* 2 * Status and system control registers for ARM RealView/Versatile boards. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "hw/irq.h" 12 #include "hw/qdev-properties.h" 13 #include "qemu/timer.h" 14 #include "sysemu/runstate.h" 15 #include "qemu/bitops.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "hw/arm/primecell.h" 19 #include "qemu/log.h" 20 #include "qemu/module.h" 21 22 #define LOCK_VALUE 0xa05f 23 24 #define TYPE_ARM_SYSCTL "realview_sysctl" 25 #define ARM_SYSCTL(obj) \ 26 OBJECT_CHECK(arm_sysctl_state, (obj), TYPE_ARM_SYSCTL) 27 28 typedef struct { 29 SysBusDevice parent_obj; 30 31 MemoryRegion iomem; 32 qemu_irq pl110_mux_ctrl; 33 34 uint32_t sys_id; 35 uint32_t leds; 36 uint16_t lockval; 37 uint32_t cfgdata1; 38 uint32_t cfgdata2; 39 uint32_t flags; 40 uint32_t nvflags; 41 uint32_t resetlevel; 42 uint32_t proc_id; 43 uint32_t sys_mci; 44 uint32_t sys_cfgdata; 45 uint32_t sys_cfgctrl; 46 uint32_t sys_cfgstat; 47 uint32_t sys_clcd; 48 uint32_t mb_clock[6]; 49 uint32_t *db_clock; 50 uint32_t db_num_vsensors; 51 uint32_t *db_voltage; 52 uint32_t db_num_clocks; 53 uint32_t *db_clock_reset; 54 } arm_sysctl_state; 55 56 static const VMStateDescription vmstate_arm_sysctl = { 57 .name = "realview_sysctl", 58 .version_id = 4, 59 .minimum_version_id = 1, 60 .fields = (VMStateField[]) { 61 VMSTATE_UINT32(leds, arm_sysctl_state), 62 VMSTATE_UINT16(lockval, arm_sysctl_state), 63 VMSTATE_UINT32(cfgdata1, arm_sysctl_state), 64 VMSTATE_UINT32(cfgdata2, arm_sysctl_state), 65 VMSTATE_UINT32(flags, arm_sysctl_state), 66 VMSTATE_UINT32(nvflags, arm_sysctl_state), 67 VMSTATE_UINT32(resetlevel, arm_sysctl_state), 68 VMSTATE_UINT32_V(sys_mci, arm_sysctl_state, 2), 69 VMSTATE_UINT32_V(sys_cfgdata, arm_sysctl_state, 2), 70 VMSTATE_UINT32_V(sys_cfgctrl, arm_sysctl_state, 2), 71 VMSTATE_UINT32_V(sys_cfgstat, arm_sysctl_state, 2), 72 VMSTATE_UINT32_V(sys_clcd, arm_sysctl_state, 3), 73 VMSTATE_UINT32_ARRAY_V(mb_clock, arm_sysctl_state, 6, 4), 74 VMSTATE_VARRAY_UINT32(db_clock, arm_sysctl_state, db_num_clocks, 75 4, vmstate_info_uint32, uint32_t), 76 VMSTATE_END_OF_LIST() 77 } 78 }; 79 80 /* The PB926 actually uses a different format for 81 * its SYS_ID register. Fortunately the bits which are 82 * board type on later boards are distinct. 83 */ 84 #define BOARD_ID_PB926 0x100 85 #define BOARD_ID_EB 0x140 86 #define BOARD_ID_PBA8 0x178 87 #define BOARD_ID_PBX 0x182 88 #define BOARD_ID_VEXPRESS 0x190 89 90 static int board_id(arm_sysctl_state *s) 91 { 92 /* Extract the board ID field from the SYS_ID register value */ 93 return (s->sys_id >> 16) & 0xfff; 94 } 95 96 static void arm_sysctl_reset(DeviceState *d) 97 { 98 arm_sysctl_state *s = ARM_SYSCTL(d); 99 int i; 100 101 s->leds = 0; 102 s->lockval = 0; 103 s->cfgdata1 = 0; 104 s->cfgdata2 = 0; 105 s->flags = 0; 106 s->resetlevel = 0; 107 /* Motherboard oscillators (in Hz) */ 108 s->mb_clock[0] = 50000000; /* Static memory clock: 50MHz */ 109 s->mb_clock[1] = 23750000; /* motherboard CLCD clock: 23.75MHz */ 110 s->mb_clock[2] = 24000000; /* IO FPGA peripheral clock: 24MHz */ 111 s->mb_clock[3] = 24000000; /* IO