xref: /openbmc/qemu/hw/mips/malta.c (revision b88cfee9)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/cutils.h"
30 #include "qemu/guest-random.h"
31 #include "hw/clock.h"
32 #include "hw/southbridge/piix.h"
33 #include "hw/isa/superio.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/boards.h"
37 #include "hw/i2c/smbus_eeprom.h"
38 #include "hw/block/flash.h"
39 #include "hw/mips/mips.h"
40 #include "hw/mips/bootloader.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/pci_bus.h"
43 #include "qemu/log.h"
44 #include "hw/ide/pci.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h"             /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 #include "target/mips/internal.h"
61 #include "trace.h"
62 #include "cpu.h"
63 
64 #define ENVP_PADDR          0x2000
65 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
66 #define ENVP_NB_ENTRIES     16
67 #define ENVP_ENTRY_SIZE     256
68 
69 /* Hardware addresses */
70 #define FLASH_ADDRESS       0x1e000000ULL
71 #define FPGA_ADDRESS        0x1f000000ULL
72 #define RESET_ADDRESS       0x1fc00000ULL
73 
74 #define FLASH_SIZE          0x400000
75 #define BIOS_SIZE           (4 * MiB)
76 
77 #define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
78 
79 typedef struct {
80     MemoryRegion iomem;
81     MemoryRegion iomem_lo; /* 0 - 0x900 */
82     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
83     uint32_t leds;
84     uint32_t brk;
85     uint32_t gpout;
86     uint32_t i2cin;
87     uint32_t i2coe;
88     uint32_t i2cout;
89     uint32_t i2csel;
90     CharBackend display;
91     char display_text[9];
92     SerialMM *uart;
93     bool display_inited;
94 } MaltaFPGAState;
95 
96 #if TARGET_BIG_ENDIAN
97 #define BIOS_FILENAME "mips_bios.bin"
98 #else
99 #define BIOS_FILENAME "mipsel_bios.bin"
100 #endif
101 
102 #define TYPE_MIPS_MALTA "mips-malta"
103 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
104 
105 struct MaltaState {
106     SysBusDevice parent_obj;
107 
108     Clock *cpuclk;
109     MIPSCPSState cps;
110 };
111 
112 static struct _loaderparams {
113     int ram_size, ram_low_size;
114     const char *kernel_filename;
115     const char *kernel_cmdline;
116     const char *initrd_filename;
117 } loaderparams;
118 
119 /* Malta FPGA */
120 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
121 {
122     char leds_text[9];
123     int i;
124 
125     for (i = 7 ; i >= 0 ; i--) {
126         if (s->leds & (1 << i)) {
127             leds_text[i] = '#';
128         } else {
129             leds_text[i] = ' ';
130         }
131     }
132     leds_text[8] = '\0';
133 
134     trace_malta_fpga_leds(leds_text);
135     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
136                        leds_text);
137 }
138 
139 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
140 {
141     trace_malta_fpga_display(s->display_text);
142     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
143                        s->display_text);
144 }
145 
146 /*
147  * EEPROM 24C01 / 24C02 emulation.
148  *
149  * Emulation for serial EEPROMs:
150  * 24C01 - 1024 bit (128 x 8)
151  * 24C02 - 2048 bit (256 x 8)
152  *
153  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
154  */
155 
156 #if defined(DEBUG)
157 #  define logout(fmt, ...) \
158           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
159 #else
160 #  define logout(fmt, ...) ((void)0)
161 #endif
162 
163 struct _eeprom24c0x_t {
164   uint8_t tick;
165   uint8_t address;
166   uint8_t command;
167   uint8_t ack;
168   uint8_t scl;
169   uint8_t sda;
170   uint8_t data;
171   /* uint16_t size; */
172   uint8_t contents[256];
173 };
174 
175 typedef struct _eeprom24c0x_t eeprom24c0x_t;
176 
177 static eeprom24c0x_t spd_eeprom = {
178     .contents = {
179         /* 00000000: */
180         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
181         /* 00000008: */
182         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
183         /* 00000010: */
184         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
185         /* 00000018: */
186         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
187         /* 00000020: */
188         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
189         /* 00000028: */
190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191         /* 00000030: */
192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193         /* 00000038: */
194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
195         /* 00000040: */
196         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197         /* 00000048: */
198         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199         /* 00000050: */
200         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
201         /* 00000058: */
202         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
203         /* 00000060: */
204         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
205         /* 00000068: */
206         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
207         /* 00000070: */
