1 /* 2 * QEMU Malta board support 3 * 4 * Copyright (c) 2006 Aurelien Jarno 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/southbridge/piix.h" 30 #include "hw/isa/superio.h" 31 #include "hw/char/serial.h" 32 #include "net/net.h" 33 #include "hw/boards.h" 34 #include "hw/i2c/smbus_eeprom.h" 35 #include "hw/block/flash.h" 36 #include "hw/mips/mips.h" 37 #include "hw/mips/cpudevs.h" 38 #include "hw/pci/pci.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/arch_init.h" 41 #include "qemu/log.h" 42 #include "hw/mips/bios.h" 43 #include "hw/ide.h" 44 #include "hw/irq.h" 45 #include "hw/loader.h" 46 #include "elf.h" 47 #include "exec/address-spaces.h" 48 #include "qom/object.h" 49 #include "hw/sysbus.h" /* SysBusDevice */ 50 #include "qemu/host-utils.h" 51 #include "sysemu/qtest.h" 52 #include "sysemu/reset.h" 53 #include "sysemu/runstate.h" 54 #include "qapi/error.h" 55 #include "qemu/error-report.h" 56 #include "hw/misc/empty_slot.h" 57 #include "sysemu/kvm.h" 58 #include "hw/semihosting/semihost.h" 59 #include "hw/mips/cps.h" 60 61 #define ENVP_ADDR 0x80002000l 62 #define ENVP_NB_ENTRIES 16 63 #define ENVP_ENTRY_SIZE 256 64 65 /* Hardware addresses */ 66 #define FLASH_ADDRESS 0x1e000000ULL 67 #define FPGA_ADDRESS 0x1f000000ULL 68 #define RESET_ADDRESS 0x1fc00000ULL 69 70 #define FLASH_SIZE 0x400000 71 72 #define MAX_IDE_BUS 2 73 74 typedef struct { 75 MemoryRegion iomem; 76 MemoryRegion iomem_lo; /* 0 - 0x900 */ 77 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ 78 uint32_t leds; 79 uint32_t brk; 80 uint32_t gpout; 81 uint32_t i2cin; 82 uint32_t i2coe; 83 uint32_t i2cout; 84 uint32_t i2csel; 85 CharBackend display; 86 char display_text[9]; 87 SerialMM *uart; 88 bool display_inited; 89 } MaltaFPGAState; 90 91 #define TYPE_MIPS_MALTA "mips-malta" 92 typedef struct MaltaState MaltaState; 93 DECLARE_INSTANCE_CHECKER(MaltaState, MIPS_MALTA, 94 TYPE_MIPS_MALTA) 95 96 struct MaltaState { 97 SysBusDevice parent_obj; 98 99 MIPSCPSState cps; 100 qemu_irq i8259[ISA_NUM_IRQS]; 101 }; 102 103 static struct _loaderparams { 104 int ram_size, ram_low_size; 105 const char *kernel_filename; 106 const char *kernel_cmdline; 107 const char *initrd_filename; 108 } loaderparams; 109 110 /* Malta FPGA */ 111 static void malta_fpga_update_display(void *opaque) 112 { 113 char leds_text[9]; 114 int i; 115 MaltaFPGAState *s = opaque; 116 117 for (i = 7 ; i >= 0 ; i--) { 118 if (s->leds & (1 << i)) { 119 leds_text[i] = '#'; 120 } else { 121 leds_text[i] = ' '; 122 } 123 } 124 leds_text[8] = '\0'; 125 126 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", 127 leds_text); 128 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", 129 s->display_text); 130 } 131 132 /* 133 * EEPROM 24C01 / 24C02 emulation. 134 * 135 * Emulation for serial EEPROMs: 136 * 24C01 - 1024 bit (128 x 8) 137 * 24C02 - 2048 bit (256 x 8) 138 * 139 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. 140 */ 141 142 #if defined(DEBUG) 143 # define logout(fmt, ...) \ 144 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) 145 #else 146 # define logout(fmt, ...) ((void)0) 147 #endif 148 149 struct _eeprom24c0x_t { 150 uint8_t tick; 151 uint8_t address; 152 uint8_t command; 153 uint8_t ack; 154 uint8_t scl; 155 uint8_t sda; 156 uint8_t data; 157 /* uint16_t size; */ 158 uint8_t contents[256]; 159 }; 160 161 typedef struct _eeprom24c0x_t eeprom24c0x_t; 162 163 static eeprom24c0x_t spd_eeprom = { 164 .contents = { 165 /* 00000000: */ 166 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, 167 /* 00000008: */ 168 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, 169 /* 00000010: */ 170 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 171 /* 00000018: */ 172 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, 173 /* 00000020: */ 174 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, 175 /* 00000028: */ 176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 177 /* 00000030: */ 178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 179 /* 00000038: */ 180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, 181 /* 00000040: */ 182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 183 /* 00000048: */ 184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 185 /* 00000050: */ 186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 187 /* 00000058: */ 188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 189 /* 00000060: */ 190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 191 /* 00000068: */ 192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 193 /* 00000070: */ 194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 195 /* 00000078: */ 196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, 197 }, 198 }; 199 200 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) 201 { 202 enum { SDR = 0x4, DDR2 = 0x8 } type; 203 uint8_t *spd = spd_eeprom.contents; 204 uint8_t nbanks = 0; 205 uint16_t density = 0; 206 int i; 207 208 /* work in terms of MB */ 209 ram_size /= MiB; 210 211 while ((ram_size >= 4) && (nbanks <= 2)) { 212 int sz_log2 = MIN(31 - clz32(ram_size), 14); 213 nbanks++; 214 density |= 1 << (sz_log2 - 2); 215 ram_size -= 1 << sz_log2; 216 } 217 218 /* split to 2 banks if possible */ 219 if ((nbanks == 1) && (density > 1)) { 220 nbanks++; 221 density >>= 1; 222 } 223 224 if (density & 0xff00) { 225 density = (density & 0xe0) | ((density >> 8) & 0x1f); 226 type = DDR2; 227 } else if (!