1 /* 2 * QEMU Malta board support 3 * 4 * Copyright (c) 2006 Aurelien Jarno 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qemu/bitops.h" 28 #include "qemu/datadir.h" 29 #include "qemu/cutils.h" 30 #include "qemu/guest-random.h" 31 #include "hw/clock.h" 32 #include "hw/southbridge/piix.h" 33 #include "hw/isa/superio.h" 34 #include "hw/char/serial-mm.h" 35 #include "net/net.h" 36 #include "hw/boards.h" 37 #include "hw/i2c/smbus_eeprom.h" 38 #include "hw/block/flash.h" 39 #include "hw/mips/mips.h" 40 #include "hw/mips/bootloader.h" 41 #include "hw/pci/pci.h" 42 #include "hw/pci/pci_bus.h" 43 #include "qemu/log.h" 44 #include "hw/ide/pci.h" 45 #include "hw/irq.h" 46 #include "hw/loader.h" 47 #include "elf.h" 48 #include "qom/object.h" 49 #include "hw/sysbus.h" /* SysBusDevice */ 50 #include "qemu/host-utils.h" 51 #include "sysemu/qtest.h" 52 #include "sysemu/reset.h" 53 #include "sysemu/runstate.h" 54 #include "qapi/error.h" 55 #include "qemu/error-report.h" 56 #include "sysemu/kvm.h" 57 #include "semihosting/semihost.h" 58 #include "hw/mips/cps.h" 59 #include "hw/qdev-clock.h" 60 #include "target/mips/internal.h" 61 #include "trace.h" 62 #include "cpu.h" 63 64 #define ENVP_PADDR 0x2000 65 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR) 66 #define ENVP_NB_ENTRIES 16 67 #define ENVP_ENTRY_SIZE 256 68 69 /* Hardware addresses */ 70 #define FLASH_ADDRESS 0x1e000000ULL 71 #define FPGA_ADDRESS 0x1f000000ULL 72 #define RESET_ADDRESS 0x1fc00000ULL 73 74 #define FLASH_SIZE 0x400000 75 #define BIOS_SIZE (4 * MiB) 76 77 #define PIIX4_PCI_DEVFN PCI_DEVFN(10, 0) 78 79 typedef struct { 80 MemoryRegion iomem; 81 MemoryRegion iomem_lo; /* 0 - 0x900 */ 82 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ 83 uint32_t leds; 84 uint32_t brk; 85 uint32_t gpout; 86 uint32_t i2cin; 87 uint32_t i2coe; 88 uint32_t i2cout; 89 uint32_t i2csel; 90 CharBackend display; 91 char display_text[9]; 92 SerialMM *uart; 93 bool display_inited; 94 } MaltaFPGAState; 95 96 #if TARGET_BIG_ENDIAN 97 #define BIOS_FILENAME "mips_bios.bin" 98 #else 99 #define BIOS_FILENAME "mipsel_bios.bin" 100 #endif 101 102 #define TYPE_MIPS_MALTA "mips-malta" 103 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA) 104 105 struct MaltaState { 106 SysBusDevice parent_obj; 107 108 Clock *cpuclk; 109 MIPSCPSState cps; 110 }; 111 112 static struct _loaderparams { 113 int ram_size, ram_low_size; 114 const char *kernel_filename; 115 const char *kernel_cmdline; 116 const char *initrd_filename; 117 } loaderparams; 118 119 /* Malta FPGA */ 120 static void malta_fpga_update_display_leds(MaltaFPGAState *s) 121 { 122 char leds_text[9]; 123 int i; 124 125 for (i = 7 ; i >= 0 ; i--) { 126 if (s->leds & (1 << i)) { 127 leds_text[i] = '#'; 128 } else { 129 leds_text[i] = ' '; 130 } 131 } 132 leds_text[8] = '\0'; 133 134 trace_malta_fpga_leds(leds_text); 135 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", 136 leds_text); 137 } 138 139 static void malta_fpga_update_display_ascii(MaltaFPGAState *s) 140 { 141 trace_malta_fpga_display(s->display_text); 142 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", 143 s->display_text); 144 } 145 146 /* 147 * EEPROM 24C01 / 24C02 emulation. 148 * 149 * Emulation for serial EEPROMs: 150 * 24C01 - 1024 bit (128 x 8) 151 * 24C02 - 2048 bit (256 x 8) 152 * 153 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. 154 */ 155 156 #if defined(DEBUG) 157 # define logout(fmt, ...) \ 158 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) 159 #else 160 # define logout(fmt, ...) ((void)0) 161 #endif 162 163 struct _eeprom24c0x_t { 164 uint8_t tick; 165 uint8_t address; 166 uint8_t command; 167 uint8_t ack; 168 uint8_t scl; 169 uint8_t sda; 170 uint8_t data; 171 /* uint16_t size; */ 172 uint8_t contents[256]; 173 }; 174 175 typedef struct _eeprom24c0x_t eeprom24c0x_t; 176 177 static eeprom24c0x_t spd_eeprom = { 178 .contents = { 179 /* 00000000: */ 180 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, 181 /* 00000008: */ 182 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, 183 /* 00000010: */ 184 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 185 /* 00000018: */ 186 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, 187 /* 00000020: */ 188 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, 189 /* 00000028: */ 190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 191 /* 00000030: */ 192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 193 /* 00000038: */ 194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, 195 /* 00000040: */ 196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 197 /* 00000048: */ 198 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 199 /* 00000050: */ 200 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 201 /* 