xref: /openbmc/qemu/hw/mips/malta.c (revision bf5dcf8f)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "sysemu/arch_init.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h"             /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "hw/misc/empty_slot.h"
57 #include "sysemu/kvm.h"
58 #include "semihosting/semihost.h"
59 #include "hw/mips/cps.h"
60 #include "hw/qdev-clock.h"
61 
62 #define ENVP_PADDR          0x2000
63 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
64 #define ENVP_NB_ENTRIES     16
65 #define ENVP_ENTRY_SIZE     256
66 
67 /* Hardware addresses */
68 #define FLASH_ADDRESS       0x1e000000ULL
69 #define FPGA_ADDRESS        0x1f000000ULL
70 #define RESET_ADDRESS       0x1fc00000ULL
71 
72 #define FLASH_SIZE          0x400000
73 
74 #define MAX_IDE_BUS         2
75 
76 typedef struct {
77     MemoryRegion iomem;
78     MemoryRegion iomem_lo; /* 0 - 0x900 */
79     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
80     uint32_t leds;
81     uint32_t brk;
82     uint32_t gpout;
83     uint32_t i2cin;
84     uint32_t i2coe;
85     uint32_t i2cout;
86     uint32_t i2csel;
87     CharBackend display;
88     char display_text[9];
89     SerialMM *uart;
90     bool display_inited;
91 } MaltaFPGAState;
92 
93 #define TYPE_MIPS_MALTA "mips-malta"
94 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
95 
96 struct MaltaState {
97     SysBusDevice parent_obj;
98 
99     Clock *cpuclk;
100     MIPSCPSState cps;
101     qemu_irq i8259[ISA_NUM_IRQS];
102 };
103 
104 static struct _loaderparams {
105     int ram_size, ram_low_size;
106     const char *kernel_filename;
107     const char *kernel_cmdline;
108     const char *initrd_filename;
109 } loaderparams;
110 
111 /* Malta FPGA */
112 static void malta_fpga_update_display(void *opaque)
113 {
114     char leds_text[9];
115     int i;
116     MaltaFPGAState *s = opaque;
117 
118     for (i = 7 ; i >= 0 ; i--) {
119         if (s->leds & (1 << i)) {
120             leds_text[i] = '#';
121         } else {
122             leds_text[i] = ' ';
123         }
124     }
125     leds_text[8] = '\0';
126 
127     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128                        leds_text);
129     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
130                        s->display_text);
131 }
132 
133 /*
134  * EEPROM 24C01 / 24C02 emulation.
135  *
136  * Emulation for serial EEPROMs:
137  * 24C01 - 1024 bit (128 x 8)
138  * 24C02 - 2048 bit (256 x 8)
139  *
140  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
141  */
142 
143 #if defined(DEBUG)
144 #  define logout(fmt, ...) \
145           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
146 #else
147 #  define logout(fmt, ...) ((void)0)
148 #endif
149 
150 struct _eeprom24c0x_t {
151   uint8_t tick;
152   uint8_t address;
153   uint8_t command;
154   uint8_t ack;
155   uint8_t scl;
156   uint8_t sda;
157   uint8_t data;
158   /* uint16_t size; */
159   uint8_t contents[256];
160 };
161 
162 typedef struct _eeprom24c0x_t eeprom24c0x_t;
163 
164 static eeprom24c0x_t spd_eeprom = {
165     .contents = {
166         /* 00000000: */
167         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
168         /* 00000008: */
169         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
170         /* 00000010: */
171         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
172         /* 00000018: */
173         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
174         /* 00000020: */
175         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
176         /* 00000028: */
177         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178         /* 00000030: */
179         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180         /* 00000038: */
181         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
182         /* 00000040: */
183         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184         /* 00000048: */
185         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186         /* 00000050: */
187         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188         /* 00000058: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000060: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000068: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194         /* 00000070: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196         /* 00000078: */
197         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
198     },
199 };
200 
201 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
202 {
203     enum { SDR = 0x4, DDR2 = 0x8 } type;
204     uint8_t *spd = spd_eeprom.contents;
205     uint8_t nbanks = 0;
206     uint16_t density = 0;
207     int i;
208 
209     /* work in terms of MB */
210     ram_size /= MiB;
211 
212     while ((ram_size >= 4) && (nbanks <= 2)) {
213         int sz_log2 = MIN(31 - clz32(ram_size), 14);
214         nbanks++;
215         density |= 1 << (sz_log2 - 2);
216         ram_size -= 1 << sz_log2;
217     }
218 
219     /* split to 2 banks if possible */
220     if ((nbanks == 1) && (density > 1)) {
221         nbanks++;
222         density >>= 1;
223     }
224 
225     if (density & 0xff00) {
226         density = (density & 0xe0) | ((density >> 8) & 0x1f);
227         type = DDR2;
228     } else if (!(density & 0x1f)) {
229         type = DDR2;
230     } else {
231         type = SDR;
232     }
233 
234     if (ram_size) {
235         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
236                     " of SDRAM", ram_size);
237     }
238 
239     /* fill in SPD memory information */
240     spd[2] = type;
241     spd[5] = nbanks;
242     spd[31] = density;
243 
244     /* checksum */
245     spd[63] = 0;
246     for (i = 0; i < 63; i++) {
247         spd[63] += spd[i];
248     }
249 
250     /* copy for SMBUS */
251     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
252 }
253 
254 static void generate_eeprom_serial(uint8_t *eeprom)
255 {
256     int i, pos = 0;
257     uint8_t mac[6] = { 0x00 };
258     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
259 
260     /* version */
261     eeprom[pos++] = 0x01;
262 
263     /* count */
264     eeprom[pos++] = 0x02;
265 
266     /* MAC address */
267     eeprom[pos++] = 0x01; /* MAC */
268     eeprom[pos++] = 0x06; /* length */
269     memcpy(&eeprom[pos], mac, sizeof(mac));
270     pos += sizeof(mac);
271 
272     /* serial number */
273     eeprom[pos++] = 0x02; /* serial */
274     eeprom[pos++] = 0x05; /* length */