208         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
209         /* 00000078: */
210         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
211     },
212 };
213 
214 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
215 {
216     enum sdram_type type;
217     uint8_t *spd = spd_eeprom.contents;
218     uint8_t nbanks = 0;
219     uint16_t density = 0;
220     int i;
221 
222     /* work in terms of MB */
223     ram_size /= MiB;
224 
225     while ((ram_size >= 4) && (nbanks <= 2)) {
226         int sz_log2 = MIN(31 - clz32(ram_size), 14);
227         nbanks++;
228         density |= 1 << (sz_log2 - 2);
229         ram_size -= 1 << sz_log2;
230     }
231 
232     /* split to 2 banks if possible */
233     if ((nbanks == 1) && (density > 1)) {
234         nbanks++;
235         density >>= 1;
236     }
237 
238     if (density & 0xff00) {
239         density = (density & 0xe0) | ((density >> 8) & 0x1f);
240         type = DDR2;
241     } else if (!(density & 0x1f)) {
242         type = DDR2;
243     } else {
244         type = SDR;
245     }
246 
247     if (ram_size) {
248         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
249                     " of SDRAM", ram_size);
250     }
251 
252     /* fill in SPD memory information */
253     spd[2] = type;
254     spd[5] = nbanks;
255     spd[31] = density;
256 
257     /* checksum */
258     spd[63] = 0;
259     for (i = 0; i < 63; i++) {
260         spd[63] += spd[i];
261     }
262 
263     /* copy for SMBUS */
264     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
265 }
266 
267 static void generate_eeprom_serial(uint8_t *eeprom)
268 {
269     int i, pos = 0;
270     uint8_t mac[6] = { 0x00 };
271     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
272 
273     /* version */
274     eeprom[pos++] = 0x01;
275 
276     /* count */
277     eeprom[pos++] = 0x02;
278 
279     /* MAC address */
280     eeprom[pos++] = 0x01; /* MAC */
281     eeprom[pos++] = 0x06; /* length */
282     memcpy(&eeprom[pos], mac, sizeof(mac));
283     pos += sizeof(mac);
284 
285     /* serial number */
286     eeprom[pos++] = 0x02; /* serial */
287     eeprom[pos++] = 0x05; /* length */
288     memcpy(&eeprom[pos], sn, sizeof(sn));
289     pos += sizeof(sn);
290 
291     /* checksum */
292     eeprom[pos] = 0;
293     for (i = 0; i < pos; i++) {
294         eeprom[pos] += eeprom[i];
295     }
296 }
297 
298 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
299 {
300     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
301         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
302     return eeprom->sda;
303 }
304 
305 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
306 {
307     if (eeprom->scl && scl && (eeprom->sda != sda)) {
308         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
309                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
310                 sda ? "stop" : "start");
311         if (!sda) {
312             eeprom->tick = 1;
313             eeprom->command = 0;
314         }
315     } else if (eeprom->tick == 0 && !eeprom->ack) {
316         /* Waiting for start. */
317         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
318                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
319     } else if (!eeprom->scl && scl) {
320         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
321                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
322         if (eeprom->ack) {
323             logout("\ti2c ack bit = 0\n");
324             sda = 0;
325             eeprom->ack = 0;
326         } else if (eeprom->sda == sda) {
327             uint8_t bit = (sda != 0);
328             logout("\ti2c bit = %d\n", bit);
329             if (eeprom->tick < 9) {
330                 eeprom->command <<= 1;
331                 eeprom->command += bit;
332                 eeprom->tick++;
333                 if (eeprom->tick == 9) {
334                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
335                            bit ? "read" : "write");
336                     eeprom->ack = 1;
337                 }
338             } else if (eeprom->tick < 17) {
339                 if (eeprom->command & 1) {
340                     sda = ((eeprom->data & 0x80) != 0);
341                 }
342                 eeprom->address <<= 1;
343                 eeprom->address += bit;
344                 eeprom->tick++;
345                 eeprom->data <<= 1;
346                 if (eeprom->tick == 17) {
347                     eeprom->data = eeprom->contents[eeprom->address];
348                     logout("\taddress 0x%04x, data 0x%02x\n",
349                            eeprom->address, eeprom->data);
350                     eeprom->ack = 1;
351                     eeprom->tick = 0;
352                 }
353             } else if (eeprom->tick >= 17) {
354                 sda = 0;
355             }
356         } else {
357             logout("\tsda changed with raising scl\n");
358         }
359     } else {
360         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