(density & 0x1f)) { 228 type = DDR2; 229 } else { 230 type = SDR; 231 } 232 233 if (ram_size) { 234 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" 235 " of SDRAM", ram_size); 236 } 237 238 /* fill in SPD memory information */ 239 spd[2] = type; 240 spd[5] = nbanks; 241 spd[31] = density; 242 243 /* checksum */ 244 spd[63] = 0; 245 for (i = 0; i < 63; i++) { 246 spd[63] += spd[i]; 247 } 248 249 /* copy for SMBUS */ 250 memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); 251 } 252 253 static void generate_eeprom_serial(uint8_t *eeprom) 254 { 255 int i, pos = 0; 256 uint8_t mac[6] = { 0x00 }; 257 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; 258 259 /* version */ 260 eeprom[pos++] = 0x01; 261 262 /* count */ 263 eeprom[pos++] = 0x02; 264 265 /* MAC address */ 266 eeprom[pos++] = 0x01; /* MAC */ 267 eeprom[pos++] = 0x06; /* length */ 268 memcpy(&eeprom[pos], mac, sizeof(mac)); 269 pos += sizeof(mac); 270 271 /* serial number */ 272 eeprom[pos++] = 0x02; /* serial */ 273 eeprom[pos++] = 0x05; /* length */ 274 memcpy(&eeprom[pos], sn, sizeof(sn)); 275 pos += sizeof(sn); 276 277 /* checksum */ 278 eeprom[pos] = 0; 279 for (i = 0; i < pos; i++) { 280 eeprom[pos] += eeprom[i]; 281 } 282 } 283 284 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) 285 { 286 logout("%u: scl = %u, sda = %u, data = 0x%02x\n", 287 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); 288 return eeprom->sda; 289 } 290 291 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) 292 { 293 if (eeprom->scl && scl && (eeprom->sda != sda)) { 294 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", 295 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, 296 sda ? "stop" : "start"); 297 if (!sda) { 298 eeprom->tick = 1; 299 eeprom->command = 0; 300 } 301 } else if (eeprom->tick == 0 && !eeprom->ack) { 302 /* Waiting for start. */ 303 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", 304 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 305 } else if (!eeprom->scl && scl) { 306 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", 307 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); 308 if (eeprom->ack) { 309 logout("\ti2c ack bit = 0\n"); 310 sda = 0; 311 eeprom->ack = 0; 312 } else if (eeprom->sda == sda) { 313 uint8_t bit = (sda != 0); 314 logout("\ti2c bit = %d\n", bit); 315 if (eeprom->tick < 9) { 316 eeprom->command <<= 1; 317 eeprom->command += bit; 318 eeprom->tick++; 319 if (eeprom->tick == 9) { 320 logout("\tcommand 0x%04x, %s\n", eeprom->command, 321 bit ? "read" : "write"); 322 eeprom->ack = 1; 323 } 324 } else if (eeprom->tick < 17) { 325 if (eeprom->command & 1) { 326 sda = ((eeprom->data & 0x80) != 0); 327 } 328 eeprom->address <<= 1; 329 eeprom->address += bit; 330 eeprom->tick++; 331 eeprom->data <<= 1; 332 if (eeprom->tick == 17) { 333 eeprom->data = eeprom->contents[eeprom->address]; 334 logout("\taddress 0x%04x, data 0x%02x\n", 335 eeprom->address, eeprom->data); 336 eeprom->ack = 1; 337 eeprom->tick = 0; 338 } 339 } else if (eeprom->tick >= 17) { 340 sda = 0; 341 } 342 } else { 343 logout("\tsda changed with raising scl\n"); 344 } 345 } else { 346 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, 347 scl, eeprom->sda, sda); 348 } 349 eeprom->scl = scl; 350 eeprom->sda = sda; 351 } 352 353 static uint64_t malta_fpga_read(void *opaque, hwaddr addr, 354 unsigned size) 355 { 356 MaltaFPGAState *s = opaque; 357 uint32_t val = 0; 358 uint32_t saddr; 359 360 saddr = (addr & 0xfffff); 361 362 switch (saddr) { 363 364 /* SWITCH Register */ 365 case 0x00200: 366 val = 0x00000000; 367 break; 368 369 /* STATUS Register */ 370 case 0x00208: 371 #ifdef TARGET_WORDS_BIGENDIAN 372 val = 0x00000012; 373 #else 374 val = 0x00000010; 375 #endif 376 break; 377 378 /* JMPRS Register */ 379 case 0x00210: 380 val = 0x00; 381 break; 382 383 /* LEDBAR Register */ 384 case 0x00408: 385 val = s->leds; 386 break; 387 388 /* BRKRES Register */ 389 case 0x00508: 390 val = s->brk; 391 break; 392 393 /* UART Registers are handled directly by the serial device */ 394 395 /* GPOUT Register */ 396 case 0x00a00: 397 val = s->gpout; 398 break; 399 400 /* XXX: implement a real I2C controller */ 401 402 /* GPINP Register */ 403 case 0x00a08: 404 /* IN = OUT until a real I2C control is implemented */ 405 if (s->i2csel) { 406 val = s->i2cout; 407 } else { 408 val = 0x00; 409 } 410 break; 411 412 /* I2CINP Register */ 413 case 0x00b00: 414 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); 415 break; 416 417 /* I2COE Register */ 418 case 0x00b08: 419 val = s->i2coe; 420 break; 421 422 /* I2COUT Register */ 423 case 0x00b10: 424 val = s->i2cout; 425 break; 426 427 /* I2CSEL Register */ 428 case 0x00b18: 429 val = s->i2csel; 430 break; 431 432 default: 433 qemu_log_mask(LOG_GUEST_ERROR, 434 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n", 435 addr); 436 break; 437 } 438 return val; 439 } 440 441 static void malta_fpga_write(void *opaque, hwaddr addr, 442 uint64_t val, unsigned size) 443 { 444 MaltaFPGAState *s = opaque; 445 uint32_t saddr; 446 447 saddr = (addr & 0xfffff); 448 449 switch (saddr) { 450 451 /* SWITCH Register */ 452 case 0x00200: 453 break; 454 455 /* JMPRS Register */ 456 case 0x00210: 457 break; 458 459 /* LEDBAR Register */ 460 case 0x00408: 461 s->leds = val & 0xff; 462 malta_fpga_update_display(s); 463 break; 464 465 /* ASCIIWORD Register */ 466 case 0x00410: 467 snprintf(s->display_text, 9, "%08X", (uint32_t)val); 468 malta_fpga_update_display(s); 469 break; 470 471 /* ASCIIPOS0 to ASCIIPOS7 Registers */ 472 case 0x00418: 473 case 0x00420: 474 case 0x00428: 475 case 0x00430: 476 case 0x00438: 477 case 0x00440: 478 case 0x00448: 479 case 0x00450: 480 s->display_text[(saddr - 0x00418) >> 3] = (char) val; 481 malta_fpga_update_display(s); 482 break; 483 484 /* SOFTRES Register */ 485 case 0x00500: 486 if (val == 0x42) { 487 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 488 } 489 break; 490 491 /* BRKRES Register */ 492 case 0x00508: 493 s->brk = val & 0xff; 494 break; 495 496 /* UART Registers are handled directly by the serial device */ 497 498 /* GPOUT Register */ 499 case 0x00a00: 500 s->gpout = val & 0xff; 501 break; 502 503 /* I2COE Register */ 504 case 0x00b08: 505 s->i2coe = val & 0x03; 506 break; 507 508 /* I2COUT Register */ 509 case 0x00b10: 510 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); 511 s->i2cout = val; 512 break; 513 514 /* I2CSEL Register */ 515 case 0x00b18: 516 s->i2csel = val & 0x01; 517 break; 518 519 default: 520 qemu_log_mask(LOG_GUEST_ERROR, 521 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n", 522 addr); 523 break; 524 } 525 } 526 527 static const MemoryRegionOps malta_fpga_ops = { 528 .read = malta_fpga_read, 529 .write = malta_fpga_write, 530 .endianness = DEVICE_NATIVE_ENDIAN, 531 }; 532 533 static void malta_fpga_reset(void *opaque) 534 { 535 MaltaFPGAState *s = opaque; 536 537 s->leds = 0x00; 538 s->brk = 0x0a; 539 s->gpout = 0x00; 540 s->i2cin = 0x3; 541 s->i2coe = 0x0; 542 s->i2cout = 0x3; 543 s->i2csel = 0x1; 544 545 s->display_text[8] = '\0'; 546 snprintf(s->display_text, 9, " "); 547 } 548 549 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) 550 { 551 MaltaFPGAState *s = opaque; 552 553 if (event == CHR_EVENT_OPENED && !s->display_inited) { 554 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); 555 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 556 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 557 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 558 qemu_chr_fe_printf(&s->display, "\n"); 559 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); 560 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 561 qemu_chr_fe_printf(&s->display, "+ +\r\n"); 562 qemu_chr_fe_printf(&s->display, "+--------+\r\n"); 563 s->display_inited = true; 564 } 565 } 566 567 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, 568 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) 569 { 570 MaltaFPGAState *s; 571 Chardev *chr; 572 573 s = g_new0(MaltaFPGAState, 1); 574 575 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, 576 "malta-fpga", 0x100000); 577 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", 578 &s->iomem, 0, 0x900); 579 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", 580 &s->iomem, 0xa00, 0x10000 - 0xa00); 581 582 memory_region_add_subregion(address_space, base, &s->iomem_lo); 583 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); 584 585 chr = qemu_chr_new("fpga", "vc:320x200", NULL); 586 qemu_chr_fe_init(&s->display, chr, NULL); 587 qemu_chr_fe_set_handlers(&s->display, NULL, NULL, 588 malta_fgpa_display_event, NULL, s, NULL, true); 589 590 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, 591 230400, uart_chr, DEVICE_NATIVE_ENDIAN); 592 593 malta_fpga_reset(s); 594 qemu_register_reset(malta_fpga_reset, s); 595 596 return s; 597 } 598 599 /* Network support */ 600 static void network_init(PCIBus *pci_bus) 601 { 602 int i; 603 604 for (i = 0; i < nb_nics; i++) { 605 NICInfo *nd = &nd_table[i]; 606 const char *default_devaddr = NULL; 607 608 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) 609 /* The malta board has a PCNet card using PCI SLOT 11 */ 610 default_devaddr = "0b"; 611 612 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); 613 } 614 } 615 616 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr, 617 int64_t kernel_entry) 618 { 619 uint16_t *p; 620 621 /* Small bootloader */ 622 p = (uint16_t *)base; 623 624 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f) 625 #define NM_HI2(VAL) \ 626 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1)) 627 #define NM_LO(VAL) ((VAL) & 0xfff) 628 629 stw_p(p++, 0x2800); stw_p(p++, 0x001c); 630 /* bc to_here */ 631 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 