xref: /openbmc/qemu/hw/mips/malta.c (revision effd60c8)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/bootloader.h"
40 #include "hw/pci/pci.h"
41 #include "hw/pci/pci_bus.h"
42 #include "qemu/log.h"
43 #include "hw/ide/pci.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "qom/object.h"
48 #include "hw/sysbus.h"             /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "sysemu/kvm.h"
56 #include "semihosting/semihost.h"
57 #include "hw/mips/cps.h"
58 #include "hw/qdev-clock.h"
59 #include "target/mips/internal.h"
60 #include "trace.h"
61 #include "cpu.h"
62 
63 #define ENVP_PADDR          0x2000
64 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
65 #define ENVP_NB_ENTRIES     16
66 #define ENVP_ENTRY_SIZE     256
67 
68 /* Hardware addresses */
69 #define FLASH_ADDRESS       0x1e000000ULL
70 #define FPGA_ADDRESS        0x1f000000ULL
71 #define RESET_ADDRESS       0x1fc00000ULL
72 
73 #define FLASH_SIZE          0x400000
74 #define BIOS_SIZE           (4 * MiB)
75 
76 #define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
77 
78 typedef struct {
79     MemoryRegion iomem;
80     MemoryRegion iomem_lo; /* 0 - 0x900 */
81     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
82     uint32_t leds;
83     uint32_t brk;
84     uint32_t gpout;
85     uint32_t i2cin;
86     uint32_t i2coe;
87     uint32_t i2cout;
88     uint32_t i2csel;
89     CharBackend display;
90     char display_text[9];
91     SerialMM *uart;
92     bool display_inited;
93 } MaltaFPGAState;
94 
95 #if TARGET_BIG_ENDIAN
96 #define BIOS_FILENAME "mips_bios.bin"
97 #else
98 #define BIOS_FILENAME "mipsel_bios.bin"
99 #endif
100 
101 #define TYPE_MIPS_MALTA "mips-malta"
102 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
103 
104 struct MaltaState {
105     SysBusDevice parent_obj;
106 
107     Clock *cpuclk;
108     MIPSCPSState cps;
109 };
110 
111 static struct _loaderparams {
112     int ram_size, ram_low_size;
113     const char *kernel_filename;
114     const char *kernel_cmdline;
115     const char *initrd_filename;
116 } loaderparams;
117 
118 /* Malta FPGA */
119 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
120 {
121     char leds_text[9];
122     int i;
123 
124     for (i = 7 ; i >= 0 ; i--) {
125         if (s->leds & (1 << i)) {
126             leds_text[i] = '#';
127         } else {
128             leds_text[i] = ' ';
129         }
130     }
131     leds_text[8] = '\0';
132 
133     trace_malta_fpga_leds(leds_text);
134     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
135                        leds_text);
136 }
137 
138 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
139 {
140     trace_malta_fpga_display(s->display_text);
141     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
142                        s->display_text);
143 }
144 
145 /*
146  * EEPROM 24C01 / 24C02 emulation.
147  *
148  * Emulation for serial EEPROMs:
149  * 24C01 - 1024 bit (128 x 8)
150  * 24C02 - 2048 bit (256 x 8)
151  *
152  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
153  */
154 
155 #if defined(DEBUG)
156 #  define logout(fmt, ...) \
157           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
158 #else
159 #  define logout(fmt, ...) ((void)0)
160 #endif
161 
162 struct _eeprom24c0x_t {
163   uint8_t tick;
164   uint8_t address;
165   uint8_t command;
166   uint8_t ack;
167   uint8_t scl;
168   uint8_t sda;
169   uint8_t data;
170   /* uint16_t size; */
171   uint8_t contents[256];
172 };
173 
174 typedef struct _eeprom24c0x_t eeprom24c0x_t;
175 
176 static eeprom24c0x_t spd_eeprom = {
177     .contents = {
178         /* 00000000: */
179         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
180         /* 00000008: */
181         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
182         /* 00000010: */
183         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
184         /* 00000018: */
185         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
186         /* 00000020: */
187         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
188         /* 00000028: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000030: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000038: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
194         /* 00000040: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196         /* 00000048: */
197         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
198         /* 00000050: */
199         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
200         /* 00000058: */
201         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
202         /* 00000060: */
203         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
204         /* 00000068: */
205         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
206         /* 00000070: */
207         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
208         /* 00000078: */
209         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
210     },
211 };
212 
213 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
