1 /* 2 * QEMU Malta board support 3 * 4 * Copyright (c) 2006 Aurelien Jarno 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qemu/bitops.h" 28 #include "qemu/datadir.h" 29 #include "qemu/guest-random.h" 30 #include "hw/clock.h" 31 #include "hw/southbridge/piix.h" 32 #include "hw/isa/superio.h" 33 #include "hw/char/serial.h" 34 #include "net/net.h" 35 #include "hw/boards.h" 36 #include "hw/i2c/smbus_eeprom.h" 37 #include "hw/block/flash.h" 38 #include "hw/mips/mips.h" 39 #include "hw/mips/bootloader.h" 40 #include "hw/mips/cpudevs.h" 41 #include "hw/pci/pci.h" 42 #include "hw/pci/pci_bus.h" 43 #include "qemu/log.h" 44 #include "hw/mips/bios.h" 45 #include "hw/ide/pci.h" 46 #include "hw/irq.h" 47 #include "hw/loader.h" 48 #include "elf.h" 49 #include "qom/object.h" 50 #include "hw/sysbus.h" /* SysBusDevice */ 51 #include "qemu/host-utils.h" 52 #include "sysemu/qtest.h" 53 #include "sysemu/reset.h" 54 #include "sysemu/runstate.h" 55 #include "qapi/error.h" 56 #include "qemu/error-report.h" 57 #include "sysemu/kvm.h" 58 #include "semihosting/semihost.h" 59 #include "hw/mips/cps.h" 60 #include "hw/qdev-clock.h" 61 #include "target/mips/internal.h" 62 #include "trace.h" 63 64 #define ENVP_PADDR 0x2000 65 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR) 66 #define ENVP_NB_ENTRIES 16 67 #define ENVP_ENTRY_SIZE 256 68 69 /* Hardware addresses */ 70 #define FLASH_ADDRESS 0x1e000000ULL 71 #define FPGA_ADDRESS 0x1f000000ULL 72 #define RESET_ADDRESS 0x1fc00000ULL 73 74 #define FLASH_SIZE 0x400000 75 76 #define PIIX4_PCI_DEVFN PCI_DEVFN(10, 0) 77 78 typedef struct { 79 MemoryRegion iomem; 80 MemoryRegion iomem_lo; /* 0 - 0x900 */ 81 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ 82 uint32_t leds; 83 uint32_t brk; 84 uint32_t gpout; 85 uint32_t i2cin; 86 uint32_t i2coe; 87 uint32_t i2cout; 88 uint32_t i2csel; 89 CharBackend display; 90 char display_text[9]; 91 SerialMM *uart; 92 bool display_inited; 93 } MaltaFPGAState; 94 95 #define TYPE_MIPS_MALTA "mips-malta" 96 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA) 97 98 struct MaltaState { 99 SysBusDevice parent_obj; 100 101 Clock *cpuclk; 102 MIPSCPSState cps; 103 }; 104 105 static struct _loaderparams { 106 int ram_size, ram_low_size; 107 const char *kernel_filename; 108 const char *kernel_cmdline; 109 const char *initrd_filename; 110 } loaderparams; 111 112 /* Malta FPGA */ 113 static void malta_fpga_update_display_leds(MaltaFPGAState *s) 114 { 115 char leds_text[9]; 116 int i; 117 118 for (i = 7 ; i >= 0 ; i--) { 119 if (s->leds & (1 << i)) { 120 leds_text[i] = '#'; 121 } else { 122 leds_text[i] = ' '; 123 } 124 } 125 leds_text[8] = '\0'; 126 127 trace_malta_fpga_leds(leds_text); 128 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", 129 leds_text); 130 } 131 132 static void malta_fpga_update_display_ascii(MaltaFPGAState *s) 133 { 134 trace_malta_fpga_display(s->display_text); 135 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", 136 s->display_text); 137 } 138 139 /* 140 * EEPROM 24C01 / 24C02 emulation. 141 * 142 * Emulation for serial EEPROMs: 143 * 24C01 - 1024 bit (128 x 8) 144 * 24C02 - 2048 bit (256 x 8) 145 * 146 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. 147 */ 148 149 #if defined(DEBUG) 150 # define logout(fmt, ...) \ 151 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) 152 #else 153 # define logout(fmt, ...) ((void)0) 154 #endif 155 156 struct _eeprom24c0x_t { 157 uint8_t tick; 158 uint8_t address; 159 uint8_t command; 160 uint8_t ack; 161 uint8_t scl; 162 uint8_t sda; 163 uint8_t data; 164 /* uint16_t size; */ 165 uint8_t contents[256]; 166 }; 167 168 typedef struct _eeprom24c0x_t eeprom24c0x_t; 169 170 static eeprom24c0x_t spd_eeprom = { 171 .contents = { 172 /* 00000000: */ 173 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, 174 /* 00000008: */ 175 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, 176 /* 00000010: */ 177 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 178 /* 00000018: */ 179 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, 180 /* 00000020: */ 181 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, 182 /* 00000028: */ 183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 184 /* 00000030: */ 185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 186 /* 00000038: */ 187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, 188 /* 00000040: */ 189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 190 /* 00000048: */ 191 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 192 /* 00000050: */ 193 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 194 /* 00000058: */ 195 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 196 /* 00000060: */ 197 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 198 /* 00000068: */ 199 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 200 /* 00000070: */ 201 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 202 /* 00000078: */ 203 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, 204 }, 205 }; 206 207 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) 208 { 209 enum { SDR = 0x4, DDR2 = 0x8 } type; 210 uint8_t *spd = spd_eeprom.contents; 211 uint8_t nbanks = 0; 212 uint16_t density = 0; 213 int i; 214 215 /* work in terms of MB */ 216 ram_size /= MiB; 217 218 while ((ram_size >= 4) && (nbanks <= 2)) { 219 int sz_log2 = MIN(31 - clz32(ram_size), 14); 220 nbanks++; 221 density |= 1 << (sz_log2 - 2); 222 ram_size -= 1 << sz_log2; 223 } 224 225 /* split to 2 banks if possible */ 226 if ((nbanks == 1) && (density > 1)) { 227 nbanks++; 228 density >>= 1; 229 } 230 231 if (density & 0xff00) { 232 density = (density & 0xe0) | ((density >> 8) & 0x1f); 233 type = DDR2; 234 } else if (!(density & 0x1f)) { 235 type = DDR2; 236 } else { 237 type = SDR; 238 } 239 240 if (ram_size) { 241 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" 242 " of SDRAM", ram_size); 243 } 244 245 /* fill in SPD memory information */ 246 spd[2] = type; 247 spd[5] = nbanks; 248 spd[31] = density; 249 250 /* checksum */ 251 spd[63] = 0; 252 for (i = 0; i < 63; i++) { 253 spd[63] += spd[i]; 254 } 255 256 /* copy for SMBUS */ 257 memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); 258 } 259 260 static void generate_eeprom_serial(uint8_t *eeprom) 261 { 262 int i, pos = 0; 263 uint8_t mac[6] = { 0x00 }; 264 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; 265 266 /* version */ 267 eeprom[pos++] = 0x01; 268 269 /* count */ 270 eeprom[pos++] = 0x02; 271 272 /* MAC address */ 273 eeprom[pos++] = 0x01; /* MAC */ 274 eeprom[pos++] = 0x06; /* length */ 275 memcpy(&eeprom[pos], mac, sizeof(mac)); 276 pos += sizeof(mac); 277 278 /* serial number */ 279 eeprom[pos++] = 0x02; /* serial */ 280 eeprom[pos++] = 0x05; /* length */ 281 memcpy(&eeprom[pos], sn, sizeof(sn)); 282 pos += sizeof(sn); 283 284 /* checksum */ 285 eeprom[pos] = 0; 286 for (i = 0; i < pos; i++) { 287 eeprom[pos] += eeprom[i]; 288 } 289 } 290 291 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) 292 { 293 logout("%u: scl = %u, sda = %u, data = 0x%02x\n", 294 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); 295 return eeprom->sda; 296 } 297 298 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) 299 { 300 if (eeprom->scl && scl && (eeprom->sda != sda)) { 301 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", 302 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, 303 sda ? "stop" : "start"); 304 if (!sda) { 305 eeprom->tick = 1; 306 eeprom->command = 0; 307 } 308 } else if (eeprom->tick == 0 && !eeprom->ack) { 309 /* Waiting for start. */ 310 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", 311 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 312 } else if (!eeprom->scl && scl) { 313 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", 314 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 315 if (eeprom->ack) { 316 logout("\ti2c ack bit = 0\n"); 317 sda = 0; 318 eeprom->ack = 0; 319 } else if (eeprom->sda == sda) { 320 uint8_t bit = (sda != 0); 321 logout("\ti2c bit = %d\n", bit); 322 if (eeprom->tick < 9) { 323 eeprom->command <<= 1; 324 eeprom->command += bit; 325 eeprom->tick++; 326 if (eeprom->tick == 9) { 327 logout("\tcommand 0x%04x, %s\n", eeprom->command, 328 bit ? "read" : "write"); 329 eeprom->ack = 1; 330 } 331 } else if (eeprom->tick < 17) { 332 if (eeprom->command & 1) { 333 sda = ((eeprom->data & 0x80) != 0); 334 } 335 eeprom->address <<= 1; 336 eeprom->address += bit; 337 eeprom->tick++; 338 eeprom->data <<= 1; 339 if (eeprom->tick == 17) { 340 eeprom->data = eeprom->contents[eeprom->address]; 341 logout("\taddress 0x%04x, data 0x%02x\n", 342 eeprom->address, eeprom->data); 343 eeprom->ack = 1; 344 eeprom->tick = 0; 345 } 346 } else if (eeprom->tick >= 17) { 347 sda = 0; 348 } 349 } else { 350 logout("\tsda changed with raising scl\n"); 351 } 352 } else { 353 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, 354 scl, eeprom->sda, sda); 355 } 356 eeprom->scl = scl; 357 eeprom->sda = sda; 358 } 359 360 static uint64_t malta_fpga_read(void *opaque, hwaddr addr, 361 unsigned size) 362 { 363 MaltaFPGAState *s = opaque; 364 uint32_t val = 0; 365 uint32_t saddr; 366 367 saddr = (addr & 0xfffff); 368 369 switch (saddr) { 370 371 /* SWITCH Register */ 372 case 0x00200: 373 val = 0x00000000; 374 break; 375 376 /* STATUS Register */ 377 case 0x00208: 378 #if TARGET_BIG_ENDIAN 379 val = 0x00000012; 380 #else 381 val = 0x00000010; 382 #endif 383 break; 384 385 /* JMPRS Register */ 386 case 0x00210: 387 val = 0x00; 388 break; 389 390 /* LEDBAR Register */ 391 case 0x00408: 392 val = s->leds; 393 break; 394 395 /* BRKRES Register */ 396 case 0x00508: 397 val = s->brk; 398 break; 399 400 /* UART Registers are handled directly by the serial device */ 401 402 /* GPOUT Register */ 403 case 0x00a00: 404 val = s->gpout; 405 break; 406 407 /* XXX: implement a real I2C controller */ 408 409 /* GPINP Register */ 410 case 0x00a08: 411 /* IN = OUT until a real I2C control is implemented */ 412 if (s->i2csel) { 413 val = s->i2cout; 414 } else { 415 val = 0x00; 416 } 417 break; 418 419 /* I2CINP Register */ 420 case 0x00b00: 421 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); 422 break; 423 424 /* I2COE Register */ 425 case 0x00b08: 426 val = s->i2coe; 427 break; 428 429 /* I2COUT Register */ 430 case 0x00b10: 431 val = s->i2cout; 432 break; 433 434 /* I2CSEL Register */ 435 case 0x00b18: 436 val = s->i2csel; 437 break; 438 439 default: 440 qemu_log_mask(LOG_GUEST_ERROR, 441 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", 442 addr); 443 break; 444 } 445 return val; 446 } 447 448 static void malta_fpga_write(void *opaque, hwaddr addr, 449 uint64_t val, unsigned size) 450 { 451 MaltaFPGAState *s = opaque; 452 uint32_t saddr; 453 454 saddr = (addr & 0xfffff); 455 456 switch (saddr) { 457 458 /* SWITCH Register */ 459 case 0x00200: 460 break; 461 462 /* JMPRS Register */ 463 case 0x00210: 464 break; 465 466 /* LEDBAR Register */ 467 case 0x00408: 468 s->leds = val & 0xff; 469 malta_fpga_update_display_leds(s); 470 break; 471 472 /* ASCIIWORD Register */ 473 case 0x00410: 474 snprintf(s->display_text, 9, "%08X", (uint32_t)val); 475 malta_fpga_update_display_ascii(s); 476 break; 477 478 /* ASCIIPOS0 to ASCIIPOS7 Registers */ 479 case 0x00418: 480 case 0x00420: 481 case 0x00428: 482 case 0x00430: 483 case 0x00438: 484 case 0x00440: 485 case 0x00448: 486 case 0x00450: 487 s->display_text[(saddr - 0x00418) >> 3] = (char) val; 488 malta_fpga_update_display_ascii(s); 489 break; 490 491 /* SOFTRES Register */ 492 case 0x00500: 493 if (val == 0x42) { 494 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 495 } 496 break; 497 498 /* BRKRES Register */ 499 case 0x00508: 500 s->brk = val & 0xff; 501 break; 502 503 /* UART Registers are handled directly by the serial device */ 504 505 /* GPOUT Register */ 506 case 0x00a00: 507 s->gpout = val & 0xff; 508 break; 509 510 /* I2COE Register */ 511 case 0x00b08: 512 s->i2coe = val & 0x03; 513 break; 514 515 /* I2COUT Register */ 516 case 0x00b10: 517 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); 518 s->i2cout = val; 519 break; 520 521 /* I2CSEL Register */ 522 case 0x00b18: 523 s->i2csel = val & 0x01; 524 break; 525 526 default: 527 qemu_log_mask(LOG_GUEST_ERROR, 528 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", 529 addr); 530 break; 531 } 532 } 533 534 static const MemoryRegionOps malta_fpga_ops = { 535 .read = malta_fpga_read, 536 .write = malta_fpga_write, 537 .endianness = DEVICE_NATIVE_ENDIAN, 538 }; 539 540 static void malta_fpga_reset(void *opaque) 541 { 542 MaltaFPGAState *s = opaque; 543 544 s->leds = 0x00; 545 s->brk = 0x0a; 546 s->gpout = 0x00; 547 s->i2cin = 0x3; 548 s->i2coe = 0x0; 549 s->i2cout = 0x3; 550 s->i2csel = 0x1; 551 552 s->display_text[8] = '\0'; 553 snprintf(s->display_text, 9, " "); 554 } 555 556 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) 557 { 558 MaltaFPGAState *s = opaque; 559 560 if (event == CHR_EVENT_OPENED && !s->display_inited) { 561 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); 562 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 563 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 564 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 565 qemu_chr_fe_printf(&s->display, "\n"); 566 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); 567 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 568 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 569 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 570 s->display_inited = true; 571 } 572 } 573 574 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, 575 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) 576 { 577 MaltaFPGAState *s; 578 Chardev *chr; 579 580 s = g_new0(MaltaFPGAState, 1); 581 582 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, 583 "malta-fpga", 0x100000); 584 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", 585 &s->iomem, 0, 0x900); 586 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", 587 &s->iomem, 0xa00, 0x100000 - 0xa00); 588 589 memory_region_add_subregion(address_space, base, &s->iomem_lo); 590 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); 591 592 chr = qemu_chr_new("fpga", "vc:320x200", NULL); 593 qemu_chr_fe_init(&s->display, chr, NULL); 594 qemu_chr_fe_set_handlers(&s->display, NULL, NULL, 