1 /* 2 * QEMU Malta board support 3 * 4 * Copyright (c) 2006 Aurelien Jarno 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qemu/bitops.h" 28 #include "qemu-common.h" 29 #include "qemu/datadir.h" 30 #include "cpu.h" 31 #include "hw/clock.h" 32 #include "hw/southbridge/piix.h" 33 #include "hw/isa/superio.h" 34 #include "hw/char/serial.h" 35 #include "net/net.h" 36 #include "hw/boards.h" 37 #include "hw/i2c/smbus_eeprom.h" 38 #include "hw/block/flash.h" 39 #include "hw/mips/mips.h" 40 #include "hw/mips/cpudevs.h" 41 #include "hw/pci/pci.h" 42 #include "sysemu/sysemu.h" 43 #include "sysemu/arch_init.h" 44 #include "qemu/log.h" 45 #include "hw/mips/bios.h" 46 #include "hw/ide.h" 47 #include "hw/irq.h" 48 #include "hw/loader.h" 49 #include "elf.h" 50 #include "exec/address-spaces.h" 51 #include "qom/object.h" 52 #include "hw/sysbus.h" /* SysBusDevice */ 53 #include "qemu/host-utils.h" 54 #include "sysemu/qtest.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/runstate.h" 57 #include "qapi/error.h" 58 #include "qemu/error-report.h" 59 #include "hw/misc/empty_slot.h" 60 #include "sysemu/kvm.h" 61 #include "hw/semihosting/semihost.h" 62 #include "hw/mips/cps.h" 63 #include "hw/qdev-clock.h" 64 65 #define ENVP_PADDR 0x2000 66 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR) 67 #define ENVP_NB_ENTRIES 16 68 #define ENVP_ENTRY_SIZE 256 69 70 /* Hardware addresses */ 71 #define FLASH_ADDRESS 0x1e000000ULL 72 #define FPGA_ADDRESS 0x1f000000ULL 73 #define RESET_ADDRESS 0x1fc00000ULL 74 75 #define FLASH_SIZE 0x400000 76 77 #define MAX_IDE_BUS 2 78 79 typedef struct { 80 MemoryRegion iomem; 81 MemoryRegion iomem_lo; /* 0 - 0x900 */ 82 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ 83 uint32_t leds; 84 uint32_t brk; 85 uint32_t gpout; 86 uint32_t i2cin; 87 uint32_t i2coe; 88 uint32_t i2cout; 89 uint32_t i2csel; 90 CharBackend display; 91 char display_text[9]; 92 SerialMM *uart; 93 bool display_inited; 94 } MaltaFPGAState; 95 96 #define TYPE_MIPS_MALTA "mips-malta" 97 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA) 98 99 struct MaltaState { 100 SysBusDevice parent_obj; 101 102 Clock *cpuclk; 103 MIPSCPSState cps; 104 qemu_irq i8259[ISA_NUM_IRQS]; 105 }; 106 107 static struct _loaderparams { 108 int ram_size, ram_low_size; 109 const char *kernel_filename; 110 const char *kernel_cmdline; 111 const char *initrd_filename; 112 } loaderparams; 113 114 /* Malta FPGA */ 115 static void malta_fpga_update_display(void *opaque) 116 { 117 char leds_text[9]; 118 int i; 119 MaltaFPGAState *s = opaque; 120 121 for (i = 7 ; i >= 0 ; i--) { 122 if (s->leds & (1 << i)) { 123 leds_text[i] = '#'; 124 } else { 125 leds_text[i] = ' '; 126 } 127 } 128 leds_text[8] = '\0'; 129 130 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", 131 leds_text); 132 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", 133 s->display_text); 134 } 135 136 /* 137 * EEPROM 24C01 / 24C02 emulation. 138 * 139 * Emulation for serial EEPROMs: 140 * 24C01 - 1024 bit (128 x 8) 141 * 24C02 - 2048 bit (256 x 8) 142 * 143 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. 144 */ 145 146 #if defined(DEBUG) 147 # define logout(fmt, ...) \ 148 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) 149 #else 150 # define logout(fmt, ...) ((void)0) 151 #endif 152 153 struct _eeprom24c0x_t { 154 uint8_t tick; 155 uint8_t address; 156 uint8_t command; 157 uint8_t ack; 158 uint8_t scl; 159 uint8_t sda; 160 uint8_t data; 161 /* uint16_t size; */ 162 uint8_t contents[256]; 163 }; 164 165 typedef struct _eeprom24c0x_t eeprom24c0x_t; 166 167 static eeprom24c0x_t spd_eeprom = { 168 .contents = { 169 /* 00000000: */ 170 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, 171 /* 00000008: */ 172 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, 173 /* 00000010: */ 174 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 175 /* 00000018: */ 176 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, 177 /* 00000020: */ 178 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, 179 /* 00000028: */ 180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 181 /* 00000030: */ 182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 183 /* 00000038: */ 184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, 185 /* 00000040: */ 186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 187 /* 00000048: */ 188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 189 /* 00000050: */ 190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 191 /* 00000058: */ 192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 193 /* 00000060: */ 194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 195 /* 00000068: */ 196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 197 /* 00000070: */ 198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 199 /* 00000078: */ 200 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, 201 }, 202 }; 203 204 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) 205 { 206 enum { SDR = 0x4, DDR2 = 0x8 } type; 207 uint8_t *spd = spd_eeprom.contents; 208 uint8_t nbanks = 0; 209 uint16_t density = 0; 210 int i; 211 212 /* work in terms of MB */ 213 ram_size /= MiB; 214 215 while ((ram_size >= 4) && (nbanks <= 2)) { 216 int sz_log2 = MIN(31 - clz32(ram_size), 14); 217 nbanks++; 218 density |= 1 << (sz_log2 - 2); 219 ram_size -= 1 << sz_log2; 220 } 221 222 /* split to 2 banks if possible */ 223 if ((nbanks == 1) && (density > 1)) { 224 nbanks++; 225 density >>= 1; 226 } 227 228 if (density & 0xff00) { 229 density = (density & 0xe0) | ((density >> 8) & 0x1f); 230 type = DDR2; 231 } else if (!