361                scl, eeprom->sda, sda);
362     }
363     eeprom->scl = scl;
364     eeprom->sda = sda;
365 }
366 
367 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
368                                 unsigned size)
369 {
370     MaltaFPGAState *s = opaque;
371     uint32_t val = 0;
372     uint32_t saddr;
373 
374     saddr = (addr & 0xfffff);
375 
376     switch (saddr) {
377 
378     /* SWITCH Register */
379     case 0x00200:
380         val = 0x00000000;
381         break;
382 
383     /* STATUS Register */
384     case 0x00208:
385 #if TARGET_BIG_ENDIAN
386         val = 0x00000012;
387 #else
388         val = 0x00000010;
389 #endif
390         break;
391 
392     /* JMPRS Register */
393     case 0x00210:
394         val = 0x00;
395         break;
396 
397     /* LEDBAR Register */
398     case 0x00408:
399         val = s->leds;
400         break;
401 
402     /* BRKRES Register */
403     case 0x00508:
404         val = s->brk;
405         break;
406 
407     /* UART Registers are handled directly by the serial device */
408 
409     /* GPOUT Register */
410     case 0x00a00:
411         val = s->gpout;
412         break;
413 
414     /* XXX: implement a real I2C controller */
415 
416     /* GPINP Register */
417     case 0x00a08:
418         /* IN = OUT until a real I2C control is implemented */
419         if (s->i2csel) {
420             val = s->i2cout;
421         } else {
422             val = 0x00;
423         }
424         break;
425 
426     /* I2CINP Register */
427     case 0x00b00:
428         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
429         break;
430 
431     /* I2COE Register */
432     case 0x00b08:
433         val = s->i2coe;
434         break;
435 
436     /* I2COUT Register */
437     case 0x00b10:
438         val = s->i2cout;
439         break;
440 
441     /* I2CSEL Register */
442     case 0x00b18:
443         val = s->i2csel;
444         break;
445 
446     default:
447         qemu_log_mask(LOG_GUEST_ERROR,
448                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
449                       addr);
450         break;
451     }
452     return val;
453 }
454 
455 static void malta_fpga_write(void *opaque, hwaddr addr,
456                              uint64_t val, unsigned size)
457 {
458     MaltaFPGAState *s = opaque;
459     uint32_t saddr;
460 
461     saddr = (addr & 0xfffff);
462 
463     switch (saddr) {
464 
465     /* SWITCH Register */
466     case 0x00200:
467         break;
468 
469     /* JMPRS Register */
470     case 0x00210:
471         break;
472 
473     /* LEDBAR Register */
474     case 0x00408:
475         s->leds = val & 0xff;
476         malta_fpga_update_display_leds(s);
477         break;
478 
479     /* ASCIIWORD Register */
480     case 0x00410:
481         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
482         malta_fpga_update_display_ascii(s);
483         break;
484 
485     /* ASCIIPOS0 to ASCIIPOS7 Registers */
486     case 0x00418:
487     case 0x00420:
488     case 0x00428:
489     case 0x00430:
490     case 0x00438:
491     case 0x00440:
492     case 0x00448:
493     case 0x00450:
494         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
495         malta_fpga_update_display_ascii(s);
496         break;
497 
498     /* SOFTRES Register */
499     case 0x00500:
500         if (val == 0x42) {
501             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
502         }
503         break;
504 
505     /* BRKRES Register */
506     case 0x00508:
507         s->brk = val & 0xff;
508         break;
509 
510     /* UART Registers are handled directly by the serial device */
511 
512     /* GPOUT Register */
513     case 0x00a00:
514         s->gpout = val & 0xff;
515         break;
516 
517     /* I2COE Register */
518     case 0x00b08:
519         s->i2coe = val & 0x03;
520         break;
521 
522     /* I2COUT Register */
523     case 0x00b10:
524         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
525         s->i2cout = val;
526         break;
527 
528     /* I2CSEL Register */
529     case 0x00b18:
530         s->i2csel = val & 0x01;
531         break;
532 
533     default:
534         qemu_log_mask(LOG_GUEST_ERROR,
535                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
536                       addr);
537         break;
538     }
539 }
540 
541 static const MemoryRegionOps malta_fpga_ops = {
542     .read = malta_fpga_read,
543     .write = malta_fpga_write,
544     .endianness = DEVICE_NATIVE_ENDIAN,
545 };
546 
547 static void malta_fpga_reset(void *opaque)
548 {
549     MaltaFPGAState *s = opaque;
550 
551     s->leds   = 0x00;
552     s->brk    = 0x0a;
553     s->gpout  = 0x00;
554     s->i2cin  = 0x3;
555     s->i2coe  = 0x0;
556     s->i2cout = 0x3;
557     s->i2csel = 0x1;
558 
559     s->display_text[8] = '\0';
560     snprintf(s->display_text, 9, "        ");
561 }
562 
563 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
564 {
565     MaltaFPGAState *s = opaque;
566 