214 {
215     enum sdram_type type;
216     uint8_t *spd = spd_eeprom.contents;
217     uint8_t nbanks = 0;
218     uint16_t density = 0;
219     int i;
220 
221     /* work in terms of MB */
222     ram_size /= MiB;
223 
224     while ((ram_size >= 4) && (nbanks <= 2)) {
225         int sz_log2 = MIN(31 - clz32(ram_size), 14);
226         nbanks++;
227         density |= 1 << (sz_log2 - 2);
228         ram_size -= 1 << sz_log2;
229     }
230 
231     /* split to 2 banks if possible */
232     if ((nbanks == 1) && (density > 1)) {
233         nbanks++;
234         density >>= 1;
235     }
236 
237     if (density & 0xff00) {
238         density = (density & 0xe0) | ((density >> 8) & 0x1f);
239         type = DDR2;
240     } else if (!(density & 0x1f)) {
241         type = DDR2;
242     } else {
243         type = SDR;
244     }
245 
246     if (ram_size) {
247         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
248                     " of SDRAM", ram_size);
249     }
250 
251     /* fill in SPD memory information */
252     spd[2] = type;
253     spd[5] = nbanks;
254     spd[31] = density;
255 
256     /* checksum */
257     spd[63] = 0;
258     for (i = 0; i < 63; i++) {
259         spd[63] += spd[i];
260     }
261 
262     /* copy for SMBUS */
263     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
264 }
265 
266 static void generate_eeprom_serial(uint8_t *eeprom)
267 {
268     int i, pos = 0;
269     uint8_t mac[6] = { 0x00 };
270     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
271 
272     /* version */
273     eeprom[pos++] = 0x01;
274 
275     /* count */
276     eeprom[pos++] = 0x02;
277 
278     /* MAC address */
279     eeprom[pos++] = 0x01; /* MAC */
280     eeprom[pos++] = 0x06; /* length */
281     memcpy(&eeprom[pos], mac, sizeof(mac));
282     pos += sizeof(mac);
283 
284     /* serial number */
285     eeprom[pos++] = 0x02; /* serial */
286     eeprom[pos++] = 0x05; /* length */
287     memcpy(&eeprom[pos], sn, sizeof(sn));
288     pos += sizeof(sn);
289 
290     /* checksum */
291     eeprom[pos] = 0;
292     for (i = 0; i < pos; i++) {
293         eeprom[pos] += eeprom[i];
294     }
295 }
296 
297 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
298 {
299     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
300         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
301     return eeprom->sda;
302 }
303 
304 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
305 {
306     if (eeprom->scl && scl && (eeprom->sda != sda)) {
307         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
308                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
309                 sda ? "stop" : "start");
310         if (!sda) {
311             eeprom->tick = 1;
312             eeprom->command = 0;
313         }
314     } else if (eeprom->tick == 0 && !eeprom->ack) {
315         /* Waiting for start. */
316         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
317                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
318     } else if (!eeprom->scl && scl) {
319         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
320                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
321         if (eeprom->ack) {
322             logout("\ti2c ack bit = 0\n");
323             sda = 0;
324             eeprom->ack = 0;
325         } else if (eeprom->sda == sda) {
326             uint8_t bit = (sda != 0);
327             logout("\ti2c bit = %d\n", bit);
328             if (eeprom->tick < 9) {
329                 eeprom->command <<= 1;
330                 eeprom->command += bit;
331                 eeprom->tick++;
332                 if (eeprom->tick == 9) {
333                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
334                            bit ? "read" : "write");
335                     eeprom->ack = 1;
336                 }
337             } else if (eeprom->tick < 17) {
338                 if (eeprom->command & 1) {
339                     sda = ((eeprom->data & 0x80) != 0);
340                 }
341                 eeprom->address <<= 1;
342                 eeprom->address += bit;
343                 eeprom->tick++;
344                 eeprom->data <<= 1;
345                 if (eeprom->tick == 17) {
346                     eeprom->data = eeprom->contents[eeprom->address];
347                     logout("\taddress 0x%04x, data 0x%02x\n",
348                            eeprom->address, eeprom->data);
349                     eeprom->ack = 1;
350                     eeprom->tick = 0;
351                 }
352             } else if (eeprom->tick >= 17) {
353                 sda = 0;
354             }
355         } else {
356             logout("\tsda changed with raising scl\n");
357         }
358     } else {
359         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
360                scl, eeprom->sda, sda);
361     }
362     eeprom->scl = scl;
363     eeprom->sda = sda;
364 }
365 
366 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
367                                 unsigned size)