632 /* nop */ 633 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 634 /* nop */ 635 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 636 /* nop */ 637 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 638 /* nop */ 639 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 640 /* nop */ 641 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 642 /* nop */ 643 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 644 /* nop */ 645 646 /* to_here: */ 647 if (semihosting_get_argc()) { 648 /* Preserve a0 content as arguments have been passed */ 649 stw_p(p++, 0x8000); stw_p(p++, 0xc000); 650 /* nop */ 651 } else { 652 stw_p(p++, 0x0080); stw_p(p++, 0x0002); 653 /* li a0,2 */ 654 } 655 656 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64)); 657 658 stw_p(p++, NM_HI2(ENVP_ADDR - 64)); 659 /* lui sp,%hi(ENVP_ADDR - 64) */ 660 661 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64)); 662 /* ori sp,sp,%lo(ENVP_ADDR - 64) */ 663 664 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR)); 665 666 stw_p(p++, NM_HI2(ENVP_ADDR)); 667 /* lui a1,%hi(ENVP_ADDR) */ 668 669 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR)); 670 /* ori a1,a1,%lo(ENVP_ADDR) */ 671 672 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8)); 673 674 stw_p(p++, NM_HI2(ENVP_ADDR + 8)); 675 /* lui a2,%hi(ENVP_ADDR + 8) */ 676 677 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8)); 678 /* ori a2,a2,%lo(ENVP_ADDR + 8) */ 679 680 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size)); 681 682 stw_p(p++, NM_HI2(loaderparams.ram_low_size)); 683 /* lui a3,%hi(loaderparams.ram_low_size) */ 684 685 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size)); 686 /* ori a3,a3,%lo(loaderparams.ram_low_size) */ 687 688 /* 689 * Load BAR registers as done by YAMON: 690 * 691 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff 692 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000 693 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000 694 * 695 */ 696 stw_p(p++, 0xe040); stw_p(p++, 0x0681); 697 /* lui t1, %hi(0xb4000000) */ 698 699 #ifdef TARGET_WORDS_BIGENDIAN 700 701 stw_p(p++, 0xe020); stw_p(p++, 0x0be1); 702 /* lui t0, %hi(0xdf000000) */ 703 704 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */ 705 stw_p(p++, 0x8422); stw_p(p++, 0x9068); 706 /* sw t0, 0x68(t1) */ 707 708 stw_p(p++, 0xe040); stw_p(p++, 0x077d); 709 /* lui t1, %hi(0xbbe00000) */ 710 711 stw_p(p++, 0xe020); stw_p(p++, 0x0801); 712 /* lui t0, %hi(0xc0000000) */ 713 714 /* 0x48 corresponds to GT_PCI0IOLD */ 715 stw_p(p++, 0x8422); stw_p(p++, 0x9048); 716 /* sw t0, 0x48(t1) */ 717 718 stw_p(p++, 0xe020); stw_p(p++, 0x0800); 719 /* lui t0, %hi(0x40000000) */ 720 721 /* 0x50 corresponds to GT_PCI0IOHD */ 722 stw_p(p++, 0x8422); stw_p(p++, 0x9050); 723 /* sw t0, 0x50(t1) */ 724 725 stw_p(p++, 0xe020); stw_p(p++, 0x0001); 726 /* lui t0, %hi(0x80000000) */ 727 728 /* 0x58 corresponds to GT_PCI0M0LD */ 729 stw_p(p++, 0x8422); stw_p(p++, 0x9058); 730 /* sw t0, 0x58(t1) */ 731 732 stw_p(p++, 0xe020); stw_p(p++, 0x07e0); 733 /* lui t0, %hi(0x3f000000) */ 734 735 /* 0x60 corresponds to GT_PCI0M0HD */ 736 stw_p(p++, 0x8422); stw_p(p++, 0x9060); 737 /* sw t0, 0x60(t1) */ 738 739 stw_p(p++, 0xe020); stw_p(p++, 0x0821); 740 /* lui t0, %hi(0xc1000000) */ 741 742 /* 0x80 corresponds to GT_PCI0M1LD */ 743 stw_p(p++, 0x8422); stw_p(p++, 0x9080); 744 /* sw t0, 0x80(t1) */ 745 746 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0); 747 /* lui t0, %hi(0x5e000000) */ 748 749 #else 750 751 stw_p(p++, 0x0020); stw_p(p++, 0x00df); 752 /* addiu[32] t0, $0, 0xdf */ 753 754 /* 0x68 corresponds to GT_ISD */ 755 stw_p(p++, 0x8422); stw_p(p++, 0x9068); 756 /* sw t0, 0x68(t1) */ 757 758 /* Use kseg2 remapped address 0x1be00000 */ 759 stw_p(p++, 0xe040); stw_p(p++, 0x077d); 760 /* lui t1, %hi(0xbbe00000) */ 761 762 stw_p(p++, 0x0020); stw_p(p++, 0x00c0); 763 /* addiu[32] t0, $0, 0xc0 */ 764 765 /* 0x48 corresponds to GT_PCI0IOLD */ 766 stw_p(p++, 0x8422); stw_p(p++, 0x9048); 767 /* sw t0, 0x48(t1) */ 768 769 stw_p(p++, 0x0020); stw_p(p++, 0x0040); 770 /* addiu[32] t0, $0, 0x40 */ 771 772 /* 0x50 corresponds to GT_PCI0IOHD */ 773 stw_p(p++, 0x8422); stw_p(p++, 0x9050); 774 /* sw t0, 0x50(t1) */ 775 776 stw_p(p++, 0x0020); stw_p(p++, 0x0080); 777 /* addiu[32] t0, $0, 0x80 */ 778 779 /* 0x58 corresponds to GT_PCI0M0LD */ 780 stw_p(p++, 0x8422); stw_p(p++, 0x9058); 781 /* sw t0, 0x58(t1) */ 782 783 stw_p(p++, 0x0020); stw_p(p++, 0x003f); 784 /* addiu[32] t0, $0, 0x3f */ 785 786 /* 0x60 corresponds to GT_PCI0M0HD */ 787 stw_p(p++, 0x8422); stw_p(p++, 0x9060); 788 /* sw t0, 0x60(t1) */ 789 790 stw_p(p++, 0x0020); stw_p(p++, 0x00c1); 791 /* addiu[32] t0, $0, 0xc1 */ 792 793 /* 0x80 corresponds to GT_PCI0M1LD */ 794 stw_p(p++, 0x8422); stw_p(p++, 0x9080); 795 /* sw t0, 0x80(t1) */ 796 797 stw_p(p++, 0x0020); stw_p(p++, 0x005e); 798 /* addiu[32] t0, $0, 0x5e */ 799 800 #endif 801 802 /* 0x88 corresponds to GT_PCI0M1HD */ 803 stw_p(p++, 0x8422); stw_p(p++, 0x9088); 804 /* sw t0, 0x88(t1) */ 805 806 stw_p(p++, 0xe320 | NM_HI1(kernel_entry)); 807 808 stw_p(p++, NM_HI2(kernel_entry)); 809 /* lui t9,%hi(kernel_entry) */ 810 811 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry)); 812 /* ori t9,t9,%lo(kernel_entry) */ 813 814 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000); 815 /* jalrc t8 */ 816 } 817 818 /* 819 * ROM and pseudo bootloader 820 * 821 * The following code implements a very very simple bootloader. It first 822 * loads the registers a0 to a3 to the values expected by the OS, and 823 * then jump at the kernel address. 