567     if (event == CHR_EVENT_OPENED && !s->display_inited) {
568         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
569         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
570         qemu_chr_fe_printf(&s->display, "+        +\r\n");
571         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
572         qemu_chr_fe_printf(&s->display, "\n");
573         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
574         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
575         qemu_chr_fe_printf(&s->display, "+        +\r\n");
576         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
577         s->display_inited = true;
578     }
579 }
580 
581 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
582          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
583 {
584     MaltaFPGAState *s;
585     Chardev *chr;
586 
587     s = g_new0(MaltaFPGAState, 1);
588 
589     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
590                           "malta-fpga", 0x100000);
591     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
592                              &s->iomem, 0, 0x900);
593     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
594                              &s->iomem, 0xa00, 0x100000 - 0xa00);
595 
596     memory_region_add_subregion(address_space, base, &s->iomem_lo);
597     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
598 
599     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
600     qemu_chr_fe_init(&s->display, chr, NULL);
601     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
602                              malta_fgpa_display_event, NULL, s, NULL, true);
603 
604     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
605                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
606 
607     malta_fpga_reset(s);
608     qemu_register_reset(malta_fpga_reset, s);
609 
610     return s;
611 }
612 
613 /* Network support */
614 static void network_init(PCIBus *pci_bus)
615 {
616     /* The malta board has a PCNet card using PCI SLOT 11 */
617     pci_init_nic_in_slot(pci_bus, "pcnet", NULL, "0b");
618     pci_init_nic_devices(pci_bus, "pcnet");
619 }
620 
621 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
622                                          uint64_t kernel_entry)
623 {
624     static const char pci_pins_cfg[PCI_NUM_PINS] = {
625         10, 10, 11, 11 /* PIIX IRQRC[A:D] */
626     };
627 
628     /* Bus endianness is always reversed */
629 #if TARGET_BIG_ENDIAN
630 #define cpu_to_gt32(x) (x)
631 #else
632 #define cpu_to_gt32(x) bswap32(x)
633 #endif
634 
635     /* setup MEM-to-PCI0 mapping as done by YAMON */
636 
637     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
638     bl_gen_write_u32(p, /* GT_ISD */
639                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
640                      cpu_to_gt32(0x1be00000 << 3));
641 
642     /* setup PCI0 io window to 0x18000000-0x181fffff */
643     bl_gen_write_u32(p, /* GT_PCI0IOLD */
644                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
645                      cpu_to_gt32(0x18000000 << 3));
646     bl_gen_write_u32(p, /* GT_PCI0IOHD */
647                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
648                      cpu_to_gt32(0x08000000 << 3));
649 
650     /* setup PCI0 mem windows */
651     bl_gen_write_u32(p, /* GT_PCI0M0LD */
652                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
653                      cpu_to_gt32(0x10000000 << 3));
654     bl_gen_write_u32(p, /* GT_PCI0M0HD */
655                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
656                      cpu_to_gt32(0x07e00000 << 3));
657     bl_gen_write_u32(p, /* GT_PCI0M1LD */
658                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
659                      cpu_to_gt32(0x18200000 << 3));
660     bl_gen_write_u32(p, /* GT_PCI0M1HD */
661                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
662                      cpu_to_gt32(0x0bc00000 << 3));
663 
664 #undef cpu_to_gt32
665 
666     /*
667      * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
668      * Load the PIIX IRQC[A:D] routing config address, then
669      * write routing configuration to the config data register.
670      */
671     bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
672                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
673                      tswap32((1 << 31) /* ConfigEn */
674                              | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
675                              | PIIX_PIRQCA));
676     bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
677                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
678                      tswap32(ldl_be_p(pci_pins_cfg)));
679 
680     bl_gen_jump_kernel(p,
681                        true, ENVP_VADDR - 64,
682                        /*
683                         * If semihosting is used, arguments have already
684                         * been passed, so we preserve $a0.