275     memcpy(&eeprom[pos], sn, sizeof(sn));
276     pos += sizeof(sn);
277 
278     /* checksum */
279     eeprom[pos] = 0;
280     for (i = 0; i < pos; i++) {
281         eeprom[pos] += eeprom[i];
282     }
283 }
284 
285 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
286 {
287     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
288         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
289     return eeprom->sda;
290 }
291 
292 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
293 {
294     if (eeprom->scl && scl && (eeprom->sda != sda)) {
295         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
296                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
297                 sda ? "stop" : "start");
298         if (!sda) {
299             eeprom->tick = 1;
300             eeprom->command = 0;
301         }
302     } else if (eeprom->tick == 0 && !eeprom->ack) {
303         /* Waiting for start. */
304         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
305                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
306     } else if (!eeprom->scl && scl) {
307         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
308                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
309         if (eeprom->ack) {
310             logout("\ti2c ack bit = 0\n");
311             sda = 0;
312             eeprom->ack = 0;
313         } else if (eeprom->sda == sda) {
314             uint8_t bit = (sda != 0);
315             logout("\ti2c bit = %d\n", bit);
316             if (eeprom->tick < 9) {
317                 eeprom->command <<= 1;
318                 eeprom->command += bit;
319                 eeprom->tick++;
320                 if (eeprom->tick == 9) {
321                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
322                            bit ? "read" : "write");
323                     eeprom->ack = 1;
324                 }
325             } else if (eeprom->tick < 17) {
326                 if (eeprom->command & 1) {
327                     sda = ((eeprom->data & 0x80) != 0);
328                 }
329                 eeprom->address <<= 1;
330                 eeprom->address += bit;
331                 eeprom->tick++;
332                 eeprom->data <<= 1;
333                 if (eeprom->tick == 17) {
334                     eeprom->data = eeprom->contents[eeprom->address];
335                     logout("\taddress 0x%04x, data 0x%02x\n",
336                            eeprom->address, eeprom->data);
337                     eeprom->ack = 1;
338                     eeprom->tick = 0;
339                 }
340             } else if (eeprom->tick >= 17) {
341                 sda = 0;
342             }
343         } else {
344             logout("\tsda changed with raising scl\n");
345         }
346     } else {
347         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
348                scl, eeprom->sda, sda);
349     }
350     eeprom->scl = scl;
351     eeprom->sda = sda;
352 }
353 
354 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
355                                 unsigned size)
356 {
357     MaltaFPGAState *s = opaque;
358     uint32_t val = 0;
359     uint32_t saddr;
360 
361     saddr = (addr & 0xfffff);
362 
363     switch (saddr) {
364 
365     /* SWITCH Register */
366     case 0x00200:
367         val = 0x00000000;
368         break;
369 
370     /* STATUS Register */
371     case 0x00208:
372 #ifdef TARGET_WORDS_BIGENDIAN
373         val = 0x00000012;
374 #else
375         val = 0x00000010;
376 #endif
377         break;
378 
379     /* JMPRS Register */
380     case 0x00210:
381         val = 0x00;
382         break;
383 
384     /* LEDBAR Register */
385     case 0x00408:
386         val = s->leds;
387         break;
388 
389     /* BRKRES Register */
390     case 0x00508:
391         val = s->brk;
392         break;
393 
394     /* UART Registers are handled directly by the serial device */
395 
396     /* GPOUT Register */
397     case 0x00a00:
398         val = s->gpout;
399         break;
400 
401     /* XXX: implement a real I2C controller */
402 
403     /* GPINP Register */
404     case 0x00a08:
405         /* IN = OUT until a real I2C control is implemented */
406         if (s->i2csel) {
407             val = s->i2cout;
408         } else {
409             val = 0x00;
410         }
411         break;
412 
413     /* I2CINP Register */
414     case 0x00b00:
415         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
416         break;
417 
418     /* I2COE Register */
419     case 0x00b08:
420         val = s->i2coe;
421         break;
422 
423     /* I2COUT Register */
424     case 0x00b10:
425         val = s->i2cout;
426         break;
427 
428     /* I2CSEL Register */
429     case 0x00b18:
430         val = s->i2csel;
431         break;
432 
433     default:
434         qemu_log_mask(LOG_GUEST_ERROR,
435                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
436                       addr);
437         break;
438     }
439     return val;
440 }
441 
442 static void malta_fpga_write(void *opaque, hwaddr addr,
443                              uint64_t val, unsigned size)
444 {
445     MaltaFPGAState *s = opaque;
446     uint32_t saddr;
447 
448     saddr = (addr & 0xfffff);
449 
450     switch (saddr) {
451 
452     /* SWITCH Register */
453     case 0x00200:
454         break;
455 
456     /* JMPRS Register */
457     case 0x00210:
458         break;
459 
460     /* LEDBAR Register */
461     case 0x00408:
462         s->leds = val & 0xff;
463         malta_fpga_update_display(s);
464         break;
465 
466     /* ASCIIWORD Register */
467     case 0x00410:
468         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
469         malta_fpga_update_display(s);
470         break;
471 
472     /* ASCIIPOS0 to ASCIIPOS7 Registers */
473     case 0x00418:
474     case 0x00420:
475     case 0x00428:
476     case 0x00430:
477     case 0x00438:
478     case 0x00440:
479     case 0x00448:
480     case 0x00450:
481         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
482         malta_fpga_update_display(s);
483         break;
484 
485     /* SOFTRES Register */
486     case 0x00500:
487         if (val == 0x42) {
488             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
489         }
490         break;
491 
492     /* BRKRES Register */
493     case 0x00508:
494         s->brk = val & 0xff;
495         break;
496 
497     /* UART Registers are handled directly by the serial device */