368 {
369     MaltaFPGAState *s = opaque;
370     uint32_t val = 0;
371     uint32_t saddr;
372 
373     saddr = (addr & 0xfffff);
374 
375     switch (saddr) {
376 
377     /* SWITCH Register */
378     case 0x00200:
379         val = 0x00000000;
380         break;
381 
382     /* STATUS Register */
383     case 0x00208:
384 #if TARGET_BIG_ENDIAN
385         val = 0x00000012;
386 #else
387         val = 0x00000010;
388 #endif
389         break;
390 
391     /* JMPRS Register */
392     case 0x00210:
393         val = 0x00;
394         break;
395 
396     /* LEDBAR Register */
397     case 0x00408:
398         val = s->leds;
399         break;
400 
401     /* BRKRES Register */
402     case 0x00508:
403         val = s->brk;
404         break;
405 
406     /* UART Registers are handled directly by the serial device */
407 
408     /* GPOUT Register */
409     case 0x00a00:
410         val = s->gpout;
411         break;
412 
413     /* XXX: implement a real I2C controller */
414 
415     /* GPINP Register */
416     case 0x00a08:
417         /* IN = OUT until a real I2C control is implemented */
418         if (s->i2csel) {
419             val = s->i2cout;
420         } else {
421             val = 0x00;
422         }
423         break;
424 
425     /* I2CINP Register */
426     case 0x00b00:
427         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
428         break;
429 
430     /* I2COE Register */
431     case 0x00b08:
432         val = s->i2coe;
433         break;
434 
435     /* I2COUT Register */
436     case 0x00b10:
437         val = s->i2cout;
438         break;
439 
440     /* I2CSEL Register */
441     case 0x00b18:
442         val = s->i2csel;
443         break;
444 
445     default:
446         qemu_log_mask(LOG_GUEST_ERROR,
447                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
448                       addr);
449         break;
450     }
451     return val;
452 }
453 
454 static void malta_fpga_write(void *opaque, hwaddr addr,
455                              uint64_t val, unsigned size)
456 {
457     MaltaFPGAState *s = opaque;
458     uint32_t saddr;
459 
460     saddr = (addr & 0xfffff);
461 
462     switch (saddr) {
463 
464     /* SWITCH Register */
465     case 0x00200:
466         break;
467 
468     /* JMPRS Register */
469     case 0x00210:
470         break;
471 
472     /* LEDBAR Register */
473     case 0x00408:
474         s->leds = val & 0xff;
475         malta_fpga_update_display_leds(s);
476         break;
477 
478     /* ASCIIWORD Register */
479     case 0x00410:
480         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
481         malta_fpga_update_display_ascii(s);
482         break;
483 
484     /* ASCIIPOS0 to ASCIIPOS7 Registers */
485     case 0x00418:
486     case 0x00420:
487     case 0x00428:
488     case 0x00430:
489     case 0x00438:
490     case 0x00440:
491     case 0x00448:
492     case 0x00450:
493         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
494         malta_fpga_update_display_ascii(s);
495         break;
496 
497     /* SOFTRES Register */
498     case 0x00500:
499         if (val == 0x42) {
500             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
501         }
502         break;
503 
504     /* BRKRES Register */
505     case 0x00508:
506         s->brk = val & 0xff;
507         break;
508 
509     /* UART Registers are handled directly by the serial device */
510 
511     /* GPOUT Register */
512     case 0x00a00:
513         s->gpout = val & 0xff;
514         break;
515 
516     /* I2COE Register */
517     case 0x00b08:
518         s->i2coe = val & 0x03;
519         break;
520 
521     /* I2COUT Register */
522     case 0x00b10:
523         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
524         s->i2cout = val;
525         break;
526 
527     /* I2CSEL Register */
528     case 0x00b18:
529         s->i2csel = val & 0x01;
530         break;
531 
532     default:
533         qemu_log_mask(LOG_GUEST_ERROR,
534                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
535                       addr);
536         break;
537     }
538 }
539 
540 static const MemoryRegionOps malta_fpga_ops = {
541     .read = malta_fpga_read,
542     .write = malta_fpga_write,
543     .endianness = DEVICE_NATIVE_ENDIAN,
544 };
545 
546 static void malta_fpga_reset(void *opaque)
547 {
548     MaltaFPGAState *s = opaque;
549 
550     s->leds   = 0x00;
551     s->brk    = 0x0a;
552     s->gpout  = 0x00;
553     s->i2cin  = 0x3;
554     s->i2coe  = 0x0;
555     s->i2cout = 0x3;
556     s->i2csel = 0x1;
557 
558     s->display_text[8] = '\0';
559     snprintf(s->display_text, 9, "        ");
560 }
561 
562 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
563 {
564     MaltaFPGAState *s = opaque;
565 
566     if (event == CHR_EVENT_OPENED && !s->display_inited) {
567         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
568         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
569         qemu_chr_fe_printf(&s->display, "+        +\r\n");