595 malta_fgpa_display_event, NULL, s, NULL, true); 596 597 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, 598 230400, uart_chr, DEVICE_NATIVE_ENDIAN); 599 600 malta_fpga_reset(s); 601 qemu_register_reset(malta_fpga_reset, s); 602 603 return s; 604 } 605 606 /* Network support */ 607 static void network_init(PCIBus *pci_bus) 608 { 609 int i; 610 611 for (i = 0; i < nb_nics; i++) { 612 NICInfo *nd = &nd_table[i]; 613 const char *default_devaddr = NULL; 614 615 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) 616 /* The malta board has a PCNet card using PCI SLOT 11 */ 617 default_devaddr = "0b"; 618 619 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); 620 } 621 } 622 623 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr, 624 uint64_t kernel_entry) 625 { 626 static const char pci_pins_cfg[PCI_NUM_PINS] = { 627 10, 10, 11, 11 /* PIIX IRQRC[A:D] */ 628 }; 629 630 /* Bus endianness is always reversed */ 631 #if TARGET_BIG_ENDIAN 632 #define cpu_to_gt32(x) (x) 633 #else 634 #define cpu_to_gt32(x) bswap32(x) 635 #endif 636 637 /* setup MEM-to-PCI0 mapping as done by YAMON */ 638 639 /* move GT64120 registers from 0x14000000 to 0x1be00000 */ 640 bl_gen_write_u32(p, /* GT_ISD */ 641 cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68), 642 cpu_to_gt32(0x1be00000 << 3)); 643 644 /* setup PCI0 io window to 0x18000000-0x181fffff */ 645 bl_gen_write_u32(p, /* GT_PCI0IOLD */ 646 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48), 647 cpu_to_gt32(0x18000000 << 3)); 648 bl_gen_write_u32(p, /* GT_PCI0IOHD */ 649 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50), 650 cpu_to_gt32(0x08000000 << 3)); 651 652 /* setup PCI0 mem windows */ 653 bl_gen_write_u32(p, /* GT_PCI0M0LD */ 654 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58), 655 cpu_to_gt32(0x10000000 << 3)); 656 bl_gen_write_u32(p, /* GT_PCI0M0HD */ 657 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60), 658 cpu_to_gt32(0x07e00000 << 3)); 659 bl_gen_write_u32(p, /* GT_PCI0M1LD */ 660 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80), 661 cpu_to_gt32(0x18200000 << 3)); 662 bl_gen_write_u32(p, /* GT_PCI0M1HD */ 663 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88), 664 cpu_to_gt32(0x0bc00000 << 3)); 665 666 #undef cpu_to_gt32 667 668 /* 669 * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0. 670 * Load the PIIX IRQC[A:D] routing config address, then 671 * write routing configuration to the config data register. 672 */ 673 bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */ 674 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8), 675 tswap32((1 << 31) /* ConfigEn */ 676 | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8 677 | PIIX_PIRQCA)); 678 bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */ 679 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc), 680 tswap32(ldl_be_p(pci_pins_cfg))); 681 682 bl_gen_jump_kernel(p, 683 true, ENVP_VADDR - 64, 684 /* 685 * If semihosting is used, arguments have already 686 * been passed, so we preserve $a0. 687 */ 688 !semihosting_get_argc(), 2, 689 true, ENVP_VADDR, 690 true, ENVP_VADDR + 8, 691 true, loaderparams.ram_low_size, 692 kernel_entry); 693 } 694 695 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr, 696 uint64_t kernel_entry) 697 { 698 uint16_t *p; 699 700 /* Small bootloader */ 701 p = (uint16_t *)base; 702 703 stw_p(p++, 0x2800); stw_p(p++, 0x001c); 704 /* bc to_here */ 705 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 706 /* nop */ 707 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 708 /* nop */ 709 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 710 /* nop */ 711 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 712 /* nop */ 713 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 714 /* nop */ 715 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 716 /* nop */ 717 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 718 /* nop */ 719 720 /* to_here: */ 721 722 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry); 723 } 724 725 /* 726 * ROM and pseudo bootloader 727 * 728 * The following code implements a very very simple bootloader. It first 729 * loads the registers a0 to a3 to the values expected by the OS, and 730 * then jump at the kernel address. 731 * 732 * The bootloader should pass the locations of the kernel arguments and 733 * environment variables tables. Those tables contain the 32-bit address 734 * of NULL terminated strings. The environment variables table should be 735 * terminated by a NULL address. 