498 
499     /* GPOUT Register */
500     case 0x00a00:
501         s->gpout = val & 0xff;
502         break;
503 
504     /* I2COE Register */
505     case 0x00b08:
506         s->i2coe = val & 0x03;
507         break;
508 
509     /* I2COUT Register */
510     case 0x00b10:
511         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
512         s->i2cout = val;
513         break;
514 
515     /* I2CSEL Register */
516     case 0x00b18:
517         s->i2csel = val & 0x01;
518         break;
519 
520     default:
521         qemu_log_mask(LOG_GUEST_ERROR,
522                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
523                       addr);
524         break;
525     }
526 }
527 
528 static const MemoryRegionOps malta_fpga_ops = {
529     .read = malta_fpga_read,
530     .write = malta_fpga_write,
531     .endianness = DEVICE_NATIVE_ENDIAN,
532 };
533 
534 static void malta_fpga_reset(void *opaque)
535 {
536     MaltaFPGAState *s = opaque;
537 
538     s->leds   = 0x00;
539     s->brk    = 0x0a;
540     s->gpout  = 0x00;
541     s->i2cin  = 0x3;
542     s->i2coe  = 0x0;
543     s->i2cout = 0x3;
544     s->i2csel = 0x1;
545 
546     s->display_text[8] = '\0';
547     snprintf(s->display_text, 9, "        ");
548 }
549 
550 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
551 {
552     MaltaFPGAState *s = opaque;
553 
554     if (event == CHR_EVENT_OPENED && !s->display_inited) {
555         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
556         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
557         qemu_chr_fe_printf(&s->display, "+        +\r\n");
558         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
559         qemu_chr_fe_printf(&s->display, "\n");
560         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
561         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562         qemu_chr_fe_printf(&s->display, "+        +\r\n");
563         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
564         s->display_inited = true;
565     }
566 }
567 
568 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
569          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
570 {
571     MaltaFPGAState *s;
572     Chardev *chr;
573 
574     s = g_new0(MaltaFPGAState, 1);
575 
576     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
577                           "malta-fpga", 0x100000);
578     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
579                              &s->iomem, 0, 0x900);
580     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
581                              &s->iomem, 0xa00, 0x100000 - 0xa00);
582 
583     memory_region_add_subregion(address_space, base, &s->iomem_lo);
584     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
585 
586     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
587     qemu_chr_fe_init(&s->display, chr, NULL);
588     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
589                              malta_fgpa_display_event, NULL, s, NULL, true);
590 
591     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
592                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
593 
594     malta_fpga_reset(s);
595     qemu_register_reset(malta_fpga_reset, s);
596 
597     return s;
598 }
599 
600 /* Network support */
601 static void network_init(PCIBus *pci_bus)
602 {
603     int i;
604 
605     for (i = 0; i < nb_nics; i++) {
606         NICInfo *nd = &nd_table[i];
607         const char *default_devaddr = NULL;
608 
609         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
610             /* The malta board has a PCNet card using PCI SLOT 11 */
611             default_devaddr = "0b";
612 
613         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
614     }
615 }
616 
617 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
618                                       uint64_t kernel_entry)
619 {
620     uint16_t *p;
621 
622     /* Small bootloader */
623     p = (uint16_t *)base;
624 
625 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
626 #define NM_HI2(VAL) \
627           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
628 #define NM_LO(VAL)  ((VAL) & 0xfff)
629 
630     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
631                                 /* bc to_here */
632     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633                                 /* nop */
634     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635                                 /* nop */
636     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637                                 /* nop */
638     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639                                 /* nop */
640     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641                                 /* nop */
642     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643                                 /* nop */
644     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
645                                 /* nop */
646 
647     /* to_here: */
648     if (semihosting_get_argc()) {
649         /* Preserve a0 content as arguments have been passed    */
650         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
651                                 /* nop                          */
652     } else {
653         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
654                                 /* li a0,2                      */
655     }
656 
657     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
658 
659     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
660                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
661 
662     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
663                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
664 
665     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
666 
667     stw_p(p++, NM_HI2(ENVP_VADDR));
668                                 /* lui a1,%hi(ENVP_VADDR)        */
669 
670     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
671                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
672 
673     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
674 
675     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
676                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
677 
678     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
679                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