00000058: */ 202 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 203 /* 00000060: */ 204 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 205 /* 00000068: */ 206 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 207 /* 00000070: */ 208 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 209 /* 00000078: */ 210 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, 211 }, 212 }; 213 214 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) 215 { 216 enum sdram_type type; 217 uint8_t *spd = spd_eeprom.contents; 218 uint8_t nbanks = 0; 219 uint16_t density = 0; 220 int i; 221 222 /* work in terms of MB */ 223 ram_size /= MiB; 224 225 while ((ram_size >= 4) && (nbanks <= 2)) { 226 int sz_log2 = MIN(31 - clz32(ram_size), 14); 227 nbanks++; 228 density |= 1 << (sz_log2 - 2); 229 ram_size -= 1 << sz_log2; 230 } 231 232 /* split to 2 banks if possible */ 233 if ((nbanks == 1) && (density > 1)) { 234 nbanks++; 235 density >>= 1; 236 } 237 238 if (density & 0xff00) { 239 density = (density & 0xe0) | ((density >> 8) & 0x1f); 240 type = DDR2; 241 } else if (!(density & 0x1f)) { 242 type = DDR2; 243 } else { 244 type = SDR; 245 } 246 247 if (ram_size) { 248 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" 249 " of SDRAM", ram_size); 250 } 251 252 /* fill in SPD memory information */ 253 spd[2] = type; 254 spd[5] = nbanks; 255 spd[31] = density; 256 257 /* checksum */ 258 spd[63] = 0; 259 for (i = 0; i < 63; i++) { 260 spd[63] += spd[i]; 261 } 262 263 /* copy for SMBUS */ 264 memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); 265 } 266 267 static void generate_eeprom_serial(uint8_t *eeprom) 268 { 269 int i, pos = 0; 270 uint8_t mac[6] = { 0x00 }; 271 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; 272 273 /* version */ 274 eeprom[pos++] = 0x01; 275 276 /* count */ 277 eeprom[pos++] = 0x02; 278 279 /* MAC address */ 280 eeprom[pos++] = 0x01; /* MAC */ 281 eeprom[pos++] = 0x06; /* length */ 282 memcpy(&eeprom[pos], mac, sizeof(mac)); 283 pos += sizeof(mac); 284 285 /* serial number */ 286 eeprom[pos++] = 0x02; /* serial */ 287 eeprom[pos++] = 0x05; /* length */ 288 memcpy(&eeprom[pos], sn, sizeof(sn)); 289 pos += sizeof(sn); 290 291 /* checksum */ 292 eeprom[pos] = 0; 293 for (i = 0; i < pos; i++) { 294 eeprom[pos] += eeprom[i]; 295 } 296 } 297 298 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) 299 { 300 logout("%u: scl = %u, sda = %u, data = 0x%02x\n", 301 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); 302 return eeprom->sda; 303 } 304 305 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) 306 { 307 if (eeprom->scl && scl && (eeprom->sda != sda)) { 308 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", 309 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, 310 sda ? "stop" : "start"); 311 if (!sda) { 312 eeprom->tick = 1; 313 eeprom->command = 0; 314 } 315 } else if (eeprom->tick == 0 && !eeprom->ack) { 316 /* Waiting for start. */ 317 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", 318 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 319 } else if (!eeprom->scl && scl) { 320 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", 321 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 322 if (eeprom->ack) { 323 logout("\ti2c ack bit = 0\n"); 324 sda = 0; 325 eeprom->ack = 0; 326 } else if (eeprom->sda == sda) { 327 uint8_t bit = (sda != 0); 328 logout("\ti2c bit = %d\n", bit); 329 if (eeprom->tick < 9) { 330 eeprom->command <<= 1; 331 eeprom->command += bit; 332 eeprom->tick++; 333 if (eeprom->tick == 9) { 334 logout("\tcommand 0x%04x, %s\n", eeprom->command, 335 bit ? "read" : "write"); 336 eeprom->ack = 1; 337 } 338 } else if (eeprom->tick < 17) { 339 if (eeprom->command & 1) { 340 sda = ((eeprom->data & 0x80) != 0); 341 } 342 eeprom->address <<= 1; 343 eeprom->address += bit; 344 eeprom->tick++; 345 eeprom->data <<= 1; 346 if (eeprom->tick == 17) { 347 eeprom->data = eeprom->contents[eeprom->address]; 348 logout("\taddress 0x%04x, data 0x%02x\n", 349 eeprom->address, eeprom->data); 350 eeprom->ack = 1; 351 eeprom->tick = 0; 352 } 353 } else if (eeprom->tick >= 17) { 354 sda = 0; 355 } 356 } else { 357 logout("\tsda changed with raising scl\n"); 358 } 359 } else { 360 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, 361 scl, eeprom->sda, sda); 362 } 363 eeprom->scl = scl; 364 eeprom->sda = sda; 365 } 366 367 static uint64_t malta_fpga_read(void *opaque, hwaddr addr, 368 unsigned size) 369 { 370 MaltaFPGAState *s = opaque; 371 uint32_t val = 0; 372 uint32_t saddr; 373 374 saddr = (addr & 0xfffff); 375 376 switch (saddr) { 377 378 /* SWITCH Register */ 379 case 0x00200: 380 val = 0x00000000; 381 break; 382 383 /* STATUS Register */ 384 case 0x00208: 385 #if TARGET_BIG_ENDIAN 386 val = 0x00000012; 