824 * 825 * The bootloader should pass the locations of the kernel arguments and 826 * environment variables tables. Those tables contain the 32-bit address 827 * of NULL terminated strings. The environment variables table should be 828 * terminated by a NULL address. 829 * 830 * For a simpler implementation, the number of kernel arguments is fixed 831 * to two (the name of the kernel and the command line), and the two 832 * tables are actually the same one. 833 * 834 * The registers a0 to a3 should contain the following values: 835 * a0 - number of kernel arguments 836 * a1 - 32-bit address of the kernel arguments table 837 * a2 - 32-bit address of the environment variables table 838 * a3 - RAM size in bytes 839 */ 840 static void write_bootloader(uint8_t *base, int64_t run_addr, 841 int64_t kernel_entry) 842 { 843 uint32_t *p; 844 845 /* Small bootloader */ 846 p = (uint32_t *)base; 847 848 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ 849 ((run_addr + 0x580) & 0x0fffffff) >> 2); 850 stl_p(p++, 0x00000000); /* nop */ 851 852 /* YAMON service vector */ 853 stl_p(base + 0x500, run_addr + 0x0580); /* start: */ 854 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ 855 stl_p(base + 0x520, run_addr + 0x0580); /* start: */ 856 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ 857 stl_p(base + 0x534, run_addr + 0x0808); /* print: */ 858 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ 859 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ 860 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ 861 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ 862 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ 863 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ 864 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ 865 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ 866 867 868 /* Second part of the bootloader */ 869 p = (uint32_t *) (base + 0x580); 870 871 if (semihosting_get_argc()) { 872 /* Preserve a0 content as arguments have been passed */ 873 stl_p(p++, 0x00000000); /* nop */ 874 } else { 875 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */ 876 } 877 878 /* lui sp, high(ENVP_ADDR) */ 879 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); 880 /* ori sp, sp, low(ENVP_ADDR) */ 881 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); 882 /* lui a1, high(ENVP_ADDR) */ 883 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); 884 /* ori a1, a1, low(ENVP_ADDR) */ 885 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); 886 /* lui a2, high(ENVP_ADDR + 8) */ 887 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); 888 /* ori a2, a2, low(ENVP_ADDR + 8) */ 889 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); 890 /* lui a3, high(ram_low_size) */ 891 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); 892 /* ori a3, a3, low(ram_low_size) */ 893 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); 894 895 /* Load BAR registers as done by YAMON */ 896 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */ 897 898 #ifdef TARGET_WORDS_BIGENDIAN 899 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */ 900 #else 901 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */ 902 #endif 903 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */ 904 905 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */ 906 907 #ifdef TARGET_WORDS_BIGENDIAN 908 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */ 909 #else 910 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */ 911 #endif 912 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */ 913 #ifdef TARGET_WORDS_BIGENDIAN 914 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */ 915 #else 916 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */ 917 #endif 918 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */ 919 920 #ifdef TARGET_WORDS_BIGENDIAN 921 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */ 922 #else 923 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */ 924 #endif 925 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */ 926 #ifdef TARGET_WORDS_BIGENDIAN 927 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */ 928 #else 929 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */ 930 #endif 931 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */ 932 933 #ifdef TARGET_WORDS_BIGENDIAN 934 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */ 935 #else 936 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */ 937 #endif 938 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */ 939 #ifdef TARGET_WORDS_BIGENDIAN 940 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */ 941 #else 942 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */ 943 #endif 944 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */ 945 946 /* Jump to kernel code */ 947 stl_p(p++, 0x3c1f0000 | 948 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ 949 stl_p(p++, 0x37ff0000 | 950 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ 951 stl_p(p++, 0x03e00009); /* jalr ra */ 952 stl_p(p++, 0x00000000); /* nop */ 953 954 /* YAMON subroutines */ 955 p = (uint32_t *) (base + 0x800); 956 stl_p(p++, 0x03e00009); /* jalr ra */ 957 stl_p(p++, 0x24020000); /* li v0,0 */ 958 /* 808 YAMON print */ 959 stl_p(p++, 0x03e06821); /* move t5,ra */ 960 stl_p(p++, 0x00805821); /* move t3,a0 */ 961 stl_p(p++, 0x00a05021); /* move t2,a1 */ 962 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 963 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 964 stl_p(p++, 0x10800005); /* beqz a0,834 */ 965 stl_p(p++, 0x00000000); /* nop */ 966 stl_p(p++, 0x0ff0021c); /* jal 870 */ 967 stl_p(p++, 0x00000000); /* nop */ 968 stl_p(p++, 0x1000fff9); /* b 814 */ 969 stl_p(p++, 0x00000000); /* nop */ 970 stl_p(p++, 0x01a00009); /* jalr t5 */ 971 stl_p(p++, 0x01602021); /* move a0,t3 */ 972 /* 0x83c YAMON print_count */ 973 stl_p(p++, 0x03e06821); /* move t5,ra */ 974 stl_p(p++, 0x00805821); /* move t3,a0 */ 975 stl_p(p++, 0x00a05021); /* move t2,a1 */ 976 stl_p(p++, 0x00c06021); /* move t4,a2 */ 977 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ 978 stl_p(p++, 0x0ff0021c); /* jal 870 */ 979 stl_p(p++, 0x00000000); /* nop */ 980 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ 981 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ 982 stl_p(p++, 0x1580fffa); /* bnez t4,84c */ 983 stl_p(p++, 0x00000000); /* nop */ 984 stl_p(p++, 0x01a00009); /* jalr t5 */ 985 stl_p(p++, 0x01602021); /* move a0,t3 */ 986 /* 0x870 */ 987 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ 988 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ 989 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ 990 stl_p(p++, 0x00000000); /* nop */ 991 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ 992 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ 993 stl_p(p++, 0x00000000); /* nop */ 994 stl_p(p++, 0x03e00009); /* jalr ra */ 995 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ 996 997 } 998 999 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index, 1000 const char *string, ...) 1001 { 1002 va_list ap; 1003 int32_t table_addr; 1004 1005 if (index >= ENVP_NB_ENTRIES) { 1006 return; 1007 } 1008 1009 if (string == NULL) { 1010 prom_buf[index] = 0; 1011 return; 1012 } 1013 1014 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; 1015 prom_buf[index] = tswap32(ENVP_ADDR + table_addr); 1016 1017 va_start(ap, string); 1018 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); 1019 va_end(ap); 1020 } 1021 1022 /* Kernel */ 1023 static int64_t load_kernel(void) 1024 { 1025 int64_t kernel_entry, kernel_high, initrd_size; 1026 long kernel_size; 1027 ram_addr_t initrd_offset; 1028 int big_endian; 1029 uint32_t *prom_buf; 1030 long prom_size; 1031 int prom_index = 0; 1032 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr); 1033 1034 #ifdef TARGET_WORDS_BIGENDIAN 1035 big_endian = 1; 1036 #else 1037 big_endian = 0; 1038 #endif 1039 1040 kernel_size = load_elf(loaderparams.kernel_filename, NULL, 1041 cpu_mips_kseg0_to_phys, NULL, 1042 (uint64_t *)&kernel_entry, NULL, 1043 (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS, 1044 1, 0); 1045 if (kernel_size < 0) { 1046 error_report("could not load kernel '%s': %s", 1047 loaderparams.kernel_filename, 1048 load_elf_strerror(kernel_size)); 1049 exit(1); 1050 } 1051 1052 /* Check where the kernel has been linked */ 1053 if (kernel_entry & 0x80000000ll) { 1054 if (kvm_enabled()) { 1055 error_report("KVM guest kernels must be linked in useg. " 1056 "Did you forget to enable CONFIG_KVM_GUEST?"); 1057 exit(1); 1058 } 1059 1060 xlate_to_kseg0 = cpu_mips_phys_to_kseg0; 1061 } else { 1062 /* if kernel entry is in useg it is probably a KVM T&E kernel */ 1063 mips_um_ksegs_enable(); 1064 1065 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0; 1066 } 1067 1068 /* load initrd */ 1069 initrd_size = 0; 1070 initrd_offset = 0; 1071 if (loaderparams.initrd_filename) { 1072 initrd_size = get_image_size(loaderparams.initrd_filename); 1073 if (initrd_size > 0) { 1074 /* 1075 * The kernel allocates the bootmap memory in the low memory after 1076 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB 1077 * pages. 