680 
681     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
682 
683     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
684                                 /* lui a3,%hi(loaderparams.ram_low_size) */
685 
686     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
687                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
688 
689     /*
690      * Load BAR registers as done by YAMON:
691      *
692      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
693      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
694      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
695      *
696      */
697     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
698                                 /* lui t1, %hi(0xb4000000)      */
699 
700 #ifdef TARGET_WORDS_BIGENDIAN
701 
702     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
703                                 /* lui t0, %hi(0xdf000000)      */
704 
705     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
706     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
707                                 /* sw t0, 0x68(t1)              */
708 
709     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
710                                 /* lui t1, %hi(0xbbe00000)      */
711 
712     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
713                                 /* lui t0, %hi(0xc0000000)      */
714 
715     /* 0x48 corresponds to GT_PCI0IOLD                          */
716     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
717                                 /* sw t0, 0x48(t1)              */
718 
719     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
720                                 /* lui t0, %hi(0x40000000)      */
721 
722     /* 0x50 corresponds to GT_PCI0IOHD                          */
723     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
724                                 /* sw t0, 0x50(t1)              */
725 
726     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
727                                 /* lui t0, %hi(0x80000000)      */
728 
729     /* 0x58 corresponds to GT_PCI0M0LD                          */
730     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
731                                 /* sw t0, 0x58(t1)              */
732 
733     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
734                                 /* lui t0, %hi(0x3f000000)      */
735 
736     /* 0x60 corresponds to GT_PCI0M0HD                          */
737     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
738                                 /* sw t0, 0x60(t1)              */
739 
740     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
741                                 /* lui t0, %hi(0xc1000000)      */
742 
743     /* 0x80 corresponds to GT_PCI0M1LD                          */
744     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
745                                 /* sw t0, 0x80(t1)              */
746 
747     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
748                                 /* lui t0, %hi(0x5e000000)      */
749 
750 #else
751 
752     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
753                                 /* addiu[32] t0, $0, 0xdf       */
754 
755     /* 0x68 corresponds to GT_ISD                               */
756     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
757                                 /* sw t0, 0x68(t1)              */
758 
759     /* Use kseg2 remapped address 0x1be00000                    */
760     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
761                                 /* lui t1, %hi(0xbbe00000)      */
762 
763     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
764                                 /* addiu[32] t0, $0, 0xc0       */
765 
766     /* 0x48 corresponds to GT_PCI0IOLD                          */
767     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
768                                 /* sw t0, 0x48(t1)              */
769 
770     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
771                                 /* addiu[32] t0, $0, 0x40       */
772 
773     /* 0x50 corresponds to GT_PCI0IOHD                          */
774     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
775                                 /* sw t0, 0x50(t1)              */
776 
777     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
778                                 /* addiu[32] t0, $0, 0x80       */
779 
780     /* 0x58 corresponds to GT_PCI0M0LD                          */
781     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
782                                 /* sw t0, 0x58(t1)              */
783 
784     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
785                                 /* addiu[32] t0, $0, 0x3f       */
786 
787     /* 0x60 corresponds to GT_PCI0M0HD                          */
788     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
789                                 /* sw t0, 0x60(t1)              */
790 
791     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
792                                 /* addiu[32] t0, $0, 0xc1       */
793 
794     /* 0x80 corresponds to GT_PCI0M1LD                          */
795     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
796                                 /* sw t0, 0x80(t1)              */
797 
798     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
799                                 /* addiu[32] t0, $0, 0x5e       */
800 
801 #endif
802 
803     /* 0x88 corresponds to GT_PCI0M1HD                          */
804     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
805                                 /* sw t0, 0x88(t1)              */
806 
807     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
808 
809     stw_p(p++, NM_HI2(kernel_entry));
810                                 /* lui t9,%hi(kernel_entry)     */
811 
812     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
813                                 /* ori t9,t9,%lo(kernel_entry)  */
814 
815     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
816                                 /* jalrc   t8                   */
817 }
818 
819 /*
820  * ROM and pseudo bootloader
821  *
822  * The following code implements a very very simple bootloader. It first
823  * loads the registers a0 to a3 to the values expected by the OS, and
824  * then jump at the kernel address.