FPGA reserved clock: 24MHz */ 112 s->mb_clock[4] = 24000000; /* System bus global clock: 24MHz */ 113 s->mb_clock[5] = 24000000; /* IO FPGA reserved clock: 24MHz */ 114 /* Daughterboard oscillators: reset from property values */ 115 for (i = 0; i < s->db_num_clocks; i++) { 116 s->db_clock[i] = s->db_clock_reset[i]; 117 } 118 if (board_id(s) == BOARD_ID_VEXPRESS) { 119 /* On VExpress this register will RAZ/WI */ 120 s->sys_clcd = 0; 121 } else { 122 /* All others: CLCDID 0x1f, indicating VGA */ 123 s->sys_clcd = 0x1f00; 124 } 125 } 126 127 static uint64_t arm_sysctl_read(void *opaque, hwaddr offset, 128 unsigned size) 129 { 130 arm_sysctl_state *s = (arm_sysctl_state *)opaque; 131 132 switch (offset) { 133 case 0x00: /* ID */ 134 return s->sys_id; 135 case 0x04: /* SW */ 136 /* General purpose hardware switches. 137 We don't have a useful way of exposing these to the user. */ 138 return 0; 139 case 0x08: /* LED */ 140 return s->leds; 141 case 0x20: /* LOCK */ 142 return s->lockval; 143 case 0x0c: /* OSC0 */ 144 case 0x10: /* OSC1 */ 145 case 0x14: /* OSC2 */ 146 case 0x18: /* OSC3 */ 147 case 0x1c: /* OSC4 */ 148 case 0x24: /* 100HZ */ 149 /* ??? Implement these. */ 150 return 0; 151 case 0x28: /* CFGDATA1 */ 152 return s->cfgdata1; 153 case 0x2c: /* CFGDATA2 */ 154 return s->cfgdata2; 155 case 0x30: /* FLAGS */ 156 return s->flags; 157 case 0x38: /* NVFLAGS */ 158 return s->nvflags; 159 case 0x40: /* RESETCTL */ 160 if (board_id(s) == BOARD_ID_VEXPRESS) { 161 /* reserved: RAZ/WI */ 162 return 0; 163 } 164 return s->resetlevel; 165 case 0x44: /* PCICTL */ 166 return 1; 167 case 0x48: /* MCI */ 168 return s->sys_mci; 169 case 0x4c: /* FLASH */ 170 return 0; 171 case 0x50: /* CLCD */ 172 return s->sys_clcd; 173 case 0x54: /* CLCDSER */ 174 return 0; 175 case 0x58: /* BOOTCS */ 176 return 0; 177 case 0x5c: /* 24MHz */ 178 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 24000000, 179 NANOSECONDS_PER_SECOND); 180 case 0x60: /* MISC */ 181 return 0; 182 case 0x84: /* PROCID0 */ 183 return s->proc_id; 184 case 0x88: /* PROCID1 */ 185 return 0xff000000; 186 case 0x64: /* DMAPSR0 */ 187 case 0x68: /* DMAPSR1 */ 188 case 0x6c: /* DMAPSR2 */ 189 case 0x70: /* IOSEL */ 190 case 0x74: /* PLDCTL */ 191 case 0x80: /* BUSID */ 192 case 0x8c: /* OSCRESET0 */ 193 case 0x90: /* OSCRESET1 */ 194 case 0x94: /* OSCRESET2 */ 195 case 0x98: /* OSCRESET3 */ 196 case 0x9c: /* OSCRESET4 */ 197 case 0xc0: /* SYS_TEST_OSC0 */ 198 case 0xc4: /* SYS_TEST_OSC1 */ 199 case 0xc8: /* SYS_TEST_OSC2 */ 200 case 0xcc: /* SYS_TEST_OSC3 */ 201 case 0xd0: /* SYS_TEST_OSC4 */ 202 return 0; 203 case 0xa0: /* SYS_CFGDATA */ 204 if (board_id(s) != BOARD_ID_VEXPRESS) { 205 goto bad_reg; 206 } 207 return s->sys_cfgdata; 208 case 0xa4: /* SYS_CFGCTRL */ 209 if (board_id(s) != BOARD_ID_VEXPRESS) { 210 goto bad_reg; 211 } 212 return s->sys_cfgctrl; 213 case 0xa8: /* SYS_CFGSTAT */ 214 if (board_id(s) != BOARD_ID_VEXPRESS) { 215 goto bad_reg; 216 } 217 return s->sys_cfgstat; 218 default: 219 bad_reg: 220 qemu_log_mask(LOG_GUEST_ERROR, 221 "arm_sysctl_read: Bad register offset 0x%x\n", 