736 * 737 * For a simpler implementation, the number of kernel arguments is fixed 738 * to two (the name of the kernel and the command line), and the two 739 * tables are actually the same one. 740 * 741 * The registers a0 to a3 should contain the following values: 742 * a0 - number of kernel arguments 743 * a1 - 32-bit address of the kernel arguments table 744 * a2 - 32-bit address of the environment variables table 745 * a3 - RAM size in bytes 746 */ 747 static void write_bootloader(uint8_t *base, uint64_t run_addr, 748 uint64_t kernel_entry) 749 { 750 uint32_t *p; 751 752 /* Small bootloader */ 753 p = (uint32_t *)base; 754 755 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ 756 ((run_addr + 0x580) & 0x0fffffff) >> 2); 757 stl_p(p++, 0x00000000); /* nop */ 758 759 /* YAMON service vector */ 760 stl_p(base + 0x500, run_addr + 0x0580); /* start: */ 761 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ 762 stl_p(base + 0x520, run_addr + 0x0580); /* start: */ 763 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ 764 stl_p(base + 0x534, run_addr + 0x0808); /* print: */ 765 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ 766 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ 767 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ 768 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ 769 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ 770 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ 771 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ 772 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ 773 774 775 /* Second part of the bootloader */ 776 p = (uint32_t *) (base + 0x580); 777 778 /* 779 * Load BAR registers as done by YAMON: 780 * 781 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff 782 * - set up PCI0 MEM0 at 0x10000000, size 0x7e00000 783 * - set up PCI0 MEM1 at 0x18200000, size 0xbc00000 784 * 785 */ 786 787 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry); 788 789 /* YAMON subroutines */ 790 p = (uint32_t *) (base + 0x800); 791 stl_p(p++, 0x03e00009); /* jalr ra */ 792 stl_p(p++, 0x24020000); /* li v0,0 */ 793 /* 808 YAMON print */ 794 stl_p(p++, 0x03e06821); /* move t5,ra */ 795 stl_p(p++, 0x00805821); /* move t3,a0 */ 796 stl_p(p++, 0x00a05021); /* move t2,a1 */ 797 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 798 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 799 stl_p(p++, 0x10800005); /* beqz a0,834 */ 800 stl_p(p++, 0x00000000); /* nop */ 801 stl_p(p++, 0x0ff0021c); /* jal 870 */ 802 stl_p(p++, 0x00000000); /* nop */ 803 stl_p(p++, 0x1000fff9); /* b 814 */ 804 stl_p(p++, 0x00000000); /* nop */ 805 stl_p(p++, 0x01a00009); /* jalr t5 */ 806 stl_p(p++, 0x01602021); /* move a0,t3 */ 807 /* 0x83c YAMON print_count */ 808 stl_p(p++, 0x03e06821); /* move t5,ra */ 809 stl_p(p++, 0x00805821); /* move t3,a0 */ 810 stl_p(p++, 0x00a05021); /* move t2,a1 */ 811 stl_p(p++, 0x00c06021); /* move t4,a2 */ 812 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 813 stl_p(p++, 0x0ff0021c); /* jal 870 */ 814 stl_p(p++, 0x00000000); /* nop */ 815 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 816 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ 817 stl_p(p++, 0x1580fffa); /* bnez t4,84c */ 818 stl_p(p++, 0x00000000); /* nop */ 819 stl_p(p++, 0x01a00009); /* jalr t5 */ 820 stl_p(p++, 0x01602021); /* move a0,t3 */ 821 /* 0x870 */ 822 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ 823 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ 824 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ 825 stl_p(p++, 0x00000000); /* nop */ 826 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ 827 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ 828 stl_p(p++, 0x00000000); /* nop */ 829 stl_p(p++, 0x03e00009); /* jalr ra */ 830 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ 831 } 832 833 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index, 834 const char *string, ...) 835 { 836 va_list ap; 837 uint32_t table_addr; 838 839 if (index >= ENVP_NB_ENTRIES) { 840 return; 841 } 842 843 if (string == NULL) { 844 prom_buf[index] = 0; 845 return; 846 } 847 848 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; 849 prom_buf[index] = tswap32(ENVP_VADDR + table_addr); 850 851 va_start(ap, string); 852 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); 853 va_end(ap); 854 } 855 856 static void reinitialize_rng_seed(void *opaque) 857 { 858 char *rng_seed_hex = opaque; 859 uint8_t rng_seed[32]; 860 861 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 862 for (size_t i = 0; i < sizeof(rng_seed); ++i) { 863 sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]); 864 } 865 } 866 867 /* Kernel */ 868 static uint64_t load_kernel(void) 869 { 870 uint64_t kernel_entry, kernel_high, initrd_size; 871 long kernel_size; 872 ram_addr_t initrd_offset; 873 uint32_t *prom_buf; 874 long prom_size; 875 int prom_index = 0; 876 uint8_t rng_seed[32]; 877 char rng_seed_hex[sizeof(rng_seed) * 2 + 1]; 878 size_t