825  *
826  * The bootloader should pass the locations of the kernel arguments and
827  * environment variables tables. Those tables contain the 32-bit address
828  * of NULL terminated strings. The environment variables table should be
829  * terminated by a NULL address.
830  *
831  * For a simpler implementation, the number of kernel arguments is fixed
832  * to two (the name of the kernel and the command line), and the two
833  * tables are actually the same one.
834  *
835  * The registers a0 to a3 should contain the following values:
836  *   a0 - number of kernel arguments
837  *   a1 - 32-bit address of the kernel arguments table
838  *   a2 - 32-bit address of the environment variables table
839  *   a3 - RAM size in bytes
840  */
841 static void write_bootloader(uint8_t *base, uint64_t run_addr,
842                              uint64_t kernel_entry)
843 {
844     uint32_t *p;
845 
846     /* Small bootloader */
847     p = (uint32_t *)base;
848 
849     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
850                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
851     stl_p(p++, 0x00000000);                  /* nop */
852 
853     /* YAMON service vector */
854     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
855     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
856     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
857     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
858     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
859     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
860     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
861     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
862     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
863     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
864     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
865     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
866     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
867 
868 
869     /* Second part of the bootloader */
870     p = (uint32_t *) (base + 0x580);
871 
872     if (semihosting_get_argc()) {
873         /* Preserve a0 content as arguments have been passed */
874         stl_p(p++, 0x00000000);              /* nop */
875     } else {
876         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
877     }
878 
879     /* lui sp, high(ENVP_VADDR) */
880     stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
881     /* ori sp, sp, low(ENVP_VADDR) */
882     stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
883     /* lui a1, high(ENVP_VADDR) */
884     stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
885     /* ori a1, a1, low(ENVP_VADDR) */
886     stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
887     /* lui a2, high(ENVP_VADDR + 8) */
888     stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
889     /* ori a2, a2, low(ENVP_VADDR + 8) */
890     stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
891     /* lui a3, high(ram_low_size) */
892     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
893     /* ori a3, a3, low(ram_low_size) */
894     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
895 
896     /* Load BAR registers as done by YAMON */
897     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
898 
899 #ifdef TARGET_WORDS_BIGENDIAN
900     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
901 #else
902     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
903 #endif
904     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
905 
906     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
907 
908 #ifdef TARGET_WORDS_BIGENDIAN
909     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
910 #else
911     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
912 #endif
913     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
914 #ifdef TARGET_WORDS_BIGENDIAN
915     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
916 #else
917     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
918 #endif
919     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
920 
921 #ifdef TARGET_WORDS_BIGENDIAN
922     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
923 #else
924     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
925 #endif
926     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
927 #ifdef TARGET_WORDS_BIGENDIAN
928     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
929 #else
930     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
931 #endif
932     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
933 
934 #ifdef TARGET_WORDS_BIGENDIAN
935     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
936 #else
937     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
938 #endif
939     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
940 #ifdef TARGET_WORDS_BIGENDIAN
941     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
942 #else
943     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
944 #endif
945     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
946 
947     /* Jump to kernel code */
948     stl_p(p++, 0x3c1f0000 |
949           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
950     stl_p(p++, 0x37ff0000 |
951           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
952     stl_p(p++, 0x03e00009);                  /* jalr ra */
953     stl_p(p++, 0x00000000);                  /* nop */
954 
955     /* YAMON subroutines */
956     p = (uint32_t *) (base + 0x800);
957     stl_p(p++, 0x03e00009);                  /* jalr ra */
958     stl_p(p++, 0x24020000);                  /* li v0,0 */
959     /* 808 YAMON print */
960     stl_p(p++, 0x03e06821);                  /* move t5,ra */
961     stl_p(p++, 0x00805821);                  /* move t3,a0 */
962     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
963     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
964     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
965     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
966     stl_p(p++, 0x00000000);                  /* nop */
967     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
968     stl_p(p++, 0x00000000);                  /* nop */
969     stl_p(p++, 0x1000fff9);                  /* b 814 */
970     stl_p(p++, 0x00000000);                  /* nop */
971     stl_p(p++, 0x01a00009);                  /* jalr t5 */
972     stl_p(p++, 0x01602021);                  /* move a0,t3 */
973     /* 0x83c YAMON print_count */
974     stl_p(p++, 0x03e06821);                  /* move t5,ra */
975     stl_p(p++, 0x00805821);                  /* move t3,a0 */
976     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
977     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
978     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
979     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
980     stl_p(p++, 0x00000000);                  /* nop */
981     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
982     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
983     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
984     stl_p(p++, 0x00000000);                  /* nop */
985     stl_p(p++, 0x01a00009);                  /* jalr t5 */
986     stl_p(p++, 0x01602021);                  /* move a0,t3 */
987     /* 0x870 */
988     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
989     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
990     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
991     stl_p(p++, 0x00000000);                  /* nop */
992     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
993     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
994     stl_p(p++, 0x00000000);                  /* nop */
995     stl_p(p++, 0x03e00009);                  /* jalr ra */
996     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
997 
998 }
999 
1000 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1001                                         const char *string, ...)