222 (int)offset); 223 return 0; 224 } 225 } 226 227 /* SYS_CFGCTRL functions */ 228 #define SYS_CFG_OSC 1 229 #define SYS_CFG_VOLT 2 230 #define SYS_CFG_AMP 3 231 #define SYS_CFG_TEMP 4 232 #define SYS_CFG_RESET 5 233 #define SYS_CFG_SCC 6 234 #define SYS_CFG_MUXFPGA 7 235 #define SYS_CFG_SHUTDOWN 8 236 #define SYS_CFG_REBOOT 9 237 #define SYS_CFG_DVIMODE 11 238 #define SYS_CFG_POWER 12 239 #define SYS_CFG_ENERGY 13 240 241 /* SYS_CFGCTRL site field values */ 242 #define SYS_CFG_SITE_MB 0 243 #define SYS_CFG_SITE_DB1 1 244 #define SYS_CFG_SITE_DB2 2 245 246 /** 247 * vexpress_cfgctrl_read: 248 * @s: arm_sysctl_state pointer 249 * @dcc, @function, @site, @position, @device: split out values from 250 * SYS_CFGCTRL register 251 * @val: pointer to where to put the read data on success 252 * 253 * Handle a VExpress SYS_CFGCTRL register read. On success, return true and 254 * write the read value to *val. On failure, return false (and val may 255 * or may not be written to). 256 */ 257 static bool vexpress_cfgctrl_read(arm_sysctl_state *s, unsigned int dcc, 258 unsigned int function, unsigned int site, 259 unsigned int position, unsigned int device, 260 uint32_t *val) 261 { 262 /* We don't support anything other than DCC 0, board stack position 0 263 * or sites other than motherboard/daughterboard: 264 */ 265 if (dcc != 0 || position != 0 || 266 (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) { 267 goto cfgctrl_unimp; 268 } 269 270 switch (function) { 271 case SYS_CFG_VOLT: 272 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_vsensors) { 273 *val = s->db_voltage[device]; 274 return true; 275 } 276 if (site == SYS_CFG_SITE_MB && device == 0) { 277 /* There is only one motherboard voltage sensor: 278 * VIO : 3.3V : bus voltage between mother and daughterboard 279 */ 280 *val = 3300000; 281 return true; 282 } 283 break; 284 case SYS_CFG_OSC: 285 if (site == SYS_CFG_SITE_MB && device < ARRAY_SIZE(s->mb_clock)) { 286 /* motherboard clock */ 287 *val = s->mb_clock[device]; 288 return true; 289 } 290 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_clocks) { 291 /* daughterboard clock */ 292 *val = s->db_clock[device]; 293 return true; 294 } 295 break; 296 default: 297 break; 298 } 299 300 cfgctrl_unimp: 301 qemu_log_mask(LOG_UNIMP, 302 "arm_sysctl: Unimplemented SYS_CFGCTRL read of function " 303 "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n", 304 function, dcc, site, position, device); 305 return false; 306 } 307 308 /** 309 * vexpress_cfgctrl_write: 310 * @s: arm_sysctl_state pointer 311 * @dcc, @function, @site, @position, @device: split out values from 312 * SYS_CFGCTRL register 313 * @val: data to write 314 * 315 * Handle a VExpress SYS_CFGCTRL register write. On success, return true. 316 * On failure, return false. 