570         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
571         qemu_chr_fe_printf(&s->display, "\n");
572         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
573         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
574         qemu_chr_fe_printf(&s->display, "+        +\r\n");
575         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
576         s->display_inited = true;
577     }
578 }
579 
580 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
581          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
582 {
583     MaltaFPGAState *s;
584     Chardev *chr;
585 
586     s = g_new0(MaltaFPGAState, 1);
587 
588     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
589                           "malta-fpga", 0x100000);
590     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
591                              &s->iomem, 0, 0x900);
592     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
593                              &s->iomem, 0xa00, 0x100000 - 0xa00);
594 
595     memory_region_add_subregion(address_space, base, &s->iomem_lo);
596     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
597 
598     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
599     qemu_chr_fe_init(&s->display, chr, NULL);
600     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
601                              malta_fgpa_display_event, NULL, s, NULL, true);
602 
603     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
604                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
605 
606     malta_fpga_reset(s);
607     qemu_register_reset(malta_fpga_reset, s);
608 
609     return s;
610 }
611 
612 /* Network support */
613 static void network_init(PCIBus *pci_bus)
614 {
615     int i;
616 
617     for (i = 0; i < nb_nics; i++) {
618         NICInfo *nd = &nd_table[i];
619         const char *default_devaddr = NULL;
620 
621         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
622             /* The malta board has a PCNet card using PCI SLOT 11 */
623             default_devaddr = "0b";
624 
625         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
626     }
627 }
628 
629 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
630                                          uint64_t kernel_entry)
631 {
632     static const char pci_pins_cfg[PCI_NUM_PINS] = {
633         10, 10, 11, 11 /* PIIX IRQRC[A:D] */
634     };
635 
636     /* Bus endianness is always reversed */
637 #if TARGET_BIG_ENDIAN
638 #define cpu_to_gt32(x) (x)
639 #else
640 #define cpu_to_gt32(x) bswap32(x)
641 #endif
642 
643     /* setup MEM-to-PCI0 mapping as done by YAMON */
644 
645     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
646     bl_gen_write_u32(p, /* GT_ISD */
647                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
648                      cpu_to_gt32(0x1be00000 << 3));
649 
650     /* setup PCI0 io window to 0x18000000-0x181fffff */
651     bl_gen_write_u32(p, /* GT_PCI0IOLD */
652                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
653                      cpu_to_gt32(0x18000000 << 3));
654     bl_gen_write_u32(p, /* GT_PCI0IOHD */
655                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
656                      cpu_to_gt32(0x08000000 << 3));
657 
658     /* setup PCI0 mem windows */
659     bl_gen_write_u32(p, /* GT_PCI0M0LD */
660                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
661                      cpu_to_gt32(0x10000000 << 3));
662     bl_gen_write_u32(p, /* GT_PCI0M0HD */
663                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
664                      cpu_to_gt32(0x07e00000 << 3));
665     bl_gen_write_u32(p, /* GT_PCI0M1LD */
666                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
667                      cpu_to_gt32(0x18200000 << 3));
668     bl_gen_write_u32(p, /* GT_PCI0M1HD */
669                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
670                      cpu_to_gt32(0x0bc00000 << 3));
671 
672 #undef cpu_to_gt32
673 
674     /*
675      * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
676      * Load the PIIX IRQC[A:D] routing config address, then
677      * write routing configuration to the config data register.
678      */
679     bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
680                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
681                      tswap32((1 << 31) /* ConfigEn */
682                              | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
683                              | PIIX_PIRQCA));
684     bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
685                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
686                      tswap32(ldl_be_p(pci_pins_cfg)));
687 
688     bl_gen_jump_kernel(p,
689                        true, ENVP_VADDR - 64,
690                        /*
691                         * If semihosting is used, arguments have already
692                         * been passed, so we preserve $a0.
