xref: /openbmc/qemu/hw/misc/allwinner-r40-dramc.c (revision 136cb9cc)
1 /*
2  * Allwinner R40 SDRAM Controller emulation
3  *
4  * CCopyright (C) 2023 qianfan Zhao <qianfanguijin@163.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu/error-report.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "qemu/log.h"
26 #include "qemu/module.h"
27 #include "exec/address-spaces.h"
28 #include "hw/qdev-properties.h"
29 #include "qapi/error.h"
30 #include "qemu/bitops.h"
31 #include "hw/misc/allwinner-r40-dramc.h"
32 #include "trace.h"
33 
34 #define REG_INDEX(offset)    (offset / sizeof(uint32_t))
35 
36 /* DRAMCOM register offsets */
37 enum {
38     REG_DRAMCOM_CR    = 0x0000, /* Control Register */
39 };
40 
41 /* DRAMCOMM register flags */
42 enum {
43     REG_DRAMCOM_CR_DUAL_RANK = (1 << 0),
44 };
45 
46 /* DRAMCTL register offsets */
47 enum {
48     REG_DRAMCTL_PIR   = 0x0000, /* PHY Initialization Register */
49     REG_DRAMCTL_PGSR  = 0x0010, /* PHY General Status Register */
50     REG_DRAMCTL_STATR = 0x0018, /* Status Register */
51     REG_DRAMCTL_PGCR  = 0x0100, /* PHY general configuration registers */
52 };
53 
54 /* DRAMCTL register flags */
55 enum {
56     REG_DRAMCTL_PGSR_INITDONE = (1 << 0),
57     REG_DRAMCTL_PGSR_READ_TIMEOUT = (1 << 13),
58     REG_DRAMCTL_PGCR_ENABLE_READ_TIMEOUT = (1 << 25),
59 };
60 
61 enum {
62     REG_DRAMCTL_STATR_ACTIVE  = (1 << 0),
63 };
64 
65 #define DRAM_MAX_ROW_BITS       16
66 #define DRAM_MAX_COL_BITS       13  /* 8192 */
67 #define DRAM_MAX_BANK            3
68 
69 static uint64_t dram_autodetect_cells[DRAM_MAX_ROW_BITS]
70                                      [DRAM_MAX_BANK]
71                                      [DRAM_MAX_COL_BITS];
72 struct VirtualDDRChip {
73     uint32_t    ram_size;
74     uint8_t     bank_bits;
75     uint8_t     row_bits;
76     uint8_t     col_bits;
77 };
78 
79 /*
80  * Only power of 2 RAM sizes from 256MiB up to 2048MiB are supported,
81  * 2GiB memory is not supported due to dual rank feature.
82  */
83 static const struct VirtualDDRChip dummy_ddr_chips[] = {
84     {
85         .ram_size   = 256,
86         .bank_bits  = 3,
87         .row_bits   = 12,
88         .col_bits   = 13,
89     }, {
90         .ram_size   = 512,
91         .bank_bits  = 3,
92         .row_bits   = 13,
93         .col_bits   = 13,
94     }, {
95         .ram_size   = 1024,
96         .bank_bits  = 3,
97         .row_bits   = 14,
98         .col_bits   = 13,
99     }, {
100         0
101     }
102 };
103 
104 static const struct VirtualDDRChip *get_match_ddr(uint32_t ram_size)
105 {
106     const struct VirtualDDRChip *ddr;
107 
108     for (ddr = &dummy_ddr_chips[0]; ddr->ram_size; ddr++) {
109         if (ddr->ram_size == ram_size) {
110             return ddr;
111         }
112     }
113 
114     return NULL;
115 }
116 
117 static uint64_t *address_to_autodetect_cells(AwR40DramCtlState *s,
118                                              const struct VirtualDDRChip *ddr,
119                                              uint32_t offset)
120 {
121     int row_index = 0, bank_index = 0, col_index = 0;
122     uint32_t row_addr, bank_addr, col_addr;
123 
124     row_addr = extract32(offset, s->set_col_bits + s->set_bank_bits,
125                          s->set_row_bits);
126     bank_addr = extract32(offset, s->set_col_bits, s->set_bank_bits);
127     col_addr = extract32(offset, 0, s->set_col_bits);
128 
129     for (int i = 0; i < ddr->row_bits; i++) {
130         if (row_addr & BIT(i)) {
131             row_index = i;
132         }
133     }
134 
135     for (int i = 0; i < ddr->bank_bits; i++) {
136         if (bank_addr & BIT(i)) {
137             bank_index = i;
138         }
139     }
140 
141     for (int i = 0; i < ddr->col_bits; i++) {
142         if (col_addr & BIT(i)) {
143             col_index = i;
144         }
145     }
146 
147     trace_allwinner_r40_dramc_offset_to_cell(offset, row_index, bank_index,
148                                              col_index);
149     return &dram_autodetect_cells[row_index][bank_index][col_index];
150 }
151 
152 static void allwinner_r40_dramc_map_rows(AwR40DramCtlState *s, uint8_t row_bits,