1078 */ 1079 initrd_offset = (loaderparams.ram_low_size - initrd_size 1080 - (128 * KiB) 1081 - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK; 1082 if (kernel_high >= initrd_offset) { 1083 error_report("memory too small for initial ram disk '%s'", 1084 loaderparams.initrd_filename); 1085 exit(1); 1086 } 1087 initrd_size = load_image_targphys(loaderparams.initrd_filename, 1088 initrd_offset, 1089 ram_size - initrd_offset); 1090 } 1091 if (initrd_size == (target_ulong) -1) { 1092 error_report("could not load initial ram disk '%s'", 1093 loaderparams.initrd_filename); 1094 exit(1); 1095 } 1096 } 1097 1098 /* Setup prom parameters. */ 1099 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); 1100 prom_buf = g_malloc(prom_size); 1101 1102 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); 1103 if (initrd_size > 0) { 1104 prom_set(prom_buf, prom_index++, 1105 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", 1106 xlate_to_kseg0(NULL, initrd_offset), 1107 initrd_size, loaderparams.kernel_cmdline); 1108 } else { 1109 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); 1110 } 1111 1112 prom_set(prom_buf, prom_index++, "memsize"); 1113 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); 1114 1115 prom_set(prom_buf, prom_index++, "ememsize"); 1116 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); 1117 1118 prom_set(prom_buf, prom_index++, "modetty0"); 1119 prom_set(prom_buf, prom_index++, "38400n8r"); 1120 prom_set(prom_buf, prom_index++, NULL); 1121 1122 rom_add_blob_fixed("prom", prom_buf, prom_size, 1123 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR)); 1124 1125 g_free(prom_buf); 1126 return kernel_entry; 1127 } 1128 1129 static void malta_mips_config(MIPSCPU *cpu) 1130 { 1131 MachineState *ms = MACHINE(qdev_get_machine()); 1132 unsigned int smp_cpus = ms->smp.cpus; 1133 CPUMIPSState *env = &cpu->env; 1134 CPUState *cs = CPU(cpu); 1135 1136 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) | 1137 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC); 1138 } 1139 1140 static void main_cpu_reset(void *opaque) 1141 { 1142 MIPSCPU *cpu = opaque; 1143 CPUMIPSState *env = &cpu->env; 1144 1145 cpu_reset(CPU(cpu)); 1146 1147 /* 1148 * The bootloader does not need to be rewritten as it is located in a 1149 * read only location. The kernel location and the arguments table 1150 * location does not change. 1151 */ 1152 if (loaderparams.kernel_filename) { 1153 env->CP0_Status &= ~(1 << CP0St_ERL); 1154 } 1155 1156 malta_mips_config(cpu); 1157 1158 if (kvm_enabled()) { 1159 /* Start running from the bootloader we wrote to end of RAM */ 1160 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size; 1161 } 1162 } 1163 1164 static void create_cpu_without_cps(MachineState *ms, 1165 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1166 { 1167 CPUMIPSState *env; 1168 MIPSCPU *cpu; 1169 int i; 1170 1171 for (i = 0; i < ms->smp.cpus; i++) { 1172 cpu = MIPS_CPU(cpu_create(ms->cpu_type)); 1173 1174 /* Init internal devices */ 1175 cpu_mips_irq_init_cpu(cpu); 1176 cpu_mips_clock_init(cpu); 1177 qemu_register_reset(main_cpu_reset, cpu); 1178 } 1179 1180 cpu = MIPS_CPU(first_cpu); 1181 env = &cpu->env; 1182 *i8259_irq = env->irq[2]; 1183 *cbus_irq = env->irq[4]; 1184 } 1185 1186 static void create_cps(MachineState *ms, MaltaState *s, 1187 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1188 { 1189 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS); 1190 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type, 1191 &error_fatal); 1192 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus, 1193 &error_fatal); 1194 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 1195 1196 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 1197 1198 *i8259_irq = get_cps_irq(&s->cps, 3); 1199 *cbus_irq = NULL; 1200 } 1201 1202 static void mips_create_cpu(MachineState *ms, MaltaState *s, 1203 qemu_irq *cbus_irq, qemu_irq *i8259_irq) 1204 { 1205 if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) { 1206 create_cps(ms, s, cbus_irq, i8259_irq); 1207 } else { 1208 create_cpu_without_cps(ms, cbus_irq, i8259_irq); 1209 } 1210 } 1211 1212 static 1213 void mips_malta_init(MachineState *machine) 1214 { 1215 ram_addr_t ram_size = machine->ram_size; 1216 ram_addr_t ram_low_size; 1217 const char *kernel_filename = machine->kernel_filename; 1218 const char *kernel_cmdline = machine->kernel_cmdline; 1219 const char *initrd_filename = machine->initrd_filename; 1220 char *filename; 1221 PFlashCFI01 *fl; 1222 MemoryRegion *system_memory = get_system_memory(); 1223 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); 1224 MemoryRegion *ram_low_postio; 1225 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); 1226 const size_t smbus_eeprom_size = 8 * 256; 1227 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); 1228 int64_t kernel_entry, bootloader_run_addr; 1229 PCIBus *pci_bus; 1230 ISABus *isa_bus; 1231 qemu_irq cbus_irq, i8259_irq; 1232 I2CBus *smbus; 1233 DriveInfo *dinfo; 1234 int fl_idx = 0; 1235 int be; 1236 1237 DeviceState *dev = qdev_new(TYPE_MIPS_MALTA); 1238 MaltaState *s = MIPS_MALTA(dev); 1239 1240 /* 1241 * The whole address space decoded by the GT-64120A doesn't generate 1242 * exception when accessing invalid memory. Create an empty slot to 1243 * emulate this feature. 