rng_seed_prom_offset; 879 880 kernel_size = load_elf(loaderparams.kernel_filename, NULL, 881 cpu_mips_kseg0_to_phys, NULL, 882 &kernel_entry, NULL, 883 &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS, 884 1, 0); 885 if (kernel_size < 0) { 886 error_report("could not load kernel '%s': %s", 887 loaderparams.kernel_filename, 888 load_elf_strerror(kernel_size)); 889 exit(1); 890 } 891 892 /* Check where the kernel has been linked */ 893 if (kernel_entry <= USEG_LIMIT) { 894 error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)" 895 " are not supported"); 896 exit(1); 897 } 898 899 /* load initrd */ 900 initrd_size = 0; 901 initrd_offset = 0; 902 if (loaderparams.initrd_filename) { 903 initrd_size = get_image_size(loaderparams.initrd_filename); 904 if (initrd_size > 0) { 905 /* 906 * The kernel allocates the bootmap memory in the low memory after 907 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB 908 * pages. 909 */ 910 initrd_offset = ROUND_UP(loaderparams.ram_low_size 911 - (initrd_size + 128 * KiB), 912 INITRD_PAGE_SIZE); 913 if (kernel_high >= initrd_offset) { 914 error_report("memory too small for initial ram disk '%s'", 915 loaderparams.initrd_filename); 916 exit(1); 917 } 918 initrd_size = load_image_targphys(loaderparams.initrd_filename, 919 initrd_offset, 920 loaderparams.ram_size - initrd_offset); 921 } 922 if (initrd_size == (target_ulong) -1) { 923 error_report("could not load initial ram disk '%s'", 924 loaderparams.initrd_filename); 925 exit(1); 926 } 927 } 928 929 /* Setup prom parameters. */ 930 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); 931 prom_buf = g_malloc(prom_size); 932 933 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); 934 if (initrd_size > 0) { 935 prom_set(prom_buf, prom_index++, 936 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", 937 cpu_mips_phys_to_kseg0(NULL, initrd_offset), 938 initrd_size, loaderparams.kernel_cmdline); 939 } else { 940 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); 941 } 942 943 prom_set(prom_buf, prom_index++, "memsize"); 944 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); 945 946 prom_set(prom_buf, prom_index++, "ememsize"); 947 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); 948 949 prom_set(prom_buf, prom_index++, "modetty0"); 950 prom_set(prom_buf, prom_index++, "38400n8r"); 951 952 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 953 for (size_t i = 0; i < sizeof(rng_seed); ++i) { 954 sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]); 955 } 956 prom_set(prom_buf, prom_index++, "rngseed"); 957 rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE + 958 sizeof(uint32_t) * ENVP_NB_ENTRIES; 959 prom_set(prom_buf, prom_index++, "%s", rng_seed_hex); 960 961 prom_set(prom_buf, prom_index++, NULL); 962 963 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR); 964 qemu_register_reset_nosnapshotload(reinitialize_rng_seed, 965 rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset); 966 967 g_free(prom_buf); 968 return kernel_entry; 969 } 970 971 static void malta_mips_config(MIPSCPU *cpu) 972 { 973 MachineState *ms = MACHINE(qdev_get_machine()); 974 unsigned int smp_cpus = ms->smp.cpus; 975 CPUMIPSState *env = &cpu->env; 976 CPUState *cs = CPU(cpu); 977 978 if (ase_mt_available(env)) { 979 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 980 CP0MVPC0_PTC, 8, 981 smp_cpus * cs->nr_threads - 1); 982 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 983 CP0MVPC0_PVPE, 4, smp_cpus - 1); 984 } 985 } 986 987 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 988 { 989 int slot; 990 991 slot = PCI_SLOT(pci_dev->devfn); 992 993 switch (slot) { 994 /* PIIX4 USB */ 995 case 10: 996 return 3; 997 /* AMD 79C973 Ethernet */ 998 case 11: 999 return 1; 1000 /* Crystal 4281 Sound */ 1001 case 12: 1002 return 2; 1003 /* PCI slot 1 to 4 */ 1004 case 18 ... 21: 1005 return ((slot - 18) + irq_num) & 0x03; 1006 /* Unknown device, don't do any translation */ 1007 default: 1008 return irq_num; 1009 } 1010 } 1011 1012 static void main_cpu_reset(void *opaque) 1013 { 1014 MIPSCPU *cpu = opaque; 1015 CPUMIPSState *env = &cpu->env; 1016 1017 cpu_reset(CPU(cpu)); 1018 1019 /* 1020 * The bootloader does not need to be rewritten as it is located in a 1021 * read only location. The kernel location and the arguments table 1022 * location does not change. 