153                                          uint8_t bank_bits, uint8_t col_bits)
154 {
155     const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size);
156     bool enable_detect_cells;
157 
158     trace_allwinner_r40_dramc_map_rows(row_bits, bank_bits, col_bits);
159 
160     if (!ddr) {
161         return;
162     }
163 
164     s->set_row_bits = row_bits;
165     s->set_bank_bits = bank_bits;
166     s->set_col_bits = col_bits;
167 
168     enable_detect_cells = ddr->bank_bits != bank_bits
169                         || ddr->row_bits != row_bits
170                         || ddr->col_bits != col_bits;
171 
172     if (enable_detect_cells) {
173         trace_allwinner_r40_dramc_detect_cells_enable();
174     } else {
175         trace_allwinner_r40_dramc_detect_cells_disable();
176     }
177 
178     memory_region_set_enabled(&s->detect_cells, enable_detect_cells);
179 }
180 
181 static uint64_t allwinner_r40_dramcom_read(void *opaque, hwaddr offset,
182                                            unsigned size)
183 {
184     const AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
185     const uint32_t idx = REG_INDEX(offset);
186 
187     if (idx >= AW_R40_DRAMCOM_REGS_NUM) {
188         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
189                       __func__, (uint32_t)offset);
190         return 0;
191     }
192 
193     trace_allwinner_r40_dramcom_read(offset, s->dramcom[idx], size);
194     return s->dramcom[idx];
195 }
196 
197 static void allwinner_r40_dramcom_write(void *opaque, hwaddr offset,
198                                         uint64_t val, unsigned size)
199 {
200     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
201     const uint32_t idx = REG_INDEX(offset);
202 
203     trace_allwinner_r40_dramcom_write(offset, val, size);
204 
205     if (idx >= AW_R40_DRAMCOM_REGS_NUM) {
206         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
207                       __func__, (uint32_t)offset);
208         return;
209     }
210 
211     switch (offset) {
212     case REG_DRAMCOM_CR:   /* Control Register */
213         if (!(val & REG_DRAMCOM_CR_DUAL_RANK)) {
214             allwinner_r40_dramc_map_rows(s, ((val >> 4) & 0xf) + 1,
215                                          ((val >> 2) & 0x1) + 2,
216                                          (((val >> 8) & 0xf) + 3));
217         }
218         break;
219     };
220 
221     s->dramcom[idx] = (uint32_t) val;
222 }
223 
224 static uint64_t allwinner_r40_dramctl_read(void *opaque, hwaddr offset,
225                                            unsigned size)
226 {
227     const AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
228     const uint32_t idx = REG_INDEX(offset);
229 
230     if (idx >= AW_R40_DRAMCTL_REGS_NUM) {
231         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
232                       __func__, (uint32_t)offset);
233         return 0;
234     }
235 
236     trace_allwinner_r40_dramctl_read(offset, s->dramctl[idx], size);
237     return s->dramctl[idx];
238 }
239 
240 static void allwinner_r40_dramctl_write(void *opaque, hwaddr offset,
241                                         uint64_t val, unsigned size)
242 {
243     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
244     const uint32_t idx = REG_INDEX(offset);
245 
246     trace_allwinner_r40_dramctl_write(offset, val, size);
247 
248     if (idx >= AW_R40_DRAMCTL_REGS_NUM) {
249         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
250                       __func__, (uint32_t)offset);
251         return;
252     }
253 
254     switch (offset) {
255     case REG_DRAMCTL_PIR:    /* PHY Initialization Register */
256         s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)] |= REG_DRAMCTL_PGSR_INITDONE;
257         s->dramctl[REG_INDEX(REG_DRAMCTL_STATR)] |= REG_DRAMCTL_STATR_ACTIVE;
258         break;
259     }
260 
261     s->dramctl[idx] = (uint32_t) val;
262 }
263 
264 static uint64_t allwinner_r40_dramphy_read(void *opaque, hwaddr offset,
265                                            unsigned size)
266 {
267     const AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