387 #else 388 val = 0x00000010; 389 #endif 390 break; 391 392 /* JMPRS Register */ 393 case 0x00210: 394 val = 0x00; 395 break; 396 397 /* LEDBAR Register */ 398 case 0x00408: 399 val = s->leds; 400 break; 401 402 /* BRKRES Register */ 403 case 0x00508: 404 val = s->brk; 405 break; 406 407 /* UART Registers are handled directly by the serial device */ 408 409 /* GPOUT Register */ 410 case 0x00a00: 411 val = s->gpout; 412 break; 413 414 /* XXX: implement a real I2C controller */ 415 416 /* GPINP Register */ 417 case 0x00a08: 418 /* IN = OUT until a real I2C control is implemented */ 419 if (s->i2csel) { 420 val = s->i2cout; 421 } else { 422 val = 0x00; 423 } 424 break; 425 426 /* I2CINP Register */ 427 case 0x00b00: 428 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); 429 break; 430 431 /* I2COE Register */ 432 case 0x00b08: 433 val = s->i2coe; 434 break; 435 436 /* I2COUT Register */ 437 case 0x00b10: 438 val = s->i2cout; 439 break; 440 441 /* I2CSEL Register */ 442 case 0x00b18: 443 val = s->i2csel; 444 break; 445 446 default: 447 qemu_log_mask(LOG_GUEST_ERROR, 448 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", 449 addr); 450 break; 451 } 452 return val; 453 } 454 455 static void malta_fpga_write(void *opaque, hwaddr addr, 456 uint64_t val, unsigned size) 457 { 458 MaltaFPGAState *s = opaque; 459 uint32_t saddr; 460 461 saddr = (addr & 0xfffff); 462 463 switch (saddr) { 464 465 /* SWITCH Register */ 466 case 0x00200: 467 break; 468 469 /* JMPRS Register */ 470 case 0x00210: 471 break; 472 473 /* LEDBAR Register */ 474 case 0x00408: 475 s->leds = val & 0xff; 476 malta_fpga_update_display_leds(s); 477 break; 478 479 /* ASCIIWORD Register */ 480 case 0x00410: 481 snprintf(s->display_text, 9, "%08X", (uint32_t)val); 482 malta_fpga_update_display_ascii(s); 483 break; 484 485 /* ASCIIPOS0 to ASCIIPOS7 Registers */ 486 case 0x00418: 487 case 0x00420: 488 case 0x00428: 489 case 0x00430: 490 case 0x00438: 491 case 0x00440: 492 case 0x00448: 493 case 0x00450: 494 s->display_text[(saddr - 0x00418) >> 3] = (char) val; 495 malta_fpga_update_display_ascii(s); 496 break; 497 498 /* SOFTRES Register */ 499 case 0x00500: 500 if (val == 0x42) { 501 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 502 } 503 break; 504 505 /* BRKRES Register */ 506 case 0x00508: 507 s->brk = val & 0xff; 508 break; 509 510 /* UART Registers are handled directly by the serial device */ 511 512 /* GPOUT Register */ 513 case 0x00a00: 514 s->gpout = val & 0xff; 515 break; 516 517 /* I2COE Register */ 518 case 0x00b08: 519 s->i2coe = val & 0x03; 520 break; 521 522 /* I2COUT Register */ 523 case 0x00b10: 524 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); 525 s->i2cout = val; 526 break; 527 528 /* I2CSEL Register */ 529 case 0x00b18: 530 s->i2csel = val & 0x01; 531 break; 532 533 default: 534 qemu_log_mask(LOG_GUEST_ERROR, 535 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", 536 addr); 537 break; 538 } 539 } 540 541 static const MemoryRegionOps malta_fpga_ops = { 542 .read = malta_fpga_read, 543 .write = malta_fpga_write, 544 .endianness = DEVICE_NATIVE_ENDIAN, 545 }; 546 547 static void malta_fpga_reset(void *opaque) 548 { 549 MaltaFPGAState *s = opaque; 550 551 s->leds = 0x00; 552 s->brk = 0x0a; 553 s->gpout = 0x00; 554 s->i2cin = 0x3; 555 s->i2coe = 0x0; 556 s->i2cout = 0x3; 557 s->i2csel = 0x1; 558 559 s->display_text[8] = '\0'; 560 snprintf(s->display_text, 9, " "); 561 } 562 563 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) 564 { 565 MaltaFPGAState *s = opaque; 566 567 if (event == CHR_EVENT_OPENED && !s->display_inited) { 568 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); 569 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 570 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 571 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 572 qemu_chr_fe_printf(&s->display, "\n"); 573 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); 574 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 575 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 576 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 577 s->display_inited = true; 578 } 579 } 580 581 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, 582 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) 583 { 584 MaltaFPGAState *s; 585 Chardev *chr; 586 587 s = g_new0(MaltaFPGAState, 1); 588 589 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, 590 "malta-fpga", 0x100000); 591 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", 592 &s->iomem, 0, 0x900); 593 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", 594 &s->iomem, 0xa00, 0x100000 - 0xa00); 595 596 memory_region_add_subregion(address_space, base, &s->iomem_lo); 597 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); 