1002 {
1003     va_list ap;
1004     uint32_t table_addr;
1005 
1006     if (index >= ENVP_NB_ENTRIES) {
1007         return;
1008     }
1009 
1010     if (string == NULL) {
1011         prom_buf[index] = 0;
1012         return;
1013     }
1014 
1015     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1016     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1017 
1018     va_start(ap, string);
1019     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1020     va_end(ap);
1021 }
1022 
1023 /* Kernel */
1024 static uint64_t load_kernel(void)
1025 {
1026     uint64_t kernel_entry, kernel_high, initrd_size;
1027     long kernel_size;
1028     ram_addr_t initrd_offset;
1029     int big_endian;
1030     uint32_t *prom_buf;
1031     long prom_size;
1032     int prom_index = 0;
1033     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1034 
1035 #ifdef TARGET_WORDS_BIGENDIAN
1036     big_endian = 1;
1037 #else
1038     big_endian = 0;
1039 #endif
1040 
1041     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1042                            cpu_mips_kseg0_to_phys, NULL,
1043                            &kernel_entry, NULL,
1044                            &kernel_high, NULL, big_endian, EM_MIPS,
1045                            1, 0);
1046     if (kernel_size < 0) {
1047         error_report("could not load kernel '%s': %s",
1048                      loaderparams.kernel_filename,
1049                      load_elf_strerror(kernel_size));
1050         exit(1);
1051     }
1052 
1053     /* Check where the kernel has been linked */
1054     if (kernel_entry & 0x80000000ll) {
1055         if (kvm_enabled()) {
1056             error_report("KVM guest kernels must be linked in useg. "
1057                          "Did you forget to enable CONFIG_KVM_GUEST?");
1058             exit(1);
1059         }
1060 
1061         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1062     } else {
1063         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1064         mips_um_ksegs_enable();
1065 
1066         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1067     }
1068 
1069     /* load initrd */
1070     initrd_size = 0;
1071     initrd_offset = 0;
1072     if (loaderparams.initrd_filename) {
1073         initrd_size = get_image_size(loaderparams.initrd_filename);
1074         if (initrd_size > 0) {
1075             /*
1076              * The kernel allocates the bootmap memory in the low memory after
1077              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1078              * pages.
1079              */
1080             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1081                                      - (initrd_size + 128 * KiB),
1082                                      INITRD_PAGE_SIZE);
1083             if (kernel_high >= initrd_offset) {
1084                 error_report("memory too small for initial ram disk '%s'",
1085                              loaderparams.initrd_filename);
1086                 exit(1);
1087             }
1088             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1089                                               initrd_offset,
1090                                               loaderparams.ram_size - initrd_offset);
1091         }
1092         if (initrd_size == (target_ulong) -1) {
1093             error_report("could not load initial ram disk '%s'",
1094                          loaderparams.initrd_filename);
1095             exit(1);
1096         }
1097     }
1098 
1099     /* Setup prom parameters. */
1100     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1101     prom_buf = g_malloc(prom_size);
1102 
1103     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1104     if (initrd_size > 0) {
1105         prom_set(prom_buf, prom_index++,
1106                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1107                  xlate_to_kseg0(NULL, initrd_offset),
1108                  initrd_size, loaderparams.kernel_cmdline);
1109     } else {
1110         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1111     }
1112 
1113     prom_set(prom_buf, prom_index++, "memsize");
1114     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1115 
1116     prom_set(prom_buf, prom_index++, "ememsize");
1117     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1118 
1119     prom_set(prom_buf, prom_index++, "modetty0");
1120     prom_set(prom_buf, prom_index++, "38400n8r");
1121     prom_set(prom_buf, prom_index++, NULL);
1122 
1123     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1124 
1125     g_free(prom_buf);
1126     return kernel_entry;
1127 }
1128 
1129 static void malta_mips_config(MIPSCPU *cpu)
1130 {
1131     MachineState *ms = MACHINE(qdev_get_machine());
1132     unsigned int smp_cpus = ms->smp.cpus;
1133     CPUMIPSState *env = &cpu->env;
1134     CPUState *cs = CPU(cpu);
1135 
1136     if (ase_mt_available(env)) {
1137         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1138                                            CP0MVPC0_PTC, 8,
1139                                            smp_cpus * cs->nr_threads - 1);
1140         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1142     }
1143 }
1144 
1145 static void main_cpu_reset(void *opaque)
1146 {
1147     MIPSCPU *cpu = opaque;
1148     CPUMIPSState *env = &cpu->env;
1149 
1150     cpu_reset(CPU(cpu));
1151 
1152     /*
1153      * The bootloader does not need to be rewritten as it is located in a
1154      * read only location. The kernel location and the arguments table
1155      * location does not change.