(density & 0x1f)) { 232 type = DDR2; 233 } else { 234 type = SDR; 235 } 236 237 if (ram_size) { 238 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" 239 " of SDRAM", ram_size); 240 } 241 242 /* fill in SPD memory information */ 243 spd[2] = type; 244 spd[5] = nbanks; 245 spd[31] = density; 246 247 /* checksum */ 248 spd[63] = 0; 249 for (i = 0; i < 63; i++) { 250 spd[63] += spd[i]; 251 } 252 253 /* copy for SMBUS */ 254 memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); 255 } 256 257 static void generate_eeprom_serial(uint8_t *eeprom) 258 { 259 int i, pos = 0; 260 uint8_t mac[6] = { 0x00 }; 261 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; 262 263 /* version */ 264 eeprom[pos++] = 0x01; 265 266 /* count */ 267 eeprom[pos++] = 0x02; 268 269 /* MAC address */ 270 eeprom[pos++] = 0x01; /* MAC */ 271 eeprom[pos++] = 0x06; /* length */ 272 memcpy(&eeprom[pos], mac, sizeof(mac)); 273 pos += sizeof(mac); 274 275 /* serial number */ 276 eeprom[pos++] = 0x02; /* serial */ 277 eeprom[pos++] = 0x05; /* length */ 278 memcpy(&eeprom[pos], sn, sizeof(sn)); 279 pos += sizeof(sn); 280 281 /* checksum */ 282 eeprom[pos] = 0; 283 for (i = 0; i < pos; i++) { 284 eeprom[pos] += eeprom[i]; 285 } 286 } 287 288 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) 289 { 290 logout("%u: scl = %u, sda = %u, data = 0x%02x\n", 291 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); 292 return eeprom->sda; 293 } 294 295 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) 296 { 297 if (eeprom->scl && scl && (eeprom->sda != sda)) { 298 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", 299 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, 300 sda ? "stop" : "start"); 301 if (!sda) { 302 eeprom->tick = 1; 303 eeprom->command = 0; 304 } 305 } else if (eeprom->tick == 0 && !eeprom->ack) { 306 /* Waiting for start. */ 307 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", 308 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 309 } else if (!eeprom->scl && scl) { 310 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", 311 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 312 if (eeprom->ack) { 313 logout("\ti2c ack bit = 0\n"); 314 sda = 0; 315 eeprom->ack = 0; 316 } else if (eeprom->sda == sda) { 317 uint8_t bit = (sda != 0); 318 logout("\ti2c bit = %d\n", bit); 319 if (eeprom->tick < 9) { 320 eeprom->command <<= 1; 321 eeprom->command += bit; 322 eeprom->tick++; 323 if (eeprom->tick == 9) { 324 logout("\tcommand 0x%04x, %s\n", eeprom->command, 325 bit ? "read" : "write"); 326 eeprom->ack = 1; 327 } 328 } else if (eeprom->tick < 17) { 329 if (eeprom->command & 1) { 330 sda = ((eeprom->data & 0x80) != 0); 331 } 332 eeprom->address <<= 1; 333 eeprom->address += bit; 334 eeprom->tick++; 335 eeprom->data <<= 1; 336 if (eeprom->tick == 17) { 337 eeprom->data = eeprom->contents[eeprom->address]; 338 logout("\taddress 0x%04x, data 0x%02x\n", 339 eeprom->address, eeprom->data); 340 eeprom->ack = 1; 341 eeprom->tick = 0; 342 } 343 } else if (eeprom->tick >= 17) { 344 sda = 0; 345 } 346 } else { 347 logout("\tsda changed with raising scl\n"); 348 } 349 } else { 350 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, 351 scl, eeprom->sda, sda); 352 } 353 eeprom->scl = scl; 354 eeprom->sda = sda; 355 } 356 357 static uint64_t malta_fpga_read(void *opaque, hwaddr addr, 358 unsigned size) 359 { 360 MaltaFPGAState *s = opaque; 361 uint32_t val = 0; 362 uint32_t saddr; 363 364 saddr = (addr & 0xfffff); 365 366 switch (saddr) { 367 368 /* SWITCH Register */ 369 case 0x00200: 370 val = 0x00000000; 371 break; 372 373 /* STATUS Register */ 374 case 0x00208: 375 #ifdef TARGET_WORDS_BIGENDIAN 376 val = 0x00000012; 377 #else 378 val = 0x00000010; 379 #endif 380 break; 381 382 /* JMPRS Register */ 383 case 0x00210: 384 val = 0x00; 385 break; 386 387 /* LEDBAR Register */ 388 case 0x00408: 389 val = s->leds; 390 break; 391 392 /* BRKRES Register */ 393 case 0x00508: 394 val = s->brk; 395 break; 396 397 /* UART Registers are handled directly by the serial device */ 398 399 /* GPOUT Register */ 400 case 0x00a00: 401 val = s->gpout; 402 break; 403 404 /* XXX: implement a real I2C controller */ 405 406 /* GPINP Register */ 407 case 0x00a08: 408 /* IN = OUT until a real I2C control is implemented */ 409 if (s->i2csel) { 410 val = s->i2cout; 411 } else { 412 val = 0x00; 413 } 414 break; 415 416 /* I2CINP Register */ 417 case 0x00b00: 418 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); 419 break; 420 421 /* I2COE Register */ 422 case 0x00b08: 423 val = s->i2coe; 424 break; 425 426 /* I2COUT Register */ 427 case 0x00b10: 428 val = s->i2cout; 429 break; 430 431 /* I2CSEL Register */ 432 case 0x00b18: 433 val = s->i2csel; 434 break; 435 436 default: 437 qemu_log_mask(LOG_GUEST_ERROR, 438 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", 439 addr); 440 break; 441 } 442 return val; 443 } 444 445 static void malta_fpga_write(void *opaque, hwaddr addr, 446 uint64_t val, unsigned size) 447 { 448 MaltaFPGAState *s = opaque; 449 uint32_t saddr; 450 451 saddr = (addr & 0xfffff); 452 453 