1023 */ 1024 if (loaderparams.kernel_filename) { 1025 env->CP0_Status &= ~(1 << CP0St_ERL); 1026 } 1027 1028 malta_mips_config(cpu); 1029 } 1030 1031 static void create_cpu_without_cps(MachineState *ms, MaltaState *s, 1032 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1033 { 1034 CPUMIPSState *env; 1035 MIPSCPU *cpu; 1036 int i; 1037 1038 for (i = 0; i < ms->smp.cpus; i++) { 1039 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk); 1040 1041 /* Init internal devices */ 1042 cpu_mips_irq_init_cpu(cpu); 1043 cpu_mips_clock_init(cpu); 1044 qemu_register_reset(main_cpu_reset, cpu); 1045 } 1046 1047 cpu = MIPS_CPU(first_cpu); 1048 env = &cpu->env; 1049 *i8259_irq = env->irq[2]; 1050 *cbus_irq = env->irq[4]; 1051 } 1052 1053 static void create_cps(MachineState *ms, MaltaState *s, 1054 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1055 { 1056 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); 1057 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, 1058 &error_fatal); 1059 object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus, 1060 &error_fatal); 1061 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk); 1062 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 1063 1064 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 1065 1066 *i8259_irq = get_cps_irq(&s->cps, 3); 1067 *cbus_irq = NULL; 1068 } 1069 1070 static void mips_create_cpu(MachineState *ms, MaltaState *s, 1071 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1072 { 1073 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) { 1074 create_cps(ms, s, cbus_irq, i8259_irq); 1075 } else { 1076 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq); 1077 } 1078 } 1079 1080 static 1081 void mips_malta_init(MachineState *machine) 1082 { 1083 ram_addr_t ram_size = machine->ram_size; 1084 ram_addr_t ram_low_size; 1085 const char *kernel_filename = machine->kernel_filename; 1086 const char *kernel_cmdline = machine->kernel_cmdline; 1087 const char *initrd_filename = machine->initrd_filename; 1088 char *filename; 1089 PFlashCFI01 *fl; 1090 MemoryRegion *system_memory = get_system_memory(); 1091 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); 1092 MemoryRegion *ram_low_postio; 1093 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); 1094 const size_t smbus_eeprom_size = 8 * 256; 1095 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); 1096 uint64_t kernel_entry, bootloader_run_addr; 1097 PCIBus *pci_bus; 1098 ISABus *isa_bus; 1099 qemu_irq cbus_irq, i8259_irq; 1100 I2CBus *smbus; 1101 DriveInfo *dinfo; 1102 int fl_idx = 0; 1103 MaltaState *s; 1104 PCIDevice *piix4; 1105 DeviceState *dev; 1106 1107 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA)); 1108 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal); 1109 1110 /* create CPU */ 1111 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); 1112 1113 /* allocate RAM */ 1114 if (ram_size > 2 * GiB) { 1115 error_report("Too much memory for this machine: %" PRId64 "MB," 1116 " maximum 2048MB", ram_size / MiB); 1117 exit(1); 1118 } 1119 1120 /* register RAM at high address where it is undisturbed by IO */ 1121 memory_region_add_subregion(system_memory, 0x80000000, machine->ram); 1122 1123 /* alias for pre IO hole access */ 1124 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", 1125 machine->ram, 0, MIN(ram_size, 256 * MiB)); 1126 memory_region_add_subregion(system_memory, 0, ram_low_preio); 1127 1128 /* alias for post IO hole access, if there is enough RAM */ 1129 if (ram_size > 512 * MiB) { 1130 ram_low_postio = g_new(MemoryRegion, 1); 1131 memory_region_init_alias(ram_low_postio, NULL, 1132 "mips_malta_low_postio.ram", 1133 machine->ram, 512 * MiB, 1134 ram_size - 512 * MiB); 1135 memory_region_add_subregion(system_memory, 512 * MiB, 1136 ram_low_postio); 1137 } 1138 1139 /* FPGA */ 1140 1141 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ 1142 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); 1143 1144 /* Load firmware in flash / BIOS. */ 1145 dinfo = drive_get(IF_PFLASH, 0, fl_idx); 1146 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", 1147 FLASH_SIZE, 1148 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 1149 65536, 1150 4, 0x0000, 0x0000, 0x0000, 0x0000, 1151 TARGET_BIG_ENDIAN); 1152 bios = pflash_cfi01_get_memory(fl); 1153 fl_idx++; 1154 if (kernel_filename) { 1155 ram_low_size = MIN(ram_size, 256 * MiB); 1156 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS); 1157 1158 /* Write a small bootloader to the flash location. */ 1159 loaderparams.ram_size = ram_size; 1160 loaderparams.ram_low_size = ram_low_size; 1161 loaderparams.kernel_filename = kernel_filename; 1162 loaderparams.kernel_cmdline = kernel_cmdline; 1163 loaderparams.initrd_filename = initrd_filename; 1164 kernel_entry = load_kernel(); 1165 1166 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { 1167 write_bootloader(memory_region_get_ram_ptr(bios), 1168 bootloader_run_addr, kernel_entry); 1169 } else { 1170 write_bootloader_nanomips(memory_region_get_ram_ptr(bios), 1171 bootloader_run_addr, kernel_entry); 1172 } 1173 } else { 1174 target_long bios_size = FLASH_SIZE; 1175 /* Load firmware from flash. */ 1176 if (!dinfo) { 1177 /* Load a BIOS image. */ 1178 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, 1179 machine->firmware ?: BIOS_FILENAME); 1180 if (filename) { 1181 bios_size = load_image_targphys(filename, FLASH_ADDRESS, 1182 BIOS_SIZE); 1183 g_free(filename); 1184 } else { 1185 bios_size = -1; 1186 } 1187 if ((bios_size < 0 || bios_size > BIOS_SIZE) && 1188 machine->firmware && !qtest_enabled()) { 1189 error_report("Could not load MIPS bios '%s'", machine->firmware); 1190 exit(1); 1191 } 1192 } 1193 /* 1194 * In little endian mode the 32bit words in the bios are swapped, 1195 * a neat trick which allows bi-endian firmware. 