693                         */
694                        !semihosting_get_argc(), 2,
695                        true, ENVP_VADDR,
696                        true, ENVP_VADDR + 8,
697                        true, loaderparams.ram_low_size,
698                        kernel_entry);
699 }
700 
701 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
702                                       uint64_t kernel_entry)
703 {
704     uint16_t *p;
705 
706     /* Small bootloader */
707     p = (uint16_t *)base;
708 
709     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
710                                 /* bc to_here */
711     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
712                                 /* nop */
713     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
714                                 /* nop */
715     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
716                                 /* nop */
717     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
718                                 /* nop */
719     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
720                                 /* nop */
721     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
722                                 /* nop */
723     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
724                                 /* nop */
725 
726     /* to_here: */
727 
728     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
729 }
730 
731 /*
732  * ROM and pseudo bootloader
733  *
734  * The following code implements a very very simple bootloader. It first
735  * loads the registers a0 to a3 to the values expected by the OS, and
736  * then jump at the kernel address.
737  *
738  * The bootloader should pass the locations of the kernel arguments and
739  * environment variables tables. Those tables contain the 32-bit address
740  * of NULL terminated strings. The environment variables table should be
741  * terminated by a NULL address.
742  *
743  * For a simpler implementation, the number of kernel arguments is fixed
744  * to two (the name of the kernel and the command line), and the two
745  * tables are actually the same one.
746  *
747  * The registers a0 to a3 should contain the following values:
748  *   a0 - number of kernel arguments
749  *   a1 - 32-bit address of the kernel arguments table
750  *   a2 - 32-bit address of the environment variables table
751  *   a3 - RAM size in bytes
752  */
753 static void write_bootloader(uint8_t *base, uint64_t run_addr,
754                              uint64_t kernel_entry)
755 {
756     uint32_t *p;
757 
758     /* Small bootloader */
759     p = (uint32_t *)base;
760 
761     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
762                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
763     stl_p(p++, 0x00000000);                  /* nop */
764 
765     /* YAMON service vector */
766     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
767     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
768     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
769     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
770     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
771     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
772     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
773     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
774     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
775     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
776     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
777     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
778     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
779 
780 
781     /* Second part of the bootloader */
782     p = (uint32_t *) (base + 0x580);
783 
784     /*
785      * Load BAR registers as done by YAMON:
786      *
787      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
788      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
789      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
790      *
791      */
792 
793     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
794 
795     /* YAMON subroutines */
796     p = (uint32_t *) (base + 0x800);
797     stl_p(p++, 0x03e00009);                  /* jalr ra */
798     stl_p(p++, 0x24020000);                  /* li v0,0 */
799     /* 808 YAMON print */
800     stl_p(p++, 0x03e06821);                  /* move t5,ra */
801     stl_p(p++, 0x00805821);                  /* move t3,a0 */
802     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
803     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
804     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
805     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
806     stl_p(p++, 0x00000000);                  /* nop */
807     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
808     stl_p(p++, 0x00000000);                  /* nop */
809     stl_p(p++, 0x1000fff9);                  /* b 814 */
810     stl_p(p++, 0x00000000);                  /* nop */
811     stl_p(p++, 0x01a00009);                  /* jalr t5 */
812     stl_p(p++, 0x01602021);                  /* move a0,t3 */
813     /* 0x83c YAMON print_count */
814     stl_p(p++, 0x03e06821);                  /* move t5,ra */
815     stl_p(p++, 0x00805821);                  /* move t3,a0 */
816     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
817     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
818     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
819     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
820     stl_p(p++, 0x00000000);                  /* nop */
821     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
822     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
823     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
824     stl_p(p++, 0x00000000);                  /* nop */
825     stl_p(p++, 0x01a00009);                  /* jalr t5 */
826     stl_p(p++, 0x01602021);                  /* move a0,t3 */
827     /* 0x870 */
828     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
829     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
830     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
831     stl_p(p++, 0x00000000);                  /* nop */
832     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
833     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
834     stl_p(p++, 0x00000000);                  /* nop */
835     stl_p(p++, 0x03e00009);                  /* jalr ra */
836     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
837 }
838 
839 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
840                                         const char *string, ...)