598 599 chr = qemu_chr_new("fpga", "vc:320x200", NULL); 600 qemu_chr_fe_init(&s->display, chr, NULL); 601 qemu_chr_fe_set_handlers(&s->display, NULL, NULL, 602 malta_fgpa_display_event, NULL, s, NULL, true); 603 604 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, 605 230400, uart_chr, DEVICE_NATIVE_ENDIAN); 606 607 malta_fpga_reset(s); 608 qemu_register_reset(malta_fpga_reset, s); 609 610 return s; 611 } 612 613 /* Network support */ 614 static void network_init(PCIBus *pci_bus) 615 { 616 /* The malta board has a PCNet card using PCI SLOT 11 */ 617 pci_init_nic_in_slot(pci_bus, "pcnet", NULL, "0b"); 618 pci_init_nic_devices(pci_bus, "pcnet"); 619 } 620 621 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr, 622 uint64_t kernel_entry) 623 { 624 static const char pci_pins_cfg[PCI_NUM_PINS] = { 625 10, 10, 11, 11 /* PIIX IRQRC[A:D] */ 626 }; 627 628 /* Bus endianness is always reversed */ 629 #if TARGET_BIG_ENDIAN 630 #define cpu_to_gt32(x) (x) 631 #else 632 #define cpu_to_gt32(x) bswap32(x) 633 #endif 634 635 /* setup MEM-to-PCI0 mapping as done by YAMON */ 636 637 /* move GT64120 registers from 0x14000000 to 0x1be00000 */ 638 bl_gen_write_u32(p, /* GT_ISD */ 639 cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68), 640 cpu_to_gt32(0x1be00000 << 3)); 641 642 /* setup PCI0 io window to 0x18000000-0x181fffff */ 643 bl_gen_write_u32(p, /* GT_PCI0IOLD */ 644 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48), 645 cpu_to_gt32(0x18000000 << 3)); 646 bl_gen_write_u32(p, /* GT_PCI0IOHD */ 647 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50), 648 cpu_to_gt32(0x08000000 << 3)); 649 650 /* setup PCI0 mem windows */ 651 bl_gen_write_u32(p, /* GT_PCI0M0LD */ 652 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58), 653 cpu_to_gt32(0x10000000 << 3)); 654 bl_gen_write_u32(p, /* GT_PCI0M0HD */ 655 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60), 656 cpu_to_gt32(0x07e00000 << 3)); 657 bl_gen_write_u32(p, /* GT_PCI0M1LD */ 658 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80), 659 cpu_to_gt32(0x18200000 << 3)); 660 bl_gen_write_u32(p, /* GT_PCI0M1HD */ 661 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88), 662 cpu_to_gt32(0x0bc00000 << 3)); 663 664 #undef cpu_to_gt32 665 666 /* 667 * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0. 668 * Load the PIIX IRQC[A:D] routing config address, then 669 * write routing configuration to the config data register. 670 */ 671 bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */ 672 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8), 673 tswap32((1 << 31) /* ConfigEn */ 674 | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8 675 | PIIX_PIRQCA)); 676 bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */ 677 cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc), 678 tswap32(ldl_be_p(pci_pins_cfg))); 679 680 bl_gen_jump_kernel(p, 681 true, ENVP_VADDR - 64, 682 /* 683 * If semihosting is used, arguments have already 684 * been passed, so we preserve $a0. 685 */ 686 !semihosting_get_argc(), 2, 687 true, ENVP_VADDR, 688 true, ENVP_VADDR + 8, 689 true, loaderparams.ram_low_size, 690 kernel_entry); 691 } 692 693 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr, 694 uint64_t kernel_entry) 695 { 696 uint16_t *p; 697 698 /* Small bootloader */ 699 p = (uint16_t *)base; 700 701 stw_p(p++, 0x2800); stw_p(p++, 0x001c); 702 /* bc to_here */ 703 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 704 /* nop */ 705 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 706 /* nop */ 707 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 708 /* nop */ 709 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 710 /* nop */ 711 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 712 /* nop */ 713 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 714 /* nop */ 715 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 716 /* nop */ 717 718 /* to_here: */ 719 720 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry); 721 } 722 723 /* 724 * ROM and pseudo bootloader 725 * 726 * The following code implements a very very simple bootloader. It first 727 * loads the registers a0 to a3 to the values expected by the OS, and 728 * then jump at the kernel address. 729 * 730 * The bootloader should pass the locations of the kernel arguments and 731 * environment variables tables. Those tables contain the 32-bit address 732 * of NULL terminated strings. The environment variables table should be 733 * terminated by a NULL address. 