1196 */ 1197 #if !TARGET_BIG_ENDIAN 1198 { 1199 uint32_t *end, *addr; 1200 const size_t swapsize = MIN(bios_size, 0x3e0000); 1201 addr = rom_ptr(FLASH_ADDRESS, swapsize); 1202 if (!addr) { 1203 addr = memory_region_get_ram_ptr(bios); 1204 } 1205 end = (void *)addr + swapsize; 1206 while (addr < end) { 1207 bswap32s(addr); 1208 addr++; 1209 } 1210 } 1211 #endif 1212 } 1213 1214 /* 1215 * Map the BIOS at a 2nd physical location, as on the real board. 1216 * Copy it so that we can patch in the MIPS revision, which cannot be 1217 * handled by an overlapping region as the resulting ROM code subpage 1218 * regions are not executable. 1219 */ 1220 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, 1221 &error_fatal); 1222 if (!rom_copy(memory_region_get_ram_ptr(bios_copy), 1223 FLASH_ADDRESS, BIOS_SIZE)) { 1224 memcpy(memory_region_get_ram_ptr(bios_copy), 1225 memory_region_get_ram_ptr(bios), BIOS_SIZE); 1226 } 1227 memory_region_set_readonly(bios_copy, true); 1228 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); 1229 1230 /* Board ID = 0x420 (Malta Board with CoreLV) */ 1231 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); 1232 1233 /* Northbridge */ 1234 dev = qdev_new("gt64120"); 1235 qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN); 1236 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1237 pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci")); 1238 pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq); 1239 1240 /* Southbridge */ 1241 piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE); 1242 qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100); 1243 pci_realize_and_unref(piix4, pci_bus, &error_fatal); 1244 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0")); 1245 1246 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide")); 1247 pci_ide_create_devs(PCI_DEVICE(dev)); 1248 1249 /* Interrupt controller */ 1250 qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq); 1251 1252 /* generate SPD EEPROM data */ 1253 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm")); 1254 smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c")); 1255 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); 1256 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); 1257 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); 1258 g_free(smbus_eeprom_buf); 1259 1260 /* Super I/O: SMS FDC37M817 */ 1261 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); 1262 1263 /* Network card */ 1264 network_init(pci_bus); 1265 1266 /* Optional PCI video card */ 1267 pci_vga_init(pci_bus); 1268 } 1269 1270 static void mips_malta_instance_init(Object *obj) 1271 { 1272 MaltaState *s = MIPS_MALTA(obj); 1273 1274 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); 1275 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */ 1276 } 1277 1278 static const TypeInfo mips_malta_device = { 1279 .name = TYPE_MIPS_MALTA, 1280 .parent = TYPE_SYS_BUS_DEVICE, 1281 .instance_size = sizeof(MaltaState), 1282 .instance_init = mips_malta_instance_init, 1283 }; 1284 1285 GlobalProperty malta_compat[] = { 1286 { "PIIX4_PM", "memory-hotplug-support", "off" }, 1287 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" }, 1288 { "PIIX4_PM", "acpi-root-pci-hotplug", "off" }, 1289 { "PIIX4_PM", "x-not-migrate-acpi-index", "true" }, 1290 }; 1291 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat); 1292 1293 static void mips_malta_machine_init(MachineClass *mc) 1294 { 1295 mc->desc = "MIPS Malta Core LV"; 1296 mc->init = mips_malta_init; 1297 mc->block_default_type = IF_IDE; 1298 mc->max_cpus = 16; 1299 mc->is_default = true; 1300 #ifdef TARGET_MIPS64 1301 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); 1302 #else 1303 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); 1304 #endif 1305 mc->default_ram_id = "mips_malta.ram"; 1306 compat_props_add(mc->compat_props, malta_compat, malta_compat_len); 1307 } 1308 1309 DEFINE_MACHINE("malta", mips_malta_machine_init) 1310 1311 static void mips_malta_register_types(void) 1312 { 1313 type_register_static(&mips_malta_device); 1314 } 1315 1316 type_init(mips_malta_register_types) 1317