317 */ 318 static bool vexpress_cfgctrl_write(arm_sysctl_state *s, unsigned int dcc, 319 unsigned int function, unsigned int site, 320 unsigned int position, unsigned int device, 321 uint32_t val) 322 { 323 /* We don't support anything other than DCC 0, board stack position 0 324 * or sites other than motherboard/daughterboard: 325 */ 326 if (dcc != 0 || position != 0 || 327 (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) { 328 goto cfgctrl_unimp; 329 } 330 331 switch (function) { 332 case SYS_CFG_OSC: 333 if (site == SYS_CFG_SITE_MB && device < ARRAY_SIZE(s->mb_clock)) { 334 /* motherboard clock */ 335 s->mb_clock[device] = val; 336 return true; 337 } 338 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_clocks) { 339 /* daughterboard clock */ 340 s->db_clock[device] = val; 341 return true; 342 } 343 break; 344 case SYS_CFG_MUXFPGA: 345 if (site == SYS_CFG_SITE_MB && device == 0) { 346 /* Select whether video output comes from motherboard 347 * or daughterboard: log and ignore as QEMU doesn't 348 * support this. 349 */ 350 qemu_log_mask(LOG_UNIMP, "arm_sysctl: selection of video output " 351 "not supported, ignoring\n"); 352 return true; 353 } 354 break; 355 case SYS_CFG_SHUTDOWN: 356 if (site == SYS_CFG_SITE_MB && device == 0) { 357 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 358 return true; 359 } 360 break; 361 case SYS_CFG_REBOOT: 362 if (site == SYS_CFG_SITE_MB && device == 0) { 363 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 364 return true; 365 } 366 break; 367 case SYS_CFG_DVIMODE: 368 if (site == SYS_CFG_SITE_MB && device == 0) { 369 /* Selecting DVI mode is meaningless for QEMU: we will 370 * always display the output correctly according to the 371 * pixel height/width programmed into the CLCD controller. 372 */ 373 return true; 374 } 375 default: 376 break; 377 } 378 379 cfgctrl_unimp: 380 qemu_log_mask(LOG_UNIMP, 381 "arm_sysctl: Unimplemented SYS_CFGCTRL write of function " 382 "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n", 383 function, dcc, site, position, device); 384 return false; 385 } 386 387 static void arm_sysctl_write(void *opaque, hwaddr offset, 388 uint64_t val, unsigned size) 389 { 390 arm_sysctl_state *s = (arm_sysctl_state *)opaque; 391 392 switch (offset) { 393 case 0x08: /* LED */ 394 s->leds = val; 395 break; 396 case 0x0c: /* OSC0 */ 397 case 0x10: /* OSC1 */ 398 case 0x14: /* OSC2 */ 399 case 0x18: /* OSC3 */ 400 case 0x1c: /* OSC4 */ 401 /* ??? */ 402 break; 403 case 0x20: /* LOCK */ 404 if (val == LOCK_VALUE) 405 s->lockval = val; 406 else 407 s->lockval = val & 0x7fff; 408 break; 409 case 0x28: /* CFGDATA1 */ 410 /* ??? Need to implement this. */ 411 s->cfgdata1 = val; 412 break; 413 case 0x2c: /* CFGDATA2 */ 414 /* ??? Need to implement this. */ 415 s->cfgdata2 = val; 416 break; 417 case 0x30: /* FLAGSSET */ 418 s->flags |= val; 419 break; 420 case 0x34: /* FLAGSCLR */ 421 s->flags &= ~val; 422 break; 423 case 0x38: /* NVFLAGSSET */ 424 s->nvflags |= val; 425 break; 426 case 0x3c: /* NVFLAGSCLR */ 427 s->nvflags &= ~val; 428 break; 429 case 0x40: /* RESETCTL */ 430 switch (board_id(s)) { 431 case BOARD_ID_PB926: 432 if (s->lockval == LOCK_VALUE) { 433 s->resetlevel = val; 434 if (val & 0x100) { 435 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 436 } 437 } 438 break; 439 case BOARD_ID_PBX: 440 case BOARD_ID_PBA8: 441 if (s->lockval == LOCK_VALUE) { 442 s->resetlevel = val; 443 if (val & 0x04) { 444 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 445 } 446 } 447 break; 448 case BOARD_ID_VEXPRESS: 449 case BOARD_ID_EB: 450 default: 451 /* reserved: RAZ/WI */ 452 break; 453 } 454 break; 455 case 0x44: /* PCICTL */ 456 /* nothing to do. */ 457 break; 458 case 0x4c: /* FLASH */ 459 break; 460 case 0x50: /* CLCD */ 461 switch (board_id(s)) { 462 case BOARD_ID_PB926: 463 /* On 926 bits 13:8 are R/O, bits 1:0 control 464 * the mux that defines how to interpret the PL110 465 * graphics format, and other bits are r/w but we 466 * don't implement them to do anything. 467 */ 468 s->sys_clcd &= 0x3f00; 469 s->sys_clcd |= val & ~0x3f00; 470 qemu_set_irq(s->pl110_mux_ctrl, val & 3); 471 break; 472 case BOARD_ID_EB: 473 /* The EB is the same except that there is no mux since 474 * the EB has a PL111. 475 */ 476 s->sys_clcd &= 0x3f00; 477 s->sys_clcd |= val & ~0x3f00; 478 break; 479 case BOARD_ID_PBA8: 480 case BOARD_ID_PBX: 481 /* On PBA8 and PBX bit 7 is r/w and all other bits 482 * are either r/o or RAZ/WI. 483 */ 484 s->sys_clcd &= (1 << 7); 485 s->sys_clcd |= val & ~(1 << 7); 486 break; 487 case BOARD_ID_VEXPRESS: 488 default: 489 /* On VExpress this register is unimplemented and will RAZ/WI */ 490 break; 491 } 492 break; 493 case 0x54: /* CLCDSER */ 494 case 0x64: /* DMAPSR0 */ 495 case 0x68: /* DMAPSR1 */ 496 case 0x6c: /* DMAPSR2 */ 497 case 0x70: /* IOSEL */ 498 case 0x74: /* PLDCTL */ 499 case 0x80: /* BUSID */ 500 case 0x84: /* PROCID0 */ 501 case 0x88: /* PROCID1 */ 502 case 0x8c: /* OSCRESET0 */ 503 case 0x90: /* OSCRESET1 */ 504 case 0x94: /* OSCRESET2 */ 505 case 0x98: /* OSCRESET3 */ 506 case 0x9c: /* OSCRESET4 */ 507 break; 508 case 0xa0: /* SYS_CFGDATA */ 509 if (board_id(s) != BOARD_ID_VEXPRESS) { 510 goto bad_reg; 511 } 512 s->sys_cfgdata = val; 513 return; 514 case 0xa4: /* SYS_CFGCTRL */ 515 if (board_id(s) != BOARD_ID_VEXPRESS) { 516 goto bad_reg; 517 } 518 /* Undefined bits [19:18] are RAZ/WI, and writing to 519 * the start bit just triggers the action; it always reads 520 * as zero. 521 */ 522 s->sys_cfgctrl = val & ~((3 << 18) | (1 << 31)); 523 if (val & (1 << 31)) { 524 /* Start bit set -- actually do something */ 525 unsigned int dcc = extract32(s->sys_cfgctrl, 26, 4); 526 unsigned int function = extract32(s->sys_cfgctrl, 20, 6); 527 unsigned int site = extract32(s->sys_cfgctrl, 16, 2); 528 unsigned int position = extract32(s->sys_cfgctrl, 12, 4); 529 unsigned int device = extract32(s->sys_cfgctrl, 0, 12); 530 s->sys_cfgstat = 1; /* complete */ 531 if (s->sys_cfgctrl & (1 << 30)) { 532 if (!vexpress_cfgctrl_write(s, dcc, function, site, position, 533 device, s->sys_cfgdata)) { 534 s->sys_cfgstat |= 2; /* error */ 535 } 536 } else { 537 uint32_t val; 538 if (!vexpress_cfgctrl_read(s, dcc, function, site, position, 539 device, &val)) { 540 s->sys_cfgstat |= 2; /* error */ 541 } else { 542 s->sys_cfgdata = val; 543 } 544 } 545 } 546 s->sys_cfgctrl &= ~(1 << 31); 547 return; 548 case 0xa8: /* SYS_CFGSTAT */ 549 if (board_id(s) != BOARD_ID_VEXPRESS) { 550 goto bad_reg; 551 } 552 s->sys_cfgstat = val & 3; 553 return; 554 default: 555 bad_reg: 556 qemu_log_mask(LOG_GUEST_ERROR, 557 "arm_sysctl_write: Bad register offset 0x%x\n", 558 (int)offset); 559 return; 560 } 561 } 562 563 static const MemoryRegionOps arm_sysctl_ops = { 564 .read = arm_sysctl_read, 565 .write = arm_sysctl_write, 566 .endianness = DEVICE_NATIVE_ENDIAN, 567 }; 568 569 static void arm_sysctl_gpio_set(void *opaque, int line, int level) 570 { 571 arm_sysctl_state *s = (arm_sysctl_state *)opaque; 572 switch (line) { 573 case ARM_SYSCTL_GPIO_MMC_WPROT: 574 { 575 /* For PB926 and EB write-protect is bit 2 of SYS_MCI; 576 * for all later boards it is bit 1. 577 */ 578 int bit = 2; 579 if ((board_id(s) == BOARD_ID_PB926) || (board_id(s) == BOARD_ID_EB)) { 580 bit = 4; 581 } 582 s->sys_mci &= ~bit; 583 if (level) { 584 s->sys_mci |= bit; 585 } 586 break; 587 } 588 case ARM_SYSCTL_GPIO_MMC_CARDIN: 589 s->sys_mci &= ~1; 590 if (level) { 591 s->sys_mci |= 1; 592 } 593 break; 594 } 595 } 596 597 static void arm_sysctl_init(Object *obj) 598 { 599 DeviceState *dev = DEVICE(obj); 600 SysBusDevice *sd = SYS_BUS_DEVICE(obj); 601 arm_sysctl_state *s = ARM_SYSCTL(obj); 602 603 memory_region_init_io(&s->iomem, OBJECT(dev), &arm_sysctl_ops, s, 604 "arm-sysctl", 0x1000); 605 sysbus_init_mmio(sd, &s->iomem); 606 qdev_init_gpio_in(dev, arm_sysctl_gpio_set, 2); 607 qdev_init_gpio_out(dev, &s->pl110_mux_ctrl, 1); 608 } 609 610 static void arm_sysctl_realize(DeviceState *d, Error **errp) 611 { 612 arm_sysctl_state *s = ARM_SYSCTL(d); 613 614 s->db_clock = g_new0(uint32_t, s->db_num_clocks); 615 } 616 617 static void arm_sysctl_finalize(Object *obj) 618 { 619 arm_sysctl_state *s = ARM_SYSCTL(obj); 620 621 g_free(s->db_voltage); 622 g_free(s->db_clock); 623 g_free(s->db_clock_reset); 624 } 625 626 static Property arm_sysctl_properties[] = { 627 DEFINE_PROP_UINT32("sys_id", arm_sysctl_state, sys_id, 0), 628 DEFINE_PROP_UINT32("proc_id", arm_sysctl_state, proc_id, 0), 629 /* Daughterboard power supply voltages (as reported via SYS_CFG) */ 630 DEFINE_PROP_ARRAY("db-voltage", arm_sysctl_state, db_num_vsensors, 631 db_voltage, qdev_prop_uint32, uint32_t), 632 /* Daughterboard clock reset values (as reported via SYS_CFG) */ 633 DEFINE_PROP_ARRAY("db-clock", arm_sysctl_state, db_num_clocks, 634 db_clock_reset, qdev_prop_uint32, uint32_t), 635 DEFINE_PROP_END_OF_LIST(), 636 }; 637 638 static void arm_sysctl_class_init(ObjectClass *klass, void *data) 639 { 640 DeviceClass *dc = DEVICE_CLASS(klass); 641 642 dc->realize = arm_sysctl_realize; 643 dc->reset = arm_sysctl_reset; 644 dc->vmsd = &vmstate_arm_sysctl; 645 device_class_set_props(dc, arm_sysctl_properties); 646 } 647 648 static const TypeInfo arm_sysctl_info = { 649 .name = TYPE_ARM_SYSCTL, 650 .parent = TYPE_SYS_BUS_DEVICE, 651 .instance_size = sizeof(arm_sysctl_state), 652 .instance_init = arm_sysctl_init, 653 .instance_finalize = arm_sysctl_finalize, 654 .class_init = arm_sysctl_class_init, 655 }; 656 657 static void arm_sysctl_register_types(void) 658 { 659 type_register_static(&arm_sysctl_info); 660 } 661 662 type_init(arm_sysctl_register_types) 663