734 * 735 * For a simpler implementation, the number of kernel arguments is fixed 736 * to two (the name of the kernel and the command line), and the two 737 * tables are actually the same one. 738 * 739 * The registers a0 to a3 should contain the following values: 740 * a0 - number of kernel arguments 741 * a1 - 32-bit address of the kernel arguments table 742 * a2 - 32-bit address of the environment variables table 743 * a3 - RAM size in bytes 744 */ 745 static void write_bootloader(uint8_t *base, uint64_t run_addr, 746 uint64_t kernel_entry) 747 { 748 uint32_t *p; 749 750 /* Small bootloader */ 751 p = (uint32_t *)base; 752 753 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ 754 ((run_addr + 0x580) & 0x0fffffff) >> 2); 755 stl_p(p++, 0x00000000); /* nop */ 756 757 /* YAMON service vector */ 758 stl_p(base + 0x500, run_addr + 0x0580); /* start: */ 759 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ 760 stl_p(base + 0x520, run_addr + 0x0580); /* start: */ 761 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ 762 stl_p(base + 0x534, run_addr + 0x0808); /* print: */ 763 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ 764 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ 765 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ 766 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ 767 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ 768 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ 769 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ 770 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ 771 772 773 /* Second part of the bootloader */ 774 p = (uint32_t *) (base + 0x580); 775 776 /* 777 * Load BAR registers as done by YAMON: 778 * 779 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff 780 * - set up PCI0 MEM0 at 0x10000000, size 0x7e00000 781 * - set up PCI0 MEM1 at 0x18200000, size 0xbc00000 782 * 783 */ 784 785 bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry); 786 787 /* YAMON subroutines */ 788 p = (uint32_t *) (base + 0x800); 789 stl_p(p++, 0x03e00009); /* jalr ra */ 790 stl_p(p++, 0x24020000); /* li v0,0 */ 791 /* 808 YAMON print */ 792 stl_p(p++, 0x03e06821); /* move t5,ra */ 793 stl_p(p++, 0x00805821); /* move t3,a0 */ 794 stl_p(p++, 0x00a05021); /* move t2,a1 */ 795 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 796 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 797 stl_p(p++, 0x10800005); /* beqz a0,834 */ 798 stl_p(p++, 0x00000000); /* nop */ 799 stl_p(p++, 0x0ff0021c); /* jal 870 */ 800 stl_p(p++, 0x00000000); /* nop */ 801 stl_p(p++, 0x1000fff9); /* b 814 */ 802 stl_p(p++, 0x00000000); /* nop */ 803 stl_p(p++, 0x01a00009); /* jalr t5 */ 804 stl_p(p++, 0x01602021); /* move a0,t3 */ 805 /* 0x83c YAMON print_count */ 806 stl_p(p++, 0x03e06821); /* move t5,ra */ 807 stl_p(p++, 0x00805821); /* move t3,a0 */ 808 stl_p(p++, 0x00a05021); /* move t2,a1 */ 809 stl_p(p++, 0x00c06021); /* move t4,a2 */ 810 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 811 stl_p(p++, 0x0ff0021c); /* jal 870 */ 812 stl_p(p++, 0x00000000); /* nop */ 813 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 814 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ 815 stl_p(p++, 0x1580fffa); /* bnez t4,84c */ 816 stl_p(p++, 0x00000000); /* nop */ 817 stl_p(p++, 0x01a00009); /* jalr t5 */ 818 stl_p(p++, 0x01602021); /* move a0,t3 */ 819 /* 0x870 */ 820 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ 821 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ 822 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ 823 stl_p(p++, 0x00000000); /* nop */ 824 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ 825 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ 826 stl_p(p++, 0x00000000); /* nop */ 827 stl_p(p++, 0x03e00009); /* jalr ra */ 828 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ 829 } 830 831 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index, 832 const char *string, ...) 833 { 834 va_list ap; 835 uint32_t table_addr; 836 837 if (index >= ENVP_NB_ENTRIES) { 838 return; 839 } 840 841 if (string == NULL) { 842 prom_buf[index] = 0; 843 return; 844 } 845 846 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; 847 prom_buf[index] = tswap32(ENVP_VADDR + table_addr); 848 849 va_start(ap, string); 850 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); 851 va_end(ap); 852 } 853 854 static GString *rng_seed_hex_new(void) 855 { 856 uint8_t rng_seed[32]; 857 858 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 859 return qemu_hexdump_line(NULL, rng_seed, sizeof(rng_seed), 0, 0); 860 } 861 862 static void reinitialize_rng_seed(void *opaque) 863 { 864 g_autoptr(GString) hex = rng_seed_hex_new(); 865 memcpy(opaque, hex->str, hex->len); 866 } 867 868 /* Kernel */ 869 static uint64_t load_kernel(void) 870 { 871 uint64_t kernel_entry, kernel_high, initrd_size; 872 long kernel_size; 873 ram_addr_t initrd_offset; 874 uint32_t *prom_buf; 875 long prom_size; 876 int prom_index = 0; 877 size_t rng_seed_prom_offset; 878 879 