268     const uint32_t idx = REG_INDEX(offset);
269 
270     if (idx >= AW_R40_DRAMPHY_REGS_NUM) {
271         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
272                       __func__, (uint32_t)offset);
273         return 0;
274     }
275 
276     trace_allwinner_r40_dramphy_read(offset, s->dramphy[idx], size);
277     return s->dramphy[idx];
278 }
279 
280 static void allwinner_r40_dramphy_write(void *opaque, hwaddr offset,
281                                         uint64_t val, unsigned size)
282 {
283     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
284     const uint32_t idx = REG_INDEX(offset);
285 
286     trace_allwinner_r40_dramphy_write(offset, val, size);
287 
288     if (idx >= AW_R40_DRAMPHY_REGS_NUM) {
289         qemu_log_mask(LOG_GUEST_ERROR, "%s: out-of-bounds offset 0x%04x\n",
290                       __func__, (uint32_t)offset);
291         return;
292     }
293 
294     s->dramphy[idx] = (uint32_t) val;
295 }
296 
297 static const MemoryRegionOps allwinner_r40_dramcom_ops = {
298     .read = allwinner_r40_dramcom_read,
299     .write = allwinner_r40_dramcom_write,
300     .endianness = DEVICE_NATIVE_ENDIAN,
301     .valid = {
302         .min_access_size = 4,
303         .max_access_size = 4,
304     },
305     .impl.min_access_size = 4,
306 };
307 
308 static const MemoryRegionOps allwinner_r40_dramctl_ops = {
309     .read = allwinner_r40_dramctl_read,
310     .write = allwinner_r40_dramctl_write,
311     .endianness = DEVICE_NATIVE_ENDIAN,
312     .valid = {
313         .min_access_size = 4,
314         .max_access_size = 4,
315     },
316     .impl.min_access_size = 4,
317 };
318 
319 static const MemoryRegionOps allwinner_r40_dramphy_ops = {
320     .read = allwinner_r40_dramphy_read,
321     .write = allwinner_r40_dramphy_write,
322     .endianness = DEVICE_NATIVE_ENDIAN,
323     .valid = {
324         .min_access_size = 4,
325         .max_access_size = 4,
326     },
327     .impl.min_access_size = 4,
328 };
329 
330 static uint64_t allwinner_r40_detect_read(void *opaque, hwaddr offset,
331                                           unsigned size)
332 {
333     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
334     const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size);
335     uint64_t data = 0;
336 
337     if (ddr) {
338         data = *address_to_autodetect_cells(s, ddr, (uint32_t)offset);
339     }
340 
341     trace_allwinner_r40_dramc_detect_cell_read(offset, data);
342     return data;
343 }
344 
345 static void allwinner_r40_detect_write(void *opaque, hwaddr offset,
346                                        uint64_t data, unsigned size)
347 {
348     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
349     const struct VirtualDDRChip *ddr = get_match_ddr(s->ram_size);
350 
351     if (ddr) {
352         uint64_t *cell = address_to_autodetect_cells(s, ddr, (uint32_t)offset);
353         trace_allwinner_r40_dramc_detect_cell_write(offset, data);
354         *cell = data;
355     }
356 }
357 
358 static const MemoryRegionOps allwinner_r40_detect_ops = {
359     .read = allwinner_r40_detect_read,
360     .write = allwinner_r40_detect_write,
361     .endianness = DEVICE_NATIVE_ENDIAN,
362     .valid = {
363         .min_access_size = 4,
364         .max_access_size = 4,
365     },
366     .impl.min_access_size = 4,
367 };
368 
369 /*
370  * mctl_r40_detect_rank_count in u-boot will write the high 1G of DDR
371  * to detect whether the board support dual_rank or not. Create a virtual memory
372  * if the board's ram_size less or equal than 1G, and set read time out flag of
373  * REG_DRAMCTL_PGSR when the user touch this high dram.
374  */
375 static uint64_t allwinner_r40_dualrank_detect_read(void *opaque, hwaddr offset,
376                                                    unsigned size)
377 {
378     AwR40DramCtlState *s = AW_R40_DRAMC(opaque);
379     uint32_t reg;
380 
381     reg = s->dramctl[REG_INDEX(REG_DRAMCTL_PGCR)];
382     if (reg & REG_DRAMCTL_PGCR_ENABLE_READ_TIMEOUT) { /* Enable read time out */
383         /*
384          * this driver only support one rank, mark READ_TIMEOUT when try
385          * read the second rank.