841 {
842     va_list ap;
843     uint32_t table_addr;
844 
845     if (index >= ENVP_NB_ENTRIES) {
846         return;
847     }
848 
849     if (string == NULL) {
850         prom_buf[index] = 0;
851         return;
852     }
853 
854     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
855     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
856 
857     va_start(ap, string);
858     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
859     va_end(ap);
860 }
861 
862 static void reinitialize_rng_seed(void *opaque)
863 {
864     char *rng_seed_hex = opaque;
865     uint8_t rng_seed[32];
866 
867     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
868     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
869         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
870     }
871 }
872 
873 /* Kernel */
874 static uint64_t load_kernel(void)
875 {
876     uint64_t kernel_entry, kernel_high, initrd_size;
877     long kernel_size;
878     ram_addr_t initrd_offset;
879     uint32_t *prom_buf;
880     long prom_size;
881     int prom_index = 0;
882     uint8_t rng_seed[32];
883     char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
884     size_t rng_seed_prom_offset;
885 
886     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
887                            cpu_mips_kseg0_to_phys, NULL,
888                            &kernel_entry, NULL,
889                            &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
890                            1, 0);
891     if (kernel_size < 0) {
892         error_report("could not load kernel '%s': %s",
893                      loaderparams.kernel_filename,
894                      load_elf_strerror(kernel_size));
895         exit(1);
896     }
897 
898     /* Check where the kernel has been linked */
899     if (kernel_entry <= USEG_LIMIT) {
900         error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
901                      " are not supported");
902         exit(1);
903     }
904 
905     /* load initrd */
906     initrd_size = 0;
907     initrd_offset = 0;
908     if (loaderparams.initrd_filename) {
909         initrd_size = get_image_size(loaderparams.initrd_filename);
910         if (initrd_size > 0) {
911             /*
912              * The kernel allocates the bootmap memory in the low memory after
913              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
914              * pages.
915              */
916             initrd_offset = ROUND_UP(loaderparams.ram_low_size
917                                      - (initrd_size + 128 * KiB),
918                                      INITRD_PAGE_SIZE);
919             if (kernel_high >= initrd_offset) {
920                 error_report("memory too small for initial ram disk '%s'",
921                              loaderparams.initrd_filename);
922                 exit(1);
923             }
924             initrd_size = load_image_targphys(loaderparams.initrd_filename,
925                                               initrd_offset,
926                                               loaderparams.ram_size - initrd_offset);
927         }
928         if (initrd_size == (target_ulong) -1) {
929             error_report("could not load initial ram disk '%s'",
930                          loaderparams.initrd_filename);
931             exit(1);
932         }
933     }
934 
935     /* Setup prom parameters. */
936     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
937     prom_buf = g_malloc(prom_size);
938 
939     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
940     if (initrd_size > 0) {
941         prom_set(prom_buf, prom_index++,
942                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
943                  cpu_mips_phys_to_kseg0(NULL, initrd_offset),
944                  initrd_size, loaderparams.kernel_cmdline);
945     } else {
946         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
947     }
948 
949     prom_set(prom_buf, prom_index++, "memsize");
950     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
951 
952     prom_set(prom_buf, prom_index++, "ememsize");
953     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
954 
955     prom_set(prom_buf, prom_index++, "modetty0");
956     prom_set(prom_buf, prom_index++, "38400n8r");
957 
958     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
959     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
960         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
961     }
962     prom_set(prom_buf, prom_index++, "rngseed");
963     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
964                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
965     prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
966 
967     prom_set(prom_buf, prom_index++, NULL);
968 
969     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
970     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
971             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
972 
973     g_free(prom_buf);
974     return kernel_entry;
975 }
976 
977 static void malta_mips_config(MIPSCPU *cpu)
978 {
979     MachineState *ms = MACHINE(qdev_get_machine());
980     unsigned int smp_cpus = ms->smp.cpus;
981     CPUMIPSState *env = &cpu->env;
982     CPUState *cs = CPU(cpu);
983 
984     if (ase_mt_available(env)) {
985         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
986                                            CP0MVPC0_PTC, 8,
987                                            smp_cpus * cs->nr_threads - 1);
988         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
989                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
990     }
991 }
992 
993 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
994 {
995     int slot;
996 
997     slot = PCI_SLOT(pci_dev->devfn);
998 
999     switch (slot) {
1000     /* PIIX4 USB */
1001     case 10:
1002         return 3;
1003     /* AMD 79C973 Ethernet */
1004     case 11:
1005         return 1;
1006     /* Crystal 4281 Sound */
1007     case 12:
1008         return 2;
1009     /* PCI slot 1 to 4 */
1010     case 18 ... 21:
1011         return ((slot - 18) + irq_num) & 0x03;
1012     /* Unknown device, don't do any translation */
1013     default:
1014         return irq_num;
1015     }
1016 }
1017 
1018 static void main_cpu_reset(void *opaque)
1019 {
1020     MIPSCPU *cpu = opaque;
1021     CPUMIPSState *env = &cpu->env;
1022 
1023     cpu_reset(CPU(cpu));
1024 
1025     /*
1026      * The bootloader does not need to be rewritten as it is located in a
1027      * read only location. The kernel location and the arguments table
1028      * location does not change.