switch (saddr) { 454 455 /* SWITCH Register */ 456 case 0x00200: 457 break; 458 459 /* JMPRS Register */ 460 case 0x00210: 461 break; 462 463 /* LEDBAR Register */ 464 case 0x00408: 465 s->leds = val & 0xff; 466 malta_fpga_update_display(s); 467 break; 468 469 /* ASCIIWORD Register */ 470 case 0x00410: 471 snprintf(s->display_text, 9, "%08X", (uint32_t)val); 472 malta_fpga_update_display(s); 473 break; 474 475 /* ASCIIPOS0 to ASCIIPOS7 Registers */ 476 case 0x00418: 477 case 0x00420: 478 case 0x00428: 479 case 0x00430: 480 case 0x00438: 481 case 0x00440: 482 case 0x00448: 483 case 0x00450: 484 s->display_text[(saddr - 0x00418) >> 3] = (char) val; 485 malta_fpga_update_display(s); 486 break; 487 488 /* SOFTRES Register */ 489 case 0x00500: 490 if (val == 0x42) { 491 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 492 } 493 break; 494 495 /* BRKRES Register */ 496 case 0x00508: 497 s->brk = val & 0xff; 498 break; 499 500 /* UART Registers are handled directly by the serial device */ 501 502 /* GPOUT Register */ 503 case 0x00a00: 504 s->gpout = val & 0xff; 505 break; 506 507 /* I2COE Register */ 508 case 0x00b08: 509 s->i2coe = val & 0x03; 510 break; 511 512 /* I2COUT Register */ 513 case 0x00b10: 514 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); 515 s->i2cout = val; 516 break; 517 518 /* I2CSEL Register */ 519 case 0x00b18: 520 s->i2csel = val & 0x01; 521 break; 522 523 default: 524 qemu_log_mask(LOG_GUEST_ERROR, 525 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", 526 addr); 527 break; 528 } 529 } 530 531 static const MemoryRegionOps malta_fpga_ops = { 532 .read = malta_fpga_read, 533 .write = malta_fpga_write, 534 .endianness = DEVICE_NATIVE_ENDIAN, 535 }; 536 537 static void malta_fpga_reset(void *opaque) 538 { 539 MaltaFPGAState *s = opaque; 540 541 s->leds = 0x00; 542 s->brk = 0x0a; 543 s->gpout = 0x00; 544 s->i2cin = 0x3; 545 s->i2coe = 0x0; 546 s->i2cout = 0x3; 547 s->i2csel = 0x1; 548 549 s->display_text[8] = '\0'; 550 snprintf(s->display_text, 9, " "); 551 } 552 553 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) 554 { 555 MaltaFPGAState *s = opaque; 556 557 if (event == CHR_EVENT_OPENED && !s->display_inited) { 558 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); 559 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 560 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 561 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 562 qemu_chr_fe_printf(&s->display, "\n"); 563 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); 564 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 565 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 566 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 567 s->display_inited = true; 568 } 569 } 570 571 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, 572 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) 573 { 574 MaltaFPGAState *s; 575 Chardev *chr; 576 577 s = g_new0(MaltaFPGAState, 1); 578 579 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, 580 "malta-fpga", 0x100000); 581 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", 582 &s->iomem, 0, 0x900); 583 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", 584 &s->iomem, 0xa00, 0x100000 - 0xa00); 585 586 memory_region_add_subregion(address_space, base, &s->iomem_lo); 587 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); 588 589 chr = qemu_chr_new("fpga", "vc:320x200", NULL); 590 qemu_chr_fe_init(&s->display, chr, NULL); 591 qemu_chr_fe_set_handlers(&s->display, NULL, NULL, 592 malta_fgpa_display_event, NULL, s, NULL, true); 593 594 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, 595 230400, uart_chr, DEVICE_NATIVE_ENDIAN); 596 597 malta_fpga_reset(s); 598 qemu_register_reset(malta_fpga_reset, s); 599 600 return s; 601 } 602 603 /* Network support */ 604 static void network_init(PCIBus *pci_bus) 605 { 606 int i; 607 608 for (i = 0; i < nb_nics; i++) { 609 NICInfo *nd = &nd_table[i]; 610 const char *default_devaddr = NULL; 611 612 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) 613 /* The malta board has a PCNet card using PCI SLOT 11 */ 614 default_devaddr = "0b"; 615 616 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); 617 } 618 } 619 620 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr, 621 uint64_t kernel_entry) 622 { 623 uint16_t *p; 624 625 /* Small bootloader */ 626 p = (uint16_t *)base; 627 628 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f) 629 #define NM_HI2(VAL) \ 630 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1)) 631 #define NM_LO(VAL) ((VAL) & 0xfff) 632 633 stw_p(p++, 0x2800); stw_p(p++, 0x001c); 634 /* bc to_here */ 635 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 636 /* nop */ 637 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 638 /* nop */ 639 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 640 /* nop */ 641 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 642 /* nop */ 643 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 644 /* nop */ 645 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 646 /* nop */ 647 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 648 /* nop */ 649 650 /* to_here: */ 651 if (semihosting_get_argc()) { 652 /* Preserve a0 content as arguments have been passed */ 653 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 654 /* nop */ 655 } else { 656 stw_p(p++, 0x0080); stw_p(p++, 0x0002); 657 /* li a0,2 */ 658 } 659 660 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64)); 661 662 stw_p(p++, NM_HI2(ENVP_VADDR - 64)); 663 /* lui sp,%hi(ENVP_VADDR - 64) */ 664 665 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64)); 666 /* ori sp,sp,%lo(ENVP_VADDR - 64) */ 667 668 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR)); 669 670 stw_p(p++, NM_HI2(ENVP_VADDR)); 671 /* lui a1,%hi(ENVP_VADDR) */ 672 673 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR)); 674 /* ori a1,a1,%lo(ENVP_VADDR) */ 675 676 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8)); 677 678 stw_p(p++, NM_HI2(ENVP_VADDR + 8)); 679 /* lui a2,%hi(ENVP_VADDR + 8) */ 680 681 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8)); 682 /* ori a2,a2,%lo(ENVP_VADDR + 8) */ 683 684 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size)); 685 686 stw_p(p++, NM_HI2(loaderparams.ram_low_size)); 687 /* lui a3,%hi(loaderparams.ram_low_size) */ 688 689 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size)); 690 /* ori a3,a3,%lo(loaderparams.ram_low_size) */ 691 692 /* 693 * Load BAR registers as done by YAMON: 694 * 695 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff 696 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000 697 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000 698 * 699 */ 700 stw_p(p++, 0xe040); stw_p(p++, 0x0681); 701 /* lui t1, %hi(0xb4000000) */ 702 703 #ifdef TARGET_WORDS_BIGENDIAN 704 705 stw_p(p++, 0xe020); stw_p(p++, 0x0be1); 706 /* lui t0, %hi(0xdf000000) */ 707 708 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */ 709 stw_p(p++, 0x8422); stw_p(p++, 0x9068); 710 /* sw t0, 0x68(t1) */ 711 712 stw_p(p++, 0xe040); stw_p(p++, 0x077d); 713 /* lui t1, %hi(0xbbe00000) */ 714 715 stw_p(p++, 0xe020); stw_p(p++, 0x0801); 716 /* lui t0, %hi(0xc0000000) */ 717 718 /* 0x48 corresponds to GT_PCI0IOLD */ 719 stw_p(p++, 0x8422); stw_p(p++, 0x9048); 720 /* sw t0, 0x48(t1) */ 721 722 stw_p(p++, 0xe020); stw_p(p++, 0x0800); 723 /* lui t0, %hi(0x40000000) */ 724 725 /* 0x50 corresponds to GT_PCI0IOHD */ 726 stw_p(p++, 0x8422); stw_p(p++, 0x9050); 727 /* sw t0, 0x50(t1) */ 728 729 stw_p(p++, 0xe020); stw_p(p++, 0x0001); 730 /* lui t0, %hi(0x80000000) */ 731 732 /* 0x58 corresponds to GT_PCI0M0LD */ 733 stw_p(p++, 0x8422); stw_p(p++, 0x9058); 734 /* sw t0, 0x58(t1) */ 735 736 stw_p(p++, 0xe020); stw_p(p++, 0x07e0); 737 /* lui t0, %hi(0x3f000000) */ 738 739 /* 0x60 corresponds to GT_PCI0M0HD */ 740 stw_p(p++, 0x8422); stw_p(p++, 0x9060); 741 /* sw t0, 0x60(t1) */ 742 743 stw_p(p++, 0xe020); stw_p(p++, 0x0821); 744 /* lui t0, %hi(0xc1000000) */ 745 746 /* 0x80 corresponds to GT_PCI0M1LD */ 747 stw_p(p++, 0x8422); stw_p(p++, 0x9080); 748 /* sw t0, 0x80(t1) */ 749 750 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0); 751 /* lui t0, %hi(0x5e000000) */ 752 753 #else 754 755 stw_p(p++, 0x0020); stw_p(p++, 0x00df); 756 /* addiu[32] t0, $0, 0xdf */ 757 758 /* 0x68 corresponds to GT_ISD */ 759 stw_p(p++, 0x8422); stw_p(p++, 0x9068); 760 /* sw t0, 0x68(t1) */ 761 762 /* Use kseg2 remapped address 0x1be00000 */ 763 stw_p(p++, 0xe040); stw_p(p++, 0x077d); 764 /* lui t1, %hi(0xbbe00000) */ 765 766 stw_p(p++, 0x0020); stw_p(p++, 0x00c0); 767 /* addiu[32] t0, $0, 0xc0 */ 768 769 /* 0x48 corresponds to GT_PCI0IOLD */ 770 stw_p(p++, 0x8422); stw_p(p++, 0x9048); 771 /* sw t0, 0x48(t1) */ 772 773 stw_p(p++, 0x0020); stw_p(p++, 0x0040); 774 /* addiu[32] t0, $0, 0x40 */ 775 776 /* 0x50 corresponds to GT_PCI0IOHD */ 777 stw_p(p++, 0x8422); stw_p(p++, 0x9050); 778 /* sw t0, 0x50(t1) */ 779 780 stw_p(p++, 0x0020); stw_p(p++, 0x0080); 781 /* addiu[32] t0, $0, 0x80 */ 782 783 /* 0x58 corresponds to GT_PCI0M0LD */ 784 stw_p(p++, 0x8422); stw_p(p++, 0x9058); 785 /* sw t0, 0x58(t1) */ 786 787 stw_p(p++, 0x0020); stw_p(p++, 0x003f); 788 /* addiu[32] t0, $0, 0x3f */ 789 790 /* 0x60 corresponds to GT_PCI0M0HD */ 791 stw_p(p++, 0x8422); stw_p(p++, 0x9060); 792 /* sw t0, 0x60(t1) */ 793 794 stw_p(p++, 0x0020); stw_p(p++, 0x00c1); 795 /* addiu[32] t0, $0, 0xc1 */ 796 797 /* 0x80 corresponds to GT_PCI0M1LD */ 798 stw_p(p++, 0x8422); stw_p(p++, 0x9080); 799 /* sw t0, 0x80(t1) */ 800 801 stw_p(p++, 0x0020); stw_p(p++, 0x005e); 802 /* addiu[32] t0, $0, 0x5e */ 803 804 #endif 805 806 /* 0x88 corresponds to GT_PCI0M1HD */ 807 stw_p(p++, 0x8422); stw_p(p++, 0x9088); 808 /* sw t0, 0x88(t1) */ 809 810 stw_p(p++, 0xe320 | NM_HI1(kernel_entry)); 811 812 stw_p(p++, NM_HI2(kernel_entry)); 813 /* lui t9,%hi(kernel_entry) */ 814 815 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry)); 816 /* ori t9,t9,%lo(kernel_entry) */ 817 818 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000); 819 /* jalrc t8 */ 820 } 821 822 /* 823 * ROM and pseudo bootloader 824 * 825 * The following code implements a very very simple bootloader. It first 826 * loads the registers a0 to a3 to the values expected by the OS, and 827 * then jump at the kernel address. 828 * 829 * The bootloader should pass the locations of the kernel arguments and 830 * environment variables tables. Those tables contain the 32-bit address 831 * of NULL terminated strings. The environment variables table should be 832 * terminated by a NULL address. 