kernel_size = load_elf(loaderparams.kernel_filename, NULL, 880 cpu_mips_kseg0_to_phys, NULL, 881 &kernel_entry, NULL, 882 &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS, 883 1, 0); 884 if (kernel_size < 0) { 885 error_report("could not load kernel '%s': %s", 886 loaderparams.kernel_filename, 887 load_elf_strerror(kernel_size)); 888 exit(1); 889 } 890 891 /* Check where the kernel has been linked */ 892 if (kernel_entry <= USEG_LIMIT) { 893 error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)" 894 " are not supported"); 895 exit(1); 896 } 897 898 /* load initrd */ 899 initrd_size = 0; 900 initrd_offset = 0; 901 if (loaderparams.initrd_filename) { 902 initrd_size = get_image_size(loaderparams.initrd_filename); 903 if (initrd_size > 0) { 904 /* 905 * The kernel allocates the bootmap memory in the low memory after 906 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB 907 * pages. 908 */ 909 initrd_offset = ROUND_UP(loaderparams.ram_low_size 910 - (initrd_size + 128 * KiB), 911 INITRD_PAGE_SIZE); 912 if (kernel_high >= initrd_offset) { 913 error_report("memory too small for initial ram disk '%s'", 914 loaderparams.initrd_filename); 915 exit(1); 916 } 917 initrd_size = load_image_targphys(loaderparams.initrd_filename, 918 initrd_offset, 919 loaderparams.ram_size - initrd_offset); 920 } 921 if (initrd_size == (target_ulong) -1) { 922 error_report("could not load initial ram disk '%s'", 923 loaderparams.initrd_filename); 924 exit(1); 925 } 926 } 927 928 /* Setup prom parameters. */ 929 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); 930 prom_buf = g_malloc(prom_size); 931 932 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); 933 if (initrd_size > 0) { 934 prom_set(prom_buf, prom_index++, 935 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", 936 cpu_mips_phys_to_kseg0(NULL, initrd_offset), 937 initrd_size, loaderparams.kernel_cmdline); 938 } else { 939 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); 940 } 941 942 prom_set(prom_buf, prom_index++, "memsize"); 943 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); 944 945 prom_set(prom_buf, prom_index++, "ememsize"); 946 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); 947 948 prom_set(prom_buf, prom_index++, "modetty0"); 949 prom_set(prom_buf, prom_index++, "38400n8r"); 950 951 prom_set(prom_buf, prom_index++, "rngseed"); 952 rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE + 953 sizeof(uint32_t) * ENVP_NB_ENTRIES; 954 { 955 g_autoptr(GString) hex = rng_seed_hex_new(); 956 prom_set(prom_buf, prom_index++, "%s", hex->str); 957 } 958 959 prom_set(prom_buf, prom_index++, NULL); 960 961 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR); 962 qemu_register_reset_nosnapshotload(reinitialize_rng_seed, 963 rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset); 964 965 g_free(prom_buf); 966 return kernel_entry; 967 } 968 969 static void malta_mips_config(MIPSCPU *cpu) 970 { 971 MachineState *ms = MACHINE(qdev_get_machine()); 972 unsigned int smp_cpus = ms->smp.cpus; 973 CPUMIPSState *env = &cpu->env; 974 CPUState *cs = CPU(cpu); 975 976 if (ase_mt_available(env)) { 977 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 978 CP0MVPC0_PTC, 8, 979 smp_cpus * cs->nr_threads - 1); 980 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0, 981 CP0MVPC0_PVPE, 4, smp_cpus - 1); 982 } 983 } 984 985 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 986 { 987 int slot; 988 989 slot = PCI_SLOT(pci_dev->devfn); 990 991 switch (slot) { 992 /* PIIX4 USB */ 993 case 10: 994 return 3; 995 /* AMD 79C973 Ethernet */ 996 case 11: 997 return 1; 998 /* Crystal 4281 Sound */ 999 case 12: 1000 return 2; 1001 /* PCI slot 1 to 4 */ 1002 case 18 ... 21: 1003 return ((slot - 18) + irq_num) & 0x03; 1004 /* Unknown device, don't do any translation */ 1005 default: 1006 return irq_num; 1007 } 1008 } 1009 1010 static void main_cpu_reset(void *opaque) 1011 { 1012 MIPSCPU *cpu = opaque; 1013 CPUMIPSState *env = &cpu->env; 1014 1015 cpu_reset(CPU(cpu)); 1016 1017 /* 1018 * The bootloader does not need to be rewritten as it is located in a 1019 * read only location. The kernel location and the arguments table 1020 * location does not change. 