1029      */
1030     if (loaderparams.kernel_filename) {
1031         env->CP0_Status &= ~(1 << CP0St_ERL);
1032     }
1033 
1034     malta_mips_config(cpu);
1035 }
1036 
1037 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1038                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1039 {
1040     CPUMIPSState *env;
1041     MIPSCPU *cpu;
1042     int i;
1043 
1044     for (i = 0; i < ms->smp.cpus; i++) {
1045         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1046 
1047         /* Init internal devices */
1048         cpu_mips_irq_init_cpu(cpu);
1049         cpu_mips_clock_init(cpu);
1050         qemu_register_reset(main_cpu_reset, cpu);
1051     }
1052 
1053     cpu = MIPS_CPU(first_cpu);
1054     env = &cpu->env;
1055     *i8259_irq = env->irq[2];
1056     *cbus_irq = env->irq[4];
1057 }
1058 
1059 static void create_cps(MachineState *ms, MaltaState *s,
1060                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1061 {
1062     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1063     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1064                             &error_fatal);
1065     object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1066                             &error_fatal);
1067     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1068     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1069 
1070     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1071 
1072     *i8259_irq = get_cps_irq(&s->cps, 3);
1073     *cbus_irq = NULL;
1074 }
1075 
1076 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1077                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1078 {
1079     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1080         create_cps(ms, s, cbus_irq, i8259_irq);
1081     } else {
1082         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1083     }
1084 }
1085 
1086 static
1087 void mips_malta_init(MachineState *machine)
1088 {
1089     ram_addr_t ram_size = machine->ram_size;
1090     ram_addr_t ram_low_size;
1091     const char *kernel_filename = machine->kernel_filename;
1092     const char *kernel_cmdline = machine->kernel_cmdline;
1093     const char *initrd_filename = machine->initrd_filename;
1094     char *filename;
1095     PFlashCFI01 *fl;
1096     MemoryRegion *system_memory = get_system_memory();
1097     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1098     MemoryRegion *ram_low_postio;
1099     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1100     const size_t smbus_eeprom_size = 8 * 256;
1101     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1102     uint64_t kernel_entry, bootloader_run_addr;
1103     PCIBus *pci_bus;
1104     ISABus *isa_bus;
1105     qemu_irq cbus_irq, i8259_irq;
1106     I2CBus *smbus;
1107     DriveInfo *dinfo;
1108     int fl_idx = 0;
1109     MaltaState *s;
1110     PCIDevice *piix4;
1111     DeviceState *dev;
1112 
1113     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1114     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1115 
1116     /* create CPU */
1117     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1118 
1119     /* allocate RAM */
1120     if (ram_size > 2 * GiB) {
1121         error_report("Too much memory for this machine: %" PRId64 "MB,"
1122                      " maximum 2048MB", ram_size / MiB);
1123         exit(1);
1124     }
1125 
1126     /* register RAM at high address where it is undisturbed by IO */
1127     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1128 
1129     /* alias for pre IO hole access */
1130     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1131                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1132     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1133 
1134     /* alias for post IO hole access, if there is enough RAM */
1135     if (ram_size > 512 * MiB) {
1136         ram_low_postio = g_new(MemoryRegion, 1);
1137         memory_region_init_alias(ram_low_postio, NULL,
1138                                  "mips_malta_low_postio.ram",
1139                                  machine->ram, 512 * MiB,
1140                                  ram_size - 512 * MiB);
1141         memory_region_add_subregion(system_memory, 512 * MiB,
1142                                     ram_low_postio);
1143     }
1144 
1145     /* FPGA */
1146 
1147     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1148     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1149 
1150     /* Load firmware in flash / BIOS. */
1151     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1152     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1153                                FLASH_SIZE,
1154                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1155                                65536,
1156                                4, 0x0000, 0x0000, 0x0000, 0x0000,
1157                                TARGET_BIG_ENDIAN);
1158     bios = pflash_cfi01_get_memory(fl);
1159     fl_idx++;
1160     if (kernel_filename) {
1161         ram_low_size = MIN(ram_size, 256 * MiB);
1162         bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1163 
1164         /* Write a small bootloader to the flash location. */
1165         loaderparams.ram_size = ram_size;
1166         loaderparams.ram_low_size = ram_low_size;
1167         loaderparams.kernel_filename = kernel_filename;
1168         loaderparams.kernel_cmdline = kernel_cmdline;
1169         loaderparams.initrd_filename = initrd_filename;
1170         kernel_entry = load_kernel();
1171 
1172         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1173             write_bootloader(memory_region_get_ram_ptr(bios),
1174                              bootloader_run_addr, kernel_entry);
1175         } else {
1176             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1177                                       bootloader_run_addr, kernel_entry);
1178         }
1179     } else {
1180         target_long bios_size = FLASH_SIZE;
1181         /* Load firmware from flash. */
1182         if (!dinfo) {
1183             /* Load a BIOS image. */
1184             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1185                                       machine->firmware ?: BIOS_FILENAME);
1186             if (filename) {
1187                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1188                                                 BIOS_SIZE);
1189                 g_free(filename);
1190             } else {
1191                 bios_size = -1;
1192             }
1193             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1194                 machine->firmware && !qtest_enabled()) {
1195                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1196                 exit(1);
1197             }
1198         }
1199         /*
1200          * In little endian mode the 32bit words in the bios are swapped,
1201          * a neat trick which allows bi-endian firmware.