833 * 834 * For a simpler implementation, the number of kernel arguments is fixed 835 * to two (the name of the kernel and the command line), and the two 836 * tables are actually the same one. 837 * 838 * The registers a0 to a3 should contain the following values: 839 * a0 - number of kernel arguments 840 * a1 - 32-bit address of the kernel arguments table 841 * a2 - 32-bit address of the environment variables table 842 * a3 - RAM size in bytes 843 */ 844 static void write_bootloader(uint8_t *base, uint64_t run_addr, 845 uint64_t kernel_entry) 846 { 847 uint32_t *p; 848 849 /* Small bootloader */ 850 p = (uint32_t *)base; 851 852 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ 853 ((run_addr + 0x580) & 0x0fffffff) >> 2); 854 stl_p(p++, 0x00000000); /* nop */ 855 856 /* YAMON service vector */ 857 stl_p(base + 0x500, run_addr + 0x0580); /* start: */ 858 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ 859 stl_p(base + 0x520, run_addr + 0x0580); /* start: */ 860 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ 861 stl_p(base + 0x534, run_addr + 0x0808); /* print: */ 862 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ 863 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ 864 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ 865 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ 866 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ 867 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ 868 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ 869 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ 870 871 872 /* Second part of the bootloader */ 873 p = (uint32_t *) (base + 0x580); 874 875 if (semihosting_get_argc()) { 876 /* Preserve a0 content as arguments have been passed */ 877 stl_p(p++, 0x00000000); /* nop */ 878 } else { 879 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */ 880 } 881 882 /* lui sp, high(ENVP_VADDR) */ 883 stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff)); 884 /* ori sp, sp, low(ENVP_VADDR) */ 885 stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff)); 886 /* lui a1, high(ENVP_VADDR) */ 887 stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff)); 888 /* ori a1, a1, low(ENVP_VADDR) */ 889 stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff)); 890 /* lui a2, high(ENVP_VADDR + 8) */ 891 stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff)); 892 /* ori a2, a2, low(ENVP_VADDR + 8) */ 893 stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff)); 894 /* lui a3, high(ram_low_size) */ 895 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); 896 /* ori a3, a3, low(ram_low_size) */ 897 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); 898 899 /* Load BAR registers as done by YAMON */ 900 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */ 901 902 #ifdef TARGET_WORDS_BIGENDIAN 903 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */ 904 #else 905 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */ 906 #endif 907 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */ 908 909 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */ 910 911 #ifdef TARGET_WORDS_BIGENDIAN 912 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */ 913 #else 914 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */ 915 #endif 916 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */ 917 #ifdef TARGET_WORDS_BIGENDIAN 918 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */ 919 #else 920 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */ 921 #endif 922 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */ 923 924 #ifdef TARGET_WORDS_BIGENDIAN 925 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */ 926 #else 927 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */ 928 #endif 929 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */ 930 #ifdef TARGET_WORDS_BIGENDIAN 931 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */ 932 #else 933 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */ 934 #endif 935 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */ 936 937 #ifdef TARGET_WORDS_BIGENDIAN 938 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */ 939 #else 940 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */ 941 #endif 942 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */ 943 #ifdef TARGET_WORDS_BIGENDIAN 944 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */ 945 #else 946 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */ 947 #endif 948 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */ 949 950 /* Jump to kernel code */ 951 stl_p(p++, 0x3c1f0000 | 952 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ 953 stl_p(p++, 0x37ff0000 | 954 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ 955 stl_p(p++, 0x03e00009); /* jalr ra */ 956 stl_p(p++, 0x00000000); /* nop */ 957 958 /* YAMON subroutines */ 959 p = (uint32_t *) (base + 0x800); 960 stl_p(p++, 0x03e00009); /* jalr ra */ 961 stl_p(p++, 0x24020000); /* li v0,0 */ 962 /* 808 YAMON print */ 963 stl_p(p++, 0x03e06821); /* move t5,ra */ 964 stl_p(p++, 0x00805821); /* move t3,a0 */ 965 stl_p(p++, 0x00a05021); /* move t2,a1 */ 966 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 967 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 968 stl_p(p++, 0x10800005); /* beqz a0,834 */ 969 stl_p(p++, 0x00000000); /* nop */ 970 stl_p(p++, 0x0ff0021c); /* jal 870 */ 971 stl_p(p++, 0x00000000); /* nop */ 972 stl_p(p++, 