1021 */ 1022 if (loaderparams.kernel_filename) { 1023 env->CP0_Status &= ~(1 << CP0St_ERL); 1024 } 1025 1026 malta_mips_config(cpu); 1027 } 1028 1029 static void create_cpu_without_cps(MachineState *ms, MaltaState *s, 1030 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1031 { 1032 CPUMIPSState *env; 1033 MIPSCPU *cpu; 1034 int i; 1035 1036 for (i = 0; i < ms->smp.cpus; i++) { 1037 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk, 1038 TARGET_BIG_ENDIAN); 1039 1040 /* Init internal devices */ 1041 cpu_mips_irq_init_cpu(cpu); 1042 cpu_mips_clock_init(cpu); 1043 qemu_register_reset(main_cpu_reset, cpu); 1044 } 1045 1046 cpu = MIPS_CPU(first_cpu); 1047 env = &cpu->env; 1048 *i8259_irq = env->irq[2]; 1049 *cbus_irq = env->irq[4]; 1050 } 1051 1052 static void create_cps(MachineState *ms, MaltaState *s, 1053 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1054 { 1055 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); 1056 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, 1057 &error_fatal); 1058 object_property_set_bool(OBJECT(&s->cps), "cpu-big-endian", 1059 TARGET_BIG_ENDIAN, &error_abort); 1060 object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus, 1061 &error_fatal); 1062 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk); 1063 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 1064 1065 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 1066 1067 *i8259_irq = get_cps_irq(&s->cps, 3); 1068 *cbus_irq = NULL; 1069 } 1070 1071 static void mips_create_cpu(MachineState *ms, MaltaState *s, 1072 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1073 { 1074 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) { 1075 create_cps(ms, s, cbus_irq, i8259_irq); 1076 } else { 1077 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq); 1078 } 1079 } 1080 1081 static 1082 void mips_malta_init(MachineState *machine) 1083 { 1084 ram_addr_t ram_size = machine->ram_size; 1085 ram_addr_t ram_low_size; 1086 const char *kernel_filename = machine->kernel_filename; 1087 const char *kernel_cmdline = machine->kernel_cmdline; 1088 const char *initrd_filename = machine->initrd_filename; 1089 char *filename; 1090 PFlashCFI01 *fl; 1091 MemoryRegion *system_memory = get_system_memory(); 1092 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); 1093 MemoryRegion *ram_low_postio; 1094 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); 1095 const size_t smbus_eeprom_size = 8 * 256; 1096 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); 1097 uint64_t kernel_entry, bootloader_run_addr; 1098 PCIBus *pci_bus; 1099 ISABus *isa_bus; 1100 qemu_irq cbus_irq, i8259_irq; 1101 I2CBus *smbus; 1102 DriveInfo *dinfo; 1103 int fl_idx = 0; 1104 MaltaState *s; 1105 PCIDevice *piix4; 1106 DeviceState *dev; 1107 1108 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA)); 1109 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal); 1110 1111 /* create CPU */ 1112 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); 1113 1114 /* allocate RAM */ 1115 if (ram_size > 2 * GiB) { 1116 error_report("Too much memory for this machine: %" PRId64 "MB," 1117 " maximum 2048MB", ram_size / MiB); 1118 exit(1); 1119 } 1120 1121 /* register RAM at high address where it is undisturbed by IO */ 1122 memory_region_add_subregion(system_memory, 0x80000000, machine->ram); 1123 1124 /* alias for pre IO hole access */ 1125 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", 1126 machine->ram, 0, MIN(ram_size, 256 * MiB)); 1127 memory_region_add_subregion(system_memory, 0, ram_low_preio); 1128 1129 /* alias for post IO hole access, if there is enough RAM */ 1130 if (ram_size > 512 * MiB) { 1131 ram_low_postio = g_new(MemoryRegion, 1); 1132 memory_region_init_alias(ram_low_postio, NULL, 1133 "mips_malta_low_postio.ram", 1134 machine->ram, 512 * MiB, 1135 ram_size - 512 * MiB); 1136 memory_region_add_subregion(system_memory, 512 * MiB, 1137 ram_low_postio); 1138 } 1139 1140 /* FPGA */ 1141 1142 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ 1143 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); 1144 1145 /* Load firmware in flash / BIOS. */ 1146 dinfo = drive_get(IF_PFLASH, 0, fl_idx); 1147 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", 1148 FLASH_SIZE, 1149 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 1150 65536, 1151 4, 0x0000, 0x0000, 0x0000, 0x0000, 1152 TARGET_BIG_ENDIAN); 1153 bios = pflash_cfi01_get_memory(fl); 1154 fl_idx++; 1155 if (kernel_filename) { 1156 ram_low_size = MIN(ram_size, 256 * MiB); 1157 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS); 1158 1159 /* Write a small bootloader to the flash location. */ 1160 loaderparams.ram_size = ram_size; 1161 loaderparams.ram_low_size = ram_low_size; 1162 loaderparams.kernel_filename = kernel_filename; 1163 loaderparams.kernel_cmdline = kernel_cmdline; 1164 loaderparams.initrd_filename = initrd_filename; 1165 kernel_entry = load_kernel(); 1166 1167 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { 1168 write_bootloader(memory_region_get_ram_ptr(bios), 1169 bootloader_run_addr, kernel_entry); 1170 } else { 1171 write_bootloader_nanomips(memory_region_get_ram_ptr(bios), 1172 bootloader_run_addr, kernel_entry); 1173 } 1174 } else { 1175 target_long bios_size = FLASH_SIZE; 1176 /* Load firmware from flash. */ 1177 if (!dinfo) { 1178 /* Load a BIOS image. */ 1179 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, 1180 machine->firmware ?: BIOS_FILENAME); 1181 if (filename) { 1182 bios_size = load_image_targphys(filename, FLASH_ADDRESS, 1183 BIOS_SIZE); 1184 g_free(filename); 1185 } else { 1186 bios_size = -1; 1187 } 1188 if ((bios_size < 0 || bios_size > BIOS_SIZE) && 1189 machine->firmware && !qtest_enabled()) { 1190 error_report("Could not load MIPS bios '%s'", machine->firmware); 1191 exit(1); 1192 } 1193 } 1194 /* 1195 * In little endian mode the 32bit words in the bios are swapped, 1196 * a neat trick which allows bi-endian firmware. 