685                         */
686                        !semihosting_get_argc(), 2,
687                        true, ENVP_VADDR,
688                        true, ENVP_VADDR + 8,
689                        true, loaderparams.ram_low_size,
690                        kernel_entry);
691 }
692 
693 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
694                                       uint64_t kernel_entry)
695 {
696     uint16_t *p;
697 
698     /* Small bootloader */
699     p = (uint16_t *)base;
700 
701     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
702                                 /* bc to_here */
703     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
704                                 /* nop */
705     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
706                                 /* nop */
707     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
708                                 /* nop */
709     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
710                                 /* nop */
711     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
712                                 /* nop */
713     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
714                                 /* nop */
715     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
716                                 /* nop */
717 
718     /* to_here: */
719 
720     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
721 }
722 
723 /*
724  * ROM and pseudo bootloader
725  *
726  * The following code implements a very very simple bootloader. It first
727  * loads the registers a0 to a3 to the values expected by the OS, and
728  * then jump at the kernel address.
729  *
730  * The bootloader should pass the locations of the kernel arguments and
731  * environment variables tables. Those tables contain the 32-bit address
732  * of NULL terminated strings. The environment variables table should be
733  * terminated by a NULL address.
734  *
735  * For a simpler implementation, the number of kernel arguments is fixed
736  * to two (the name of the kernel and the command line), and the two
737  * tables are actually the same one.
738  *
739  * The registers a0 to a3 should contain the following values:
740  *   a0 - number of kernel arguments
741  *   a1 - 32-bit address of the kernel arguments table
742  *   a2 - 32-bit address of the environment variables table
743  *   a3 - RAM size in bytes
744  */
745 static void write_bootloader(uint8_t *base, uint64_t run_addr,
746                              uint64_t kernel_entry)
747 {
748     uint32_t *p;
749 
750     /* Small bootloader */
751     p = (uint32_t *)base;
752 
753     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
754                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
755     stl_p(p++, 0x00000000);                  /* nop */
756 
757     /* YAMON service vector */
758     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
759     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
760     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
761     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
762     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
763     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
764     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
765     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
766     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
767     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
768     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
769     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
770     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
771 
772 
773     /* Second part of the bootloader */
774     p = (uint32_t *) (base + 0x580);
775 
776     /*
777      * Load BAR registers as done by YAMON:
778      *
779      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
780      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
781      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
782      *
783      */
784 
785     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
786 
787     /* YAMON subroutines */
788     p = (uint32_t *) (base + 0x800);
789     stl_p(p++, 0x03e00009);                  /* jalr ra */
790     stl_p(p++, 0x24020000);                  /* li v0,0 */
791     /* 808 YAMON print */
792     stl_p(p++, 0x03e06821);                  /* move t5,ra */
793     stl_p(p++, 0x00805821);                  /* move t3,a0 */
794     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
795     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
796     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
797     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
798     stl_p(p++, 0x00000000);                  /* nop */
799     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
800     stl_p(p++, 0x00000000);                  /* nop */
801     stl_p(p++, 0x1000fff9);                  /* b 814 */
802     stl_p(p++, 0x00000000);                  /* nop */
803     stl_p(p++, 0x01a00009);                  /* jalr t5 */
804     stl_p(p++, 0x01602021);                  /* move a0,t3 */
805     /* 0x83c YAMON print_count */
806     stl_p(p++, 0x03e06821);                  /* move t5,ra */
807     stl_p(p++, 0x00805821);                  /* move t3,a0 */
808     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
809     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
810     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
811     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
812     stl_p(p++, 0x00000000);                  /* nop */
813     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
814     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
815     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
816     stl_p(p++, 0x00000000);                  /* nop */
817     stl_p(p++, 0x01a00009);                  /* jalr t5 */
818     stl_p(p++, 0x01602021);                  /* move a0,t3 */
819     /* 0x870 */
820     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
821     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
822     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
823     stl_p(p++, 0x00000000);                  /* nop */
824     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
825     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
826     stl_p(p++, 0x00000000);                  /* nop */
827     stl_p(p++, 0x03e00009);                  /* jalr ra */
828     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
829 }
830 
831 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
832                                         const char *string, ...)