1202          */
1203 #if !TARGET_BIG_ENDIAN
1204         {
1205             uint32_t *end, *addr;
1206             const size_t swapsize = MIN(bios_size, 0x3e0000);
1207             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1208             if (!addr) {
1209                 addr = memory_region_get_ram_ptr(bios);
1210             }
1211             end = (void *)addr + swapsize;
1212             while (addr < end) {
1213                 bswap32s(addr);
1214                 addr++;
1215             }
1216         }
1217 #endif
1218     }
1219 
1220     /*
1221      * Map the BIOS at a 2nd physical location, as on the real board.
1222      * Copy it so that we can patch in the MIPS revision, which cannot be
1223      * handled by an overlapping region as the resulting ROM code subpage
1224      * regions are not executable.
1225      */
1226     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1227                            &error_fatal);
1228     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1229                   FLASH_ADDRESS, BIOS_SIZE)) {
1230         memcpy(memory_region_get_ram_ptr(bios_copy),
1231                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1232     }
1233     memory_region_set_readonly(bios_copy, true);
1234     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1235 
1236     /* Board ID = 0x420 (Malta Board with CoreLV) */
1237     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1238 
1239     /* Northbridge */
1240     dev = qdev_new("gt64120");
1241     qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1242     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1243     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1244     pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1245 
1246     /* Southbridge */
1247     piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1248     qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1249     pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1250     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1251 
1252     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1253     pci_ide_create_devs(PCI_DEVICE(dev));
1254 
1255     /* Interrupt controller */
1256     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1257 
1258     /* generate SPD EEPROM data */
1259     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1260     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1261     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1262     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1263     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1264     g_free(smbus_eeprom_buf);
1265 
1266     /* Super I/O: SMS FDC37M817 */
1267     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1268 
1269     /* Network card */
1270     network_init(pci_bus);
1271 
1272     /* Optional PCI video card */
1273     pci_vga_init(pci_bus);
1274 }
1275 
1276 static void mips_malta_instance_init(Object *obj)
1277 {
1278     MaltaState *s = MIPS_MALTA(obj);
1279 
1280     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1281     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1282 }
1283 
1284 static const TypeInfo mips_malta_device = {
1285     .name          = TYPE_MIPS_MALTA,
1286     .parent        = TYPE_SYS_BUS_DEVICE,
1287     .instance_size = sizeof(MaltaState),
1288     .instance_init = mips_malta_instance_init,
1289 };
1290 
1291 GlobalProperty malta_compat[] = {
1292     { "PIIX4_PM", "memory-hotplug-support", "off" },
1293     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1294     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1295     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1296 };
1297 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1298 
1299 static void mips_malta_machine_init(MachineClass *mc)
1300 {
1301     mc->desc = "MIPS Malta Core LV";
1302     mc->init = mips_malta_init;
1303     mc->block_default_type = IF_IDE;
1304     mc->max_cpus = 16;
1305     mc->is_default = true;
1306 #ifdef TARGET_MIPS64
1307     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1308 #else
1309     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1310 #endif
1311     mc->default_ram_id = "mips_malta.ram";
1312     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1313 }
1314 
1315 DEFINE_MACHINE("malta", mips_malta_machine_init)
1316 
1317 static void mips_malta_register_types(void)
1318 {
1319     type_register_static(&mips_malta_device);
1320 }
1321 
1322 type_init(mips_malta_register_types)
1323