0x1000fff9); /* b 814 */ 973 stl_p(p++, 0x00000000); /* nop */ 974 stl_p(p++, 0x01a00009); /* jalr t5 */ 975 stl_p(p++, 0x01602021); /* move a0,t3 */ 976 /* 0x83c YAMON print_count */ 977 stl_p(p++, 0x03e06821); /* move t5,ra */ 978 stl_p(p++, 0x00805821); /* move t3,a0 */ 979 stl_p(p++, 0x00a05021); /* move t2,a1 */ 980 stl_p(p++, 0x00c06021); /* move t4,a2 */ 981 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 982 stl_p(p++, 0x0ff0021c); /* jal 870 */ 983 stl_p(p++, 0x00000000); /* nop */ 984 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 985 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ 986 stl_p(p++, 0x1580fffa); /* bnez t4,84c */ 987 stl_p(p++, 0x00000000); /* nop */ 988 stl_p(p++, 0x01a00009); /* jalr t5 */ 989 stl_p(p++, 0x01602021); /* move a0,t3 */ 990 /* 0x870 */ 991 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ 992 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ 993 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ 994 stl_p(p++, 0x00000000); /* nop */ 995 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ 996 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ 997 stl_p(p++, 0x00000000); /* nop */ 998 stl_p(p++, 0x03e00009); /* jalr ra */ 999 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ 1000 1001 } 1002 1003 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index, 1004 const char *string, ...) 1005 { 1006 va_list ap; 1007 uint32_t table_addr; 1008 1009 if (index >= ENVP_NB_ENTRIES) { 1010 return; 1011 } 1012 1013 if (string == NULL) { 1014 prom_buf[index] = 0; 1015 return; 1016 } 1017 1018 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; 1019 prom_buf[index] = tswap32(ENVP_VADDR + table_addr); 1020 1021 va_start(ap, string); 1022 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); 1023 va_end(ap); 1024 } 1025 1026 /* Kernel */ 1027 static uint64_t load_kernel(void) 1028 { 1029 uint64_t kernel_entry, kernel_high, initrd_size; 1030 long kernel_size; 1031 ram_addr_t initrd_offset; 1032 int big_endian; 1033 uint32_t *prom_buf; 1034 long prom_size; 1035 int prom_index = 0; 1036 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr); 1037 1038 #ifdef TARGET_WORDS_BIGENDIAN 1039 big_endian = 1; 1040 #else 1041 big_endian = 0; 1042 #endif 1043 1044 kernel_size = load_elf(loaderparams.kernel_filename, NULL, 1045 cpu_mips_kseg0_to_phys, NULL, 1046 &kernel_entry, NULL, 1047 &kernel_high, NULL, big_endian, EM_MIPS, 1048 1, 0); 1049 if (kernel_size < 0) { 1050 error_report("could not load kernel '%s': %s", 1051 loaderparams.kernel_filename, 1052 load_elf_strerror(kernel_size)); 1053 exit(1); 1054 } 1055 1056 /* Check where the kernel has been linked */ 1057 if (kernel_entry & 0x80000000ll) { 1058 if (kvm_enabled()) { 1059 error_report("KVM guest kernels must be linked in useg. " 1060 "Did you forget to enable CONFIG_KVM_GUEST?"); 1061 exit(1); 1062 } 1063 1064 xlate_to_kseg0 = cpu_mips_phys_to_kseg0; 1065 } else { 1066 /* if kernel entry is in useg it is probably a KVM T&E kernel */ 1067 mips_um_ksegs_enable(); 1068 1069 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0; 1070 } 1071 1072 /* load initrd */ 1073 initrd_size = 0; 1074 initrd_offset = 0; 1075 if (loaderparams.initrd_filename) { 1076 initrd_size = get_image_size(loaderparams.initrd_filename); 1077 if (initrd_size > 0) { 1078 /* 1079 * The kernel allocates the bootmap memory in the low memory after 1080 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB 1081 * pages. 1082 */ 1083 initrd_offset = ROUND_UP(loaderparams.ram_low_size 1084 - (initrd_size + 128 * KiB), 1085 INITRD_PAGE_SIZE); 1086 if (kernel_high >= initrd_offset) { 1087 error_report("memory too small for initial ram disk '%s'", 1088 loaderparams.initrd_filename); 1089 exit(1); 1090 } 1091 initrd_size = load_image_targphys(loaderparams.initrd_filename, 1092 initrd_offset, 1093 loaderparams.ram_size - initrd_offset); 1094 } 1095 if (initrd_size == (target_ulong) -1) { 1096 error_report("could not load initial ram disk '%s'", 1097 loaderparams.initrd_filename); 1098 exit(1); 1099 } 1100 } 1101 1102 /* Setup prom parameters. */ 1103 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); 1104 prom_buf = g_malloc(prom_size); 1105 1106 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); 1107 if (initrd_size > 0) { 1108 prom_set(prom_buf, prom_index++, 1109 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", 1110 xlate_to_kseg0(NULL, initrd_offset), 1111 initrd_size, loaderparams.kernel_cmdline); 1112 } else { 1113 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); 1114 } 1115 1116 prom_set(prom_buf, prom_index++, "memsize"); 1117 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); 1118 1119 prom_set(prom_buf, prom_index++, "ememsize"); 1120 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); 1121 1122 prom_set(prom_buf, prom_index++, "modetty0"); 1123 prom_set(prom_buf, prom_index++, "38400n8r"); 1124 prom_set(prom_buf, prom_index++, NULL); 1125 1126 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR); 1127 1128 g_free(prom_buf); 1129 return kernel_entry; 1130 } 1131 1132 static void malta_mips_config(MIPSCPU *cpu) 1133 { 1134 MachineState *ms = MACHINE(qdev_get_machine()); 1135 unsigned int smp_cpus = ms->smp.cpus; 1136 CPUMIPSState *env = &cpu->env; 1137 CPUState *cs = CPU(cpu); 1138 1139 if (ase_mt_available(env)) { 1140 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 1141 CP0MVPC0_PTC, 8, 1142 smp_cpus * cs->nr_threads - 1); 1143 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 1144 CP0MVPC0_PVPE, 4, smp_cpus - 1); 1145 } 1146 } 1147 1148 static void main_cpu_reset(void *opaque) 1149 { 1150 MIPSCPU *cpu = opaque; 1151 CPUMIPSState *env = &cpu->env; 1152 1153 cpu_reset(CPU(cpu)); 1154 1155 /* 1156 * The bootloader does not need to be rewritten as it is located in a 1157 * read only location. The kernel location and the arguments table 1158 * location does not change. 