833 {
834     va_list ap;
835     uint32_t table_addr;
836 
837     if (index >= ENVP_NB_ENTRIES) {
838         return;
839     }
840 
841     if (string == NULL) {
842         prom_buf[index] = 0;
843         return;
844     }
845 
846     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
847     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
848 
849     va_start(ap, string);
850     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
851     va_end(ap);
852 }
853 
854 static GString *rng_seed_hex_new(void)
855 {
856     uint8_t rng_seed[32];
857 
858     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
859     return qemu_hexdump_line(NULL, rng_seed, sizeof(rng_seed), 0, 0);
860 }
861 
862 static void reinitialize_rng_seed(void *opaque)
863 {
864     g_autoptr(GString) hex = rng_seed_hex_new();
865     memcpy(opaque, hex->str, hex->len);
866 }
867 
868 /* Kernel */
869 static uint64_t load_kernel(void)
870 {
871     uint64_t kernel_entry, kernel_high, initrd_size;
872     long kernel_size;
873     ram_addr_t initrd_offset;
874     uint32_t *prom_buf;
875     long prom_size;
876     int prom_index = 0;
877     size_t rng_seed_prom_offset;
878 
879     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
880                            cpu_mips_kseg0_to_phys, NULL,
881                            &kernel_entry, NULL,
882                            &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
883                            1, 0);
884     if (kernel_size < 0) {
885         error_report("could not load kernel '%s': %s",
886                      loaderparams.kernel_filename,
887                      load_elf_strerror(kernel_size));
888         exit(1);
889     }
890 
891     /* Check where the kernel has been linked */
892     if (kernel_entry <= USEG_LIMIT) {
893         error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
894                      " are not supported");
895         exit(1);
896     }
897 
898     /* load initrd */
899     initrd_size = 0;
900     initrd_offset = 0;
901     if (loaderparams.initrd_filename) {
902         initrd_size = get_image_size(loaderparams.initrd_filename);
903         if (initrd_size > 0) {
904             /*
905              * The kernel allocates the bootmap memory in the low memory after
906              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
907              * pages.
908              */
909             initrd_offset = ROUND_UP(loaderparams.ram_low_size
910                                      - (initrd_size + 128 * KiB),
911                                      INITRD_PAGE_SIZE);
912             if (kernel_high >= initrd_offset) {
913                 error_report("memory too small for initial ram disk '%s'",
914                              loaderparams.initrd_filename);
915                 exit(1);
916             }
917             initrd_size = load_image_targphys(loaderparams.initrd_filename,
918                                               initrd_offset,
919                                               loaderparams.ram_size - initrd_offset);
920         }
921         if (initrd_size == (target_ulong) -1) {
922             error_report("could not load initial ram disk '%s'",
923                          loaderparams.initrd_filename);
924             exit(1);
925         }
926     }
927 
928     /* Setup prom parameters. */
929     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
930     prom_buf = g_malloc(prom_size);
931 
932     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
933     if (initrd_size > 0) {
934         prom_set(prom_buf, prom_index++,
935                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
936                  cpu_mips_phys_to_kseg0(NULL, initrd_offset),
937                  initrd_size, loaderparams.kernel_cmdline);
938     } else {
939         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
940     }
941 
942     prom_set(prom_buf, prom_index++, "memsize");
943     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
944 
945     prom_set(prom_buf, prom_index++, "ememsize");
946     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
947 
948     prom_set(prom_buf, prom_index++, "modetty0");
949     prom_set(prom_buf, prom_index++, "38400n8r");
950 
951     prom_set(prom_buf, prom_index++, "rngseed");
952     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
953                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
954     {
955         g_autoptr(GString) hex = rng_seed_hex_new();
956         prom_set(prom_buf, prom_index++, "%s", hex->str);
957     }
958 
959     prom_set(prom_buf, prom_index++, NULL);
960 
961     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
962     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
963             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
964 
965     g_free(prom_buf);
966     return kernel_entry;
967 }
968 
969 static void malta_mips_config(MIPSCPU *cpu)
970 {
971     MachineState *ms = MACHINE(qdev_get_machine());
972     unsigned int smp_cpus = ms->smp.cpus;
973     CPUMIPSState *env = &cpu->env;
974     CPUState *cs = CPU(cpu);
975 
976     if (ase_mt_available(env)) {
977         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
978                                            CP0MVPC0_PTC, 8,
979                                            smp_cpus * cs->nr_threads - 1);
980         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
981                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
982     }
983 }
984 
985 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
986 {
987     int slot;
988 
989     slot = PCI_SLOT(pci_dev->devfn);
990 
991     switch (slot) {
992     /* PIIX4 USB */
993     case 10:
994         return 3;
995     /* AMD 79C973 Ethernet */
996     case 11:
997         return 1;
998     /* Crystal 4281 Sound */
999     case 12:
1000         return 2;
1001     /* PCI slot 1 to 4 */
1002     case 18 ... 21:
1003         return ((slot - 18) + irq_num) & 0x03;
1004     /* Unknown device, don't do any translation */
1005     default:
1006         return irq_num;
1007     }
1008 }
1009 
1010 static void main_cpu_reset(void *opaque)
1011 {
1012     MIPSCPU *cpu = opaque;
1013     CPUMIPSState *env = &cpu->env;
1014 
1015     cpu_reset(CPU(cpu));
1016 
1017     /*
1018      * The bootloader does not need to be rewritten as it is located in a
1019      * read only location. The kernel location and the arguments table
1020      * location does not change.