1156      */
1157     if (loaderparams.kernel_filename) {
1158         env->CP0_Status &= ~(1 << CP0St_ERL);
1159     }
1160 
1161     malta_mips_config(cpu);
1162 
1163     if (kvm_enabled()) {
1164         /* Start running from the bootloader we wrote to end of RAM */
1165         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1166     }
1167 }
1168 
1169 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1170                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1171 {
1172     CPUMIPSState *env;
1173     MIPSCPU *cpu;
1174     int i;
1175 
1176     for (i = 0; i < ms->smp.cpus; i++) {
1177         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1178 
1179         /* Init internal devices */
1180         cpu_mips_irq_init_cpu(cpu);
1181         cpu_mips_clock_init(cpu);
1182         qemu_register_reset(main_cpu_reset, cpu);
1183     }
1184 
1185     cpu = MIPS_CPU(first_cpu);
1186     env = &cpu->env;
1187     *i8259_irq = env->irq[2];
1188     *cbus_irq = env->irq[4];
1189 }
1190 
1191 static void create_cps(MachineState *ms, MaltaState *s,
1192                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1193 {
1194     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1195     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1196                             &error_fatal);
1197     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1198                             &error_fatal);
1199     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1200     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1201 
1202     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1203 
1204     *i8259_irq = get_cps_irq(&s->cps, 3);
1205     *cbus_irq = NULL;
1206 }
1207 
1208 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1209                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1210 {
1211     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1212         create_cps(ms, s, cbus_irq, i8259_irq);
1213     } else {
1214         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1215     }
1216 }
1217 
1218 static
1219 void mips_malta_init(MachineState *machine)
1220 {
1221     ram_addr_t ram_size = machine->ram_size;
1222     ram_addr_t ram_low_size;
1223     const char *kernel_filename = machine->kernel_filename;
1224     const char *kernel_cmdline = machine->kernel_cmdline;
1225     const char *initrd_filename = machine->initrd_filename;
1226     char *filename;
1227     PFlashCFI01 *fl;
1228     MemoryRegion *system_memory = get_system_memory();
1229     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1230     MemoryRegion *ram_low_postio;
1231     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1232     const size_t smbus_eeprom_size = 8 * 256;
1233     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1234     uint64_t kernel_entry, bootloader_run_addr;
1235     PCIBus *pci_bus;
1236     ISABus *isa_bus;
1237     qemu_irq cbus_irq, i8259_irq;
1238     I2CBus *smbus;
1239     DriveInfo *dinfo;
1240     int fl_idx = 0;
1241     int be;
1242     MaltaState *s;
1243     DeviceState *dev;
1244 
1245     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1246     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1247 
1248     /* create CPU */
1249     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1250 
1251     /* allocate RAM */
1252     if (ram_size > 2 * GiB) {
1253         error_report("Too much memory for this machine: %" PRId64 "MB,"
1254                      " maximum 2048MB", ram_size / MiB);
1255         exit(1);
1256     }
1257 
1258     /* register RAM at high address where it is undisturbed by IO */
1259     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1260 
1261     /* alias for pre IO hole access */
1262     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1263                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1264     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1265 
1266     /* alias for post IO hole access, if there is enough RAM */
1267     if (ram_size > 512 * MiB) {
1268         ram_low_postio = g_new(MemoryRegion, 1);
1269         memory_region_init_alias(ram_low_postio, NULL,
1270                                  "mips_malta_low_postio.ram",
1271                                  machine->ram, 512 * MiB,
1272                                  ram_size - 512 * MiB);
1273         memory_region_add_subregion(system_memory, 512 * MiB,
1274                                     ram_low_postio);
1275     }
1276 
1277 #ifdef TARGET_WORDS_BIGENDIAN
1278     be = 1;
1279 #else
1280     be = 0;
1281 #endif
1282 
1283     /* FPGA */
1284 
1285     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1286     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1287 
1288     /* Load firmware in flash / BIOS. */
1289     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1290     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1291                                FLASH_SIZE,
1292                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1293                                65536,
1294                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1295     bios = pflash_cfi01_get_memory(fl);
1296     fl_idx++;
1297     if (kernel_filename) {
1298         ram_low_size = MIN(ram_size, 256 * MiB);
1299         /* For KVM we reserve 1MB of RAM for running bootloader */
1300         if (kvm_enabled()) {
1301             ram_low_size -= 0x100000;
1302             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1303         } else {
1304             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1305         }
1306 
1307         /* Write a small bootloader to the flash location. */
1308         loaderparams.ram_size = ram_size;
1309         loaderparams.ram_low_size = ram_low_size;
1310         loaderparams.kernel_filename = kernel_filename;
1311         loaderparams.kernel_cmdline = kernel_cmdline;
1312         loaderparams.initrd_filename = initrd_filename;