1159 */ 1160 if (loaderparams.kernel_filename) { 1161 env->CP0_Status &= ~(1 << CP0St_ERL); 1162 } 1163 1164 malta_mips_config(cpu); 1165 1166 if (kvm_enabled()) { 1167 /* Start running from the bootloader we wrote to end of RAM */ 1168 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size; 1169 } 1170 } 1171 1172 static void create_cpu_without_cps(MachineState *ms, MaltaState *s, 1173 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1174 { 1175 CPUMIPSState *env; 1176 MIPSCPU *cpu; 1177 int i; 1178 1179 for (i = 0; i < ms->smp.cpus; i++) { 1180 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk); 1181 1182 /* Init internal devices */ 1183 cpu_mips_irq_init_cpu(cpu); 1184 cpu_mips_clock_init(cpu); 1185 qemu_register_reset(main_cpu_reset, cpu); 1186 } 1187 1188 cpu = MIPS_CPU(first_cpu); 1189 env = &cpu->env; 1190 *i8259_irq = env->irq[2]; 1191 *cbus_irq = env->irq[4]; 1192 } 1193 1194 static void create_cps(MachineState *ms, MaltaState *s, 1195 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1196 { 1197 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); 1198 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, 1199 &error_fatal); 1200 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus, 1201 &error_fatal); 1202 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk); 1203 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 1204 1205 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 1206 1207 *i8259_irq = get_cps_irq(&s->cps, 3); 1208 *cbus_irq = NULL; 1209 } 1210 1211 static void mips_create_cpu(MachineState *ms, MaltaState *s, 1212 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1213 { 1214 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) { 1215 create_cps(ms, s, cbus_irq, i8259_irq); 1216 } else { 1217 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq); 1218 } 1219 } 1220 1221 static 1222 void mips_malta_init(MachineState *machine) 1223 { 1224 ram_addr_t ram_size = machine->ram_size; 1225 ram_addr_t ram_low_size; 1226 const char *kernel_filename = machine->kernel_filename; 1227 const char *kernel_cmdline = machine->kernel_cmdline; 1228 const char *initrd_filename = machine->initrd_filename; 1229 char *filename; 1230 PFlashCFI01 *fl; 1231 MemoryRegion *system_memory = get_system_memory(); 1232 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); 1233 MemoryRegion *ram_low_postio; 1234 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); 1235 const size_t smbus_eeprom_size = 8 * 256; 1236 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); 1237 uint64_t kernel_entry, bootloader_run_addr; 1238 PCIBus *pci_bus; 1239 ISABus *isa_bus; 1240 qemu_irq cbus_irq, i8259_irq; 1241 I2CBus *smbus; 1242 DriveInfo *dinfo; 1243 int fl_idx = 0; 1244 int be; 1245 MaltaState *s; 1246 DeviceState *dev; 1247 1248 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA)); 1249 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal); 1250 1251 /* create CPU */ 1252 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); 1253 1254 /* allocate RAM */ 1255 if (ram_size > 2 * GiB) { 1256 error_report("Too much memory for this machine: %" PRId64 "MB," 1257 " maximum 2048MB", ram_size / MiB); 1258 exit(1); 1259 } 1260 1261 /* register RAM at high address where it is undisturbed by IO */ 1262 memory_region_add_subregion(system_memory, 0x80000000, machine->ram); 1263 1264 /* alias for pre IO hole access */ 1265 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", 1266 machine->ram, 0, MIN(ram_size, 256 * MiB)); 1267 memory_region_add_subregion(system_memory, 0, ram_low_preio); 1268 1269 /* alias for post IO hole access, if there is enough RAM */ 1270 if (ram_size > 512 * MiB) { 1271 ram_low_postio = g_new(MemoryRegion, 1); 1272 memory_region_init_alias(ram_low_postio, NULL, 1273 "mips_malta_low_postio.ram", 1274 machine->ram, 512 * MiB, 1275 ram_size - 512 * MiB); 1276 memory_region_add_subregion(system_memory, 512 * MiB, 1277 ram_low_postio); 1278 } 1279 1280 #ifdef TARGET_WORDS_BIGENDIAN 1281 be = 1; 1282 #else 1283 be = 0; 1284 #endif 1285 1286 /* FPGA */ 1287 1288 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ 1289 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); 1290 1291 /* Load firmware in flash / BIOS. */ 1292 dinfo = drive_get(IF_PFLASH, 0, fl_idx); 1293 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", 1294 FLASH_SIZE, 1295 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 1296 65536, 1297 4, 0x0000, 0x0000, 0x0000, 0x0000, be); 1298 bios = pflash_cfi01_get_memory(fl); 1299 fl_idx++; 1300 if (kernel_filename) { 1301 ram_low_size = MIN(ram_size, 256 * MiB); 1302 /* For KVM we reserve 1MB of RAM for running bootloader */ 1303 if (kvm_enabled()) { 1304 ram_low_size -= 0x100000; 1305 bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size); 1306 } else { 1307 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS); 1308 } 1309 1310 /* Write a small bootloader to the flash location. */ 1311 loaderparams.ram_size = ram_size; 1312 loaderparams.ram_low_size = ram_low_size; 1313 loaderparams.kernel_filename = kernel_filename; 1314 loaderparams.kernel_cmdline = kernel_cmdline; 1315 loaderparams.initrd_filename = initrd_filename; 1316 kernel_entry = load_kernel(); 1317 1318 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { 1319 write_bootloader(memory_region_get_ram_ptr(bios), 1320 bootloader_run_addr, kernel_entry); 1321 } else { 1322 write_bootloader_nanomips(memory_region_get_ram_ptr(bios), 1323 bootloader_run_addr, kernel_entry); 1324 } 1325 if (kvm_enabled()) { 1326 /* Write the bootloader code @ the end of RAM, 1MB reserved */ 1327 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) + 1328 ram_low_size, 1329 bootloader_run_addr, kernel_entry); 1330 } 1331 } else { 1332 target_long bios_size = FLASH_SIZE; 1333 /* The flash region isn't executable from a KVM guest */ 1334 if (kvm_enabled()) { 1335 error_report("KVM enabled but no -kernel argument was specified. " 1336 "Booting from flash is not supported with KVM."); 1337 exit(1); 1338 } 1339 /* Load firmware from flash. */ 1340 if (!dinfo) { 1341 /* Load a BIOS image. */ 1342 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, 1343 machine->firmware ?: BIOS_FILENAME); 1344 if (filename) { 1345 bios_size = load_image_targphys(filename, FLASH_ADDRESS, 1346 BIOS_SIZE); 1347 g_free(filename); 1348 } else { 1349 bios_size = -1; 1350 } 1351 if ((bios_size < 0 || bios_size > BIOS_SIZE) && 1352 machine->firmware && !qtest_enabled()) { 1353 error_report("Could not load MIPS bios '%s'", machine->firmware); 1354 exit(1); 1355 } 1356 } 1357 /* 1358 * In little endian mode the 32bit words in the bios are swapped, 1359 * a neat trick which allows bi-endian firmware. 1360 */ 1361 #ifndef TARGET_WORDS_BIGENDIAN 1362 { 1363 uint32_t *end, *addr; 1364 const size_t swapsize = MIN(bios_size, 0x3e0000); 1365 addr = rom_ptr(FLASH_ADDRESS, swapsize); 1366 if (!addr) { 1367 addr = memory_region_get_ram_ptr(bios); 1368 } 1369 end = (void *)addr + swapsize; 1370 while (addr < end) { 1371 bswap32s(addr); 1372 addr++; 1373 } 1374 } 1375 #endif 1376 } 1377 1378 /* 1379 * Map the BIOS at a 2nd physical location, as on the real board. 1380 * Copy it so that we can patch in the MIPS revision, which cannot be 1381 * handled by an overlapping region as the resulting ROM code subpage 1382 * regions are not executable. 1383 */ 1384 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, 1385 &error_fatal); 1386 if (!rom_copy(memory_region_get_ram_ptr(bios_copy), 1387 FLASH_ADDRESS, BIOS_SIZE)) { 1388 memcpy(memory_region_get_ram_ptr(bios_copy), 1389 memory_region_get_ram_ptr(bios), BIOS_SIZE); 1390 } 1391 memory_region_set_readonly(bios_copy, true); 1392 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); 1393 1394 /* Board ID = 0x420 (Malta Board with CoreLV) */ 1395 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); 1396 1397 /* Northbridge */ 1398 pci_bus = gt64120_register(s->i8259); 1399 /* 1400 * The whole address space decoded by the GT-64120A doesn't generate 1401 * exception when accessing invalid memory. Create an empty slot to 1402 * emulate this feature. 1403 */ 1404 empty_slot_init("GT64120", 0, 0x20000000); 1405 1406 /* Southbridge */ 1407 dev = piix4_create(pci_bus, &isa_bus, &smbus); 1408 1409 /* Interrupt controller */ 1410 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq); 1411 for (int i = 0; i < ISA_NUM_IRQS; i++) { 1412 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i); 1413 } 1414 1415 /* generate SPD EEPROM data */ 1416 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); 1417 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); 1418 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); 1419 g_free(smbus_eeprom_buf); 1420 1421 /* Super I/O: SMS FDC37M817 */ 1422 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); 1423 1424 /* Network card */ 1425 network_init(pci_bus); 1426 1427 /* Optional PCI video card */ 1428 pci_vga_init(pci_bus); 1429 } 1430 1431 static void mips_malta_instance_init(Object *obj) 1432 { 1433 MaltaState *s = MIPS_MALTA(obj); 1434 1435 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); 1436 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */ 1437 } 1438 1439 static const TypeInfo mips_malta_device = { 1440 .name = TYPE_MIPS_MALTA, 1441 .parent = TYPE_SYS_BUS_DEVICE, 1442 .instance_size = sizeof(MaltaState), 1443 .instance_init = mips_malta_instance_init, 1444 }; 1445 1446 static void mips_malta_machine_init(MachineClass *mc) 1447 { 1448 mc->desc = "MIPS Malta Core LV"; 1449 mc->init = mips_malta_init; 1450 mc->block_default_type = IF_IDE; 1451 mc->max_cpus = 16; 1452 mc->is_default = true; 1453 #ifdef TARGET_MIPS64 1454 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); 1455 #else 1456 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); 1457 #endif 1458 mc->default_ram_id = "mips_malta.ram"; 1459 } 1460 1461 DEFINE_MACHINE("malta", mips_malta_machine_init) 1462 1463 static void mips_malta_register_types(void) 1464 { 1465 type_register_static(&mips_malta_device); 1466 } 1467 1468 type_init(mips_malta_register_types) 1469