1021      */
1022     if (loaderparams.kernel_filename) {
1023         env->CP0_Status &= ~(1 << CP0St_ERL);
1024     }
1025 
1026     malta_mips_config(cpu);
1027 }
1028 
1029 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1030                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1031 {
1032     CPUMIPSState *env;
1033     MIPSCPU *cpu;
1034     int i;
1035 
1036     for (i = 0; i < ms->smp.cpus; i++) {
1037         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1038 
1039         /* Init internal devices */
1040         cpu_mips_irq_init_cpu(cpu);
1041         cpu_mips_clock_init(cpu);
1042         qemu_register_reset(main_cpu_reset, cpu);
1043     }
1044 
1045     cpu = MIPS_CPU(first_cpu);
1046     env = &cpu->env;
1047     *i8259_irq = env->irq[2];
1048     *cbus_irq = env->irq[4];
1049 }
1050 
1051 static void create_cps(MachineState *ms, MaltaState *s,
1052                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1053 {
1054     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1055     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1056                             &error_fatal);
1057     object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1058                             &error_fatal);
1059     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1060     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1061 
1062     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1063 
1064     *i8259_irq = get_cps_irq(&s->cps, 3);
1065     *cbus_irq = NULL;
1066 }
1067 
1068 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1069                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1070 {
1071     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1072         create_cps(ms, s, cbus_irq, i8259_irq);
1073     } else {
1074         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1075     }
1076 }
1077 
1078 static
1079 void mips_malta_init(MachineState *machine)
1080 {
1081     ram_addr_t ram_size = machine->ram_size;
1082     ram_addr_t ram_low_size;
1083     const char *kernel_filename = machine->kernel_filename;
1084     const char *kernel_cmdline = machine->kernel_cmdline;
1085     const char *initrd_filename = machine->initrd_filename;
1086     char *filename;
1087     PFlashCFI01 *fl;
1088     MemoryRegion *system_memory = get_system_memory();
1089     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1090     MemoryRegion *ram_low_postio;
1091     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1092     const size_t smbus_eeprom_size = 8 * 256;
1093     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1094     uint64_t kernel_entry, bootloader_run_addr;
1095     PCIBus *pci_bus;
1096     ISABus *isa_bus;
1097     qemu_irq cbus_irq, i8259_irq;
1098     I2CBus *smbus;
1099     DriveInfo *dinfo;
1100     int fl_idx = 0;
1101     MaltaState *s;
1102     PCIDevice *piix4;
1103     DeviceState *dev;
1104 
1105     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1106     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1107 
1108     /* create CPU */
1109     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1110 
1111     /* allocate RAM */
1112     if (ram_size > 2 * GiB) {
1113         error_report("Too much memory for this machine: %" PRId64 "MB,"
1114                      " maximum 2048MB", ram_size / MiB);
1115         exit(1);
1116     }
1117 
1118     /* register RAM at high address where it is undisturbed by IO */
1119     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1120 
1121     /* alias for pre IO hole access */
1122     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1123                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1124     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1125 
1126     /* alias for post IO hole access, if there is enough RAM */
1127     if (ram_size > 512 * MiB) {
1128         ram_low_postio = g_new(MemoryRegion, 1);
1129         memory_region_init_alias(ram_low_postio, NULL,
1130                                  "mips_malta_low_postio.ram",
1131                                  machine->ram, 512 * MiB,
1132                                  ram_size - 512 * MiB);
1133         memory_region_add_subregion(system_memory, 512 * MiB,
1134                                     ram_low_postio);
1135     }
1136 
1137     /* FPGA */
1138 
1139     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1140     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1141 
1142     /* Load firmware in flash / BIOS. */
1143     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1144     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1145                                FLASH_SIZE,
1146                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1147                                65536,
1148                                4, 0x0000, 0x0000, 0x0000, 0x0000,
1149                                TARGET_BIG_ENDIAN);
1150     bios = pflash_cfi01_get_memory(fl);
1151     fl_idx++;
1152     if (kernel_filename) {
1153         ram_low_size = MIN(ram_size, 256 * MiB);
1154         bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1155 
1156         /* Write a small bootloader to the flash location. */
1157         loaderparams.ram_size = ram_size;
1158         loaderparams.ram_low_size = ram_low_size;
1159         loaderparams.kernel_filename = kernel_filename;
1160         loaderparams.kernel_cmdline = kernel_cmdline;
1161         loaderparams.initrd_filename = initrd_filename;
1162         kernel_entry = load_kernel();
1163 
1164         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1165             write_bootloader(memory_region_get_ram_ptr(bios),
1166                              bootloader_run_addr, kernel_entry);
1167         } else {
1168             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1169                                       bootloader_run_addr, kernel_entry);
1170         }
1171     } else {
1172         target_long bios_size = FLASH_SIZE;
1173         /* Load firmware from flash. */
1174         if (!dinfo) {
1175             /* Load a BIOS image. */
1176             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1177                                       machine->firmware ?: BIOS_FILENAME);
1178             if (filename) {
1179                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1180                                                 BIOS_SIZE);
1181                 g_free(filename);
1182             } else {
1183                 bios_size = -1;
1184             }
1185             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1186                 machine->firmware && !qtest_enabled()) {
1187                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1188                 exit(1);
1189             }
1190         }
1191         /*
1192          * In little endian mode the 32bit words in the bios are swapped,
1193          * a neat trick which allows bi-endian firmware.