386          */
387         s->dramctl[REG_INDEX(REG_DRAMCTL_PGSR)]
388                                 |= REG_DRAMCTL_PGSR_READ_TIMEOUT;
389     }
390 
391     return 0;
392 }
393 
394 static const MemoryRegionOps allwinner_r40_dualrank_detect_ops = {
395     .read = allwinner_r40_dualrank_detect_read,
396     .endianness = DEVICE_NATIVE_ENDIAN,
397     .valid = {
398         .min_access_size = 4,
399         .max_access_size = 4,
400     },
401     .impl.min_access_size = 4,
402 };
403 
404 static void allwinner_r40_dramc_reset(DeviceState *dev)
405 {
406     AwR40DramCtlState *s = AW_R40_DRAMC(dev);
407 
408     /* Set default values for registers */
409     memset(&s->dramcom, 0, sizeof(s->dramcom));
410     memset(&s->dramctl, 0, sizeof(s->dramctl));
411     memset(&s->dramphy, 0, sizeof(s->dramphy));
412 }
413 
414 static void allwinner_r40_dramc_realize(DeviceState *dev, Error **errp)
415 {
416     AwR40DramCtlState *s = AW_R40_DRAMC(dev);
417 
418     if (!get_match_ddr(s->ram_size)) {
419         error_report("%s: ram-size %u MiB is not supported",
420                         __func__, s->ram_size);
421         exit(1);
422     }
423 
424     /* detect_cells */
425     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s), 3, s->ram_addr, 10);
426     memory_region_set_enabled(&s->detect_cells, false);
427 
428     /*
429      * We only support DRAM size up to 1G now, so prepare a high memory page
430      * after 1G for dualrank detect. index = 4
431      */
432     memory_region_init_io(&s->dram_high, OBJECT(s),
433                             &allwinner_r40_dualrank_detect_ops, s,
434                             "DRAMHIGH", KiB);
435     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->dram_high);
436     sysbus_mmio_map(SYS_BUS_DEVICE(s), 4, s->ram_addr + GiB);
437 }
438 
439 static void allwinner_r40_dramc_init(Object *obj)
440 {
441     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
442     AwR40DramCtlState *s = AW_R40_DRAMC(obj);
443 
444     /* DRAMCOM registers, index 0 */
445     memory_region_init_io(&s->dramcom_iomem, OBJECT(s),
446                           &allwinner_r40_dramcom_ops, s,
447                           "DRAMCOM", 4 * KiB);
448     sysbus_init_mmio(sbd, &s->dramcom_iomem);
449 
450     /* DRAMCTL registers, index 1 */
451     memory_region_init_io(&s->dramctl_iomem, OBJECT(s),
452                           &allwinner_r40_dramctl_ops, s,
453                           "DRAMCTL", 4 * KiB);
454     sysbus_init_mmio(sbd, &s->dramctl_iomem);
455 
456     /* DRAMPHY registers. index 2 */
457     memory_region_init_io(&s->dramphy_iomem, OBJECT(s),
458                           &allwinner_r40_dramphy_ops, s,
459                           "DRAMPHY", 4 * KiB);
460     sysbus_init_mmio(sbd, &s->dramphy_iomem);
461 
462     /* R40 support max 2G memory but we only support up to 1G now. index 3 */
463     memory_region_init_io(&s->detect_cells, OBJECT(s),
464                           &allwinner_r40_detect_ops, s,
465                           "DRAMCELLS", 1 * GiB);
466     sysbus_init_mmio(sbd, &s->detect_cells);
467 }
468 
469 static Property allwinner_r40_dramc_properties[] = {
470     DEFINE_PROP_UINT64("ram-addr", AwR40DramCtlState, ram_addr, 0x0),
471     DEFINE_PROP_UINT32("ram-size", AwR40DramCtlState, ram_size, 256), /* MiB */
472     DEFINE_PROP_END_OF_LIST()
473 };
474 
475 static const VMStateDescription allwinner_r40_dramc_vmstate = {
476     .name = "allwinner-r40-dramc",
477     .version_id = 1,
478     .minimum_version_id = 1,
479     .fields = (VMStateField[]) {
480         VMSTATE_UINT32_ARRAY(dramcom, AwR40DramCtlState,
481                              AW_R40_DRAMCOM_REGS_NUM),
482         VMSTATE_UINT32_ARRAY(dramctl, AwR40DramCtlState,
483                              AW_R40_DRAMCTL_REGS_NUM),
484         VMSTATE_UINT32_ARRAY(dramphy, AwR40DramCtlState,
485                              AW_R40_DRAMPHY_REGS_NUM),
486         VMSTATE_END_OF_LIST()
487     }
488 };
489 
490 static void allwinner_r40_dramc_class_init(ObjectClass *klass, void *data)
491 {
492     DeviceClass *dc = DEVICE_CLASS(klass);
493 
494     dc->reset = allwinner_r40_dramc_reset;
495     dc->vmsd = &allwinner_r40_dramc_vmstate;
496     dc->realize = allwinner_r40_dramc_realize;
497     device_class_set_props(dc, allwinner_r40_dramc_properties);
498 }
499 
500 static const TypeInfo allwinner_r40_dramc_info = {
501     .name          = TYPE_AW_R40_DRAMC,
502     .parent        = TYPE_SYS_BUS_DEVICE,
503     .instance_init = allwinner_r40_dramc_init,
504     .instance_size = sizeof(AwR40DramCtlState),
505     .class_init    = allwinner_r40_dramc_class_init,
506 };
507 
508 static void allwinner_r40_dramc_register(void)
509 {
510     type_register_static(&allwinner_r40_dramc_info);
511 }
512 
513 type_init(allwinner_r40_dramc_register)
514