1313         kernel_entry = load_kernel();
1314 
1315         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1316             write_bootloader(memory_region_get_ram_ptr(bios),
1317                              bootloader_run_addr, kernel_entry);
1318         } else {
1319             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1320                                       bootloader_run_addr, kernel_entry);
1321         }
1322         if (kvm_enabled()) {
1323             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1324             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1325                                     ram_low_size,
1326                              bootloader_run_addr, kernel_entry);
1327         }
1328     } else {
1329         target_long bios_size = FLASH_SIZE;
1330         /* The flash region isn't executable from a KVM guest */
1331         if (kvm_enabled()) {
1332             error_report("KVM enabled but no -kernel argument was specified. "
1333                          "Booting from flash is not supported with KVM.");
1334             exit(1);
1335         }
1336         /* Load firmware from flash. */
1337         if (!dinfo) {
1338             /* Load a BIOS image. */
1339             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1340                                       machine->firmware ?: BIOS_FILENAME);
1341             if (filename) {
1342                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1343                                                 BIOS_SIZE);
1344                 g_free(filename);
1345             } else {
1346                 bios_size = -1;
1347             }
1348             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1349                 machine->firmware && !qtest_enabled()) {
1350                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1351                 exit(1);
1352             }
1353         }
1354         /*
1355          * In little endian mode the 32bit words in the bios are swapped,
1356          * a neat trick which allows bi-endian firmware.
1357          */
1358 #ifndef TARGET_WORDS_BIGENDIAN
1359         {
1360             uint32_t *end, *addr;
1361             const size_t swapsize = MIN(bios_size, 0x3e0000);
1362             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1363             if (!addr) {
1364                 addr = memory_region_get_ram_ptr(bios);
1365             }
1366             end = (void *)addr + swapsize;
1367             while (addr < end) {
1368                 bswap32s(addr);
1369                 addr++;
1370             }
1371         }
1372 #endif
1373     }
1374 
1375     /*
1376      * Map the BIOS at a 2nd physical location, as on the real board.
1377      * Copy it so that we can patch in the MIPS revision, which cannot be
1378      * handled by an overlapping region as the resulting ROM code subpage
1379      * regions are not executable.
1380      */
1381     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1382                            &error_fatal);
1383     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1384                   FLASH_ADDRESS, BIOS_SIZE)) {
1385         memcpy(memory_region_get_ram_ptr(bios_copy),
1386                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1387     }
1388     memory_region_set_readonly(bios_copy, true);
1389     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1390 
1391     /* Board ID = 0x420 (Malta Board with CoreLV) */
1392     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1393 
1394     /* Northbridge */
1395     pci_bus = gt64120_register(s->i8259);
1396     /*
1397      * The whole address space decoded by the GT-64120A doesn't generate
1398      * exception when accessing invalid memory. Create an empty slot to
1399      * emulate this feature.
1400      */
1401     empty_slot_init("GT64120", 0, 0x20000000);
1402 
1403     /* Southbridge */
1404     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1405 
1406     /* Interrupt controller */
1407     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1408     for (int i = 0; i < ISA_NUM_IRQS; i++) {
1409         s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1410     }
1411 
1412     /* generate SPD EEPROM data */
1413     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1414     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1415     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1416     g_free(smbus_eeprom_buf);
1417 
1418     /* Super I/O: SMS FDC37M817 */
1419     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1420 
1421     /* Network card */
1422     network_init(pci_bus);
1423 
1424     /* Optional PCI video card */
1425     pci_vga_init(pci_bus);
1426 }
1427 
1428 static void mips_malta_instance_init(Object *obj)
1429 {
1430     MaltaState *s = MIPS_MALTA(obj);
1431 
1432     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1433     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1434 }
1435 
1436 static const TypeInfo mips_malta_device = {
1437     .name          = TYPE_MIPS_MALTA,
1438     .parent        = TYPE_SYS_BUS_DEVICE,
1439     .instance_size = sizeof(MaltaState),
1440     .instance_init = mips_malta_instance_init,
1441 };
1442 
1443 static void mips_malta_machine_init(MachineClass *mc)
1444 {
1445     mc->desc = "MIPS Malta Core LV";
1446     mc->init = mips_malta_init;
1447     mc->block_default_type = IF_IDE;
1448     mc->max_cpus = 16;
1449     mc->is_default = true;
1450 #ifdef TARGET_MIPS64
1451     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1452 #else
1453     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1454 #endif
1455     mc->default_ram_id = "mips_malta.ram";
1456 }
1457 
1458 DEFINE_MACHINE("malta", mips_malta_machine_init)
1459 
1460 static void mips_malta_register_types(void)
1461 {
1462     type_register_static(&mips_malta_device);
1463 }
1464 
1465 type_init(mips_malta_register_types)
1466