1194          */
1195 #if !TARGET_BIG_ENDIAN
1196         {
1197             uint32_t *end, *addr;
1198             const size_t swapsize = MIN(bios_size, 0x3e0000);
1199             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1200             if (!addr) {
1201                 addr = memory_region_get_ram_ptr(bios);
1202             }
1203             end = (void *)addr + swapsize;
1204             while (addr < end) {
1205                 bswap32s(addr);
1206                 addr++;
1207             }
1208         }
1209 #endif
1210     }
1211 
1212     /*
1213      * Map the BIOS at a 2nd physical location, as on the real board.
1214      * Copy it so that we can patch in the MIPS revision, which cannot be
1215      * handled by an overlapping region as the resulting ROM code subpage
1216      * regions are not executable.
1217      */
1218     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1219                            &error_fatal);
1220     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1221                   FLASH_ADDRESS, BIOS_SIZE)) {
1222         memcpy(memory_region_get_ram_ptr(bios_copy),
1223                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1224     }
1225     memory_region_set_readonly(bios_copy, true);
1226     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1227 
1228     /* Board ID = 0x420 (Malta Board with CoreLV) */
1229     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1230 
1231     /* Northbridge */
1232     dev = qdev_new("gt64120");
1233     qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1234     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1235     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1236     pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1237 
1238     /* Southbridge */
1239     piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1240     qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1241     pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1242     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1243 
1244     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1245     pci_ide_create_devs(PCI_DEVICE(dev));
1246 
1247     /* Interrupt controller */
1248     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1249 
1250     /* generate SPD EEPROM data */
1251     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1252     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1253     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1254     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1255     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1256     g_free(smbus_eeprom_buf);
1257 
1258     /* Super I/O: SMS FDC37M817 */
1259     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1260 
1261     /* Network card */
1262     network_init(pci_bus);
1263 
1264     /* Optional PCI video card */
1265     pci_vga_init(pci_bus);
1266 }
1267 
1268 static void mips_malta_instance_init(Object *obj)
1269 {
1270     MaltaState *s = MIPS_MALTA(obj);
1271 
1272     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1273     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1274 }
1275 
1276 static const TypeInfo mips_malta_device = {
1277     .name          = TYPE_MIPS_MALTA,
1278     .parent        = TYPE_SYS_BUS_DEVICE,
1279     .instance_size = sizeof(MaltaState),
1280     .instance_init = mips_malta_instance_init,
1281 };
1282 
1283 GlobalProperty malta_compat[] = {
1284     { "PIIX4_PM", "memory-hotplug-support", "off" },
1285     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1286     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1287     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1288 };
1289 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1290 
1291 static void mips_malta_machine_init(MachineClass *mc)
1292 {
1293     mc->desc = "MIPS Malta Core LV";
1294     mc->init = mips_malta_init;
1295     mc->block_default_type = IF_IDE;
1296     mc->max_cpus = 16;
1297     mc->is_default = true;
1298 #ifdef TARGET_MIPS64
1299     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1300 #else
1301     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1302 #endif
1303     mc->default_ram_id = "mips_malta.ram";
1304     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1305 }
1306 
1307 DEFINE_MACHINE("malta", mips_malta_machine_init)
1308 
1309 static void mips_malta_register_types(void)
1310 {
1311     type_register_static(&mips_malta_device);
1312 }
1313 
1314 type_init(mips_malta_register_types)
1315