1197 */ 1198 #if !TARGET_BIG_ENDIAN 1199 { 1200 uint32_t *end, *addr; 1201 const size_t swapsize = MIN(bios_size, 0x3e0000); 1202 addr = rom_ptr(FLASH_ADDRESS, swapsize); 1203 if (!addr) { 1204 addr = memory_region_get_ram_ptr(bios); 1205 } 1206 end = (void *)addr + swapsize; 1207 while (addr < end) { 1208 bswap32s(addr); 1209 addr++; 1210 } 1211 } 1212 #endif 1213 } 1214 1215 /* 1216 * Map the BIOS at a 2nd physical location, as on the real board. 1217 * Copy it so that we can patch in the MIPS revision, which cannot be 1218 * handled by an overlapping region as the resulting ROM code subpage 1219 * regions are not executable. 1220 */ 1221 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, 1222 &error_fatal); 1223 if (!rom_copy(memory_region_get_ram_ptr(bios_copy), 1224 FLASH_ADDRESS, BIOS_SIZE)) { 1225 memcpy(memory_region_get_ram_ptr(bios_copy), 1226 memory_region_get_ram_ptr(bios), BIOS_SIZE); 1227 } 1228 memory_region_set_readonly(bios_copy, true); 1229 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); 1230 1231 /* Board ID = 0x420 (Malta Board with CoreLV) */ 1232 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); 1233 1234 /* Northbridge */ 1235 dev = qdev_new("gt64120"); 1236 qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN); 1237 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1238 pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci")); 1239 pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq); 1240 1241 /* Southbridge */ 1242 piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE); 1243 qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100); 1244 pci_realize_and_unref(piix4, pci_bus, &error_fatal); 1245 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0")); 1246 1247 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide")); 1248 pci_ide_create_devs(PCI_DEVICE(dev)); 1249 1250 /* Interrupt controller */ 1251 qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq); 1252 1253 /* generate SPD EEPROM data */ 1254 dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm")); 1255 smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c")); 1256 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); 1257 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); 1258 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); 1259 g_free(smbus_eeprom_buf); 1260 1261 /* Super I/O: SMS FDC37M817 */ 1262 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); 1263 1264 /* Network card */ 1265 network_init(pci_bus); 1266 1267 /* Optional PCI video card */ 1268 pci_vga_init(pci_bus); 1269 } 1270 1271 static void mips_malta_instance_init(Object *obj) 1272 { 1273 MaltaState *s = MIPS_MALTA(obj); 1274 1275 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); 1276 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */ 1277 } 1278 1279 static const TypeInfo mips_malta_device = { 1280 .name = TYPE_MIPS_MALTA, 1281 .parent = TYPE_SYS_BUS_DEVICE, 1282 .instance_size = sizeof(MaltaState), 1283 .instance_init = mips_malta_instance_init, 1284 }; 1285 1286 GlobalProperty malta_compat[] = { 1287 { "PIIX4_PM", "memory-hotplug-support", "off" }, 1288 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" }, 1289 { "PIIX4_PM", "acpi-root-pci-hotplug", "off" }, 1290 { "PIIX4_PM", "x-not-migrate-acpi-index", "true" }, 1291 }; 1292 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat); 1293 1294 static void mips_malta_machine_init(MachineClass *mc) 1295 { 1296 mc->desc = "MIPS Malta Core LV"; 1297 mc->init = mips_malta_init; 1298 mc->block_default_type = IF_IDE; 1299 mc->max_cpus = 16; 1300 mc->is_default = true; 1301 #ifdef TARGET_MIPS64 1302 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); 1303 #else 1304 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); 1305 #endif 1306 mc->default_ram_id = "mips_malta.ram"; 1307 compat_props_add(mc->compat_props, malta_compat, malta_compat_len); 1308 } 1309 1310 DEFINE_MACHINE("malta", mips_malta_machine_init) 1311 1312 static void mips_malta_register_types(void) 1313 { 1314 type_register_static(&mips_malta_device); 1315 } 1316 1317 type_init(mips_malta_register_types) 1318