1244 */ 1245 empty_slot_init("GT64120", 0, 0x20000000); 1246 1247 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 1248 1249 /* create CPU */ 1250 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); 1251 1252 /* allocate RAM */ 1253 if (ram_size > 2 * GiB) { 1254 error_report("Too much memory for this machine: %" PRId64 "MB," 1255 " maximum 2048MB", ram_size / MiB); 1256 exit(1); 1257 } 1258 1259 /* register RAM at high address where it is undisturbed by IO */ 1260 memory_region_add_subregion(system_memory, 0x80000000, machine->ram); 1261 1262 /* alias for pre IO hole access */ 1263 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", 1264 machine->ram, 0, MIN(ram_size, 256 * MiB)); 1265 memory_region_add_subregion(system_memory, 0, ram_low_preio); 1266 1267 /* alias for post IO hole access, if there is enough RAM */ 1268 if (ram_size > 512 * MiB) { 1269 ram_low_postio = g_new(MemoryRegion, 1); 1270 memory_region_init_alias(ram_low_postio, NULL, 1271 "mips_malta_low_postio.ram", 1272 machine->ram, 512 * MiB, 1273 ram_size - 512 * MiB); 1274 memory_region_add_subregion(system_memory, 512 * MiB, 1275 ram_low_postio); 1276 } 1277 1278 #ifdef TARGET_WORDS_BIGENDIAN 1279 be = 1; 1280 #else 1281 be = 0; 1282 #endif 1283 1284 /* FPGA */ 1285 1286 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ 1287 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); 1288 1289 /* Load firmware in flash / BIOS. */ 1290 dinfo = drive_get(IF_PFLASH, 0, fl_idx); 1291 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", 1292 FLASH_SIZE, 1293 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, 1294 65536, 1295 4, 0x0000, 0x0000, 0x0000, 0x0000, be); 1296 bios = pflash_cfi01_get_memory(fl); 1297 fl_idx++; 1298 if (kernel_filename) { 1299 ram_low_size = MIN(ram_size, 256 * MiB); 1300 /* For KVM we reserve 1MB of RAM for running bootloader */ 1301 if (kvm_enabled()) { 1302 ram_low_size -= 0x100000; 1303 bootloader_run_addr = 0x40000000 + ram_low_size; 1304 } else { 1305 bootloader_run_addr = 0xbfc00000; 1306 } 1307 1308 /* Write a small bootloader to the flash location. */ 1309 loaderparams.ram_size = ram_size; 1310 loaderparams.ram_low_size = ram_low_size; 1311 loaderparams.kernel_filename = kernel_filename; 1312 loaderparams.kernel_cmdline = kernel_cmdline; 1313 loaderparams.initrd_filename = initrd_filename; 1314 kernel_entry = load_kernel(); 1315 1316 if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { 1317 write_bootloader(memory_region_get_ram_ptr(bios), 1318 bootloader_run_addr, kernel_entry); 1319 } else { 1320 write_bootloader_nanomips(memory_region_get_ram_ptr(bios), 1321 bootloader_run_addr, kernel_entry); 1322 } 1323 if (kvm_enabled()) { 1324 /* Write the bootloader code @ the end of RAM, 1MB reserved */ 1325 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) + 1326 ram_low_size, 1327 bootloader_run_addr, kernel_entry); 1328 } 1329 } else { 1330 target_long bios_size = FLASH_SIZE; 1331 /* The flash region isn't executable from a KVM guest */ 1332 if (kvm_enabled()) { 1333 error_report("KVM enabled but no -kernel argument was specified. " 1334 "Booting from flash is not supported with KVM."); 1335 exit(1); 1336 } 1337 /* Load firmware from flash. */ 1338 if (!dinfo) { 1339 /* Load a BIOS image. */ 1340 if (bios_name == NULL) { 1341 bios_name = BIOS_FILENAME; 1342 } 1343 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1344 if (filename) { 1345 bios_size = load_image_targphys(filename, FLASH_ADDRESS, 1346 BIOS_SIZE); 1347 g_free(filename); 1348 } else { 1349 bios_size = -1; 1350 } 1351 if ((bios_size < 0 || bios_size > BIOS_SIZE) && 1352 !kernel_filename && !qtest_enabled()) { 1353 error_report("Could not load MIPS bios '%s', and no " 1354 "-kernel argument was specified", bios_name); 1355 exit(1); 1356 } 1357 } 1358 /* 1359 * In little endian mode the 32bit words in the bios are swapped, 1360 * a neat trick which allows bi-endian firmware. 1361 */ 1362 #ifndef TARGET_WORDS_BIGENDIAN 1363 { 1364 uint32_t *end, *addr; 1365 const size_t swapsize = MIN(bios_size, 0x3e0000); 1366 addr = rom_ptr(FLASH_ADDRESS, swapsize); 1367 if (!addr) { 1368 addr = memory_region_get_ram_ptr(bios); 1369 } 1370 end = (void *)addr + swapsize; 1371 while (addr < end) { 1372 bswap32s(addr); 1373 addr++; 1374 } 1375 } 1376 #endif 1377 } 1378 1379 /* 1380 * Map the BIOS at a 2nd physical location, as on the real board. 1381 * Copy it so that we can patch in the MIPS revision, which cannot be 1382 * handled by an overlapping region as the resulting ROM code subpage 1383 * regions are not executable. 1384 */ 1385 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, 1386 &error_fatal); 1387 if (!rom_copy(memory_region_get_ram_ptr(bios_copy), 1388 FLASH_ADDRESS, BIOS_SIZE)) { 1389 memcpy(memory_region_get_ram_ptr(bios_copy), 1390 memory_region_get_ram_ptr(bios), BIOS_SIZE); 1391 } 1392 memory_region_set_readonly(bios_copy, true); 1393 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); 1394 1395 /* Board ID = 0x420 (Malta Board with CoreLV) */ 1396 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); 1397 1398 /* Northbridge */ 1399 pci_bus = gt64120_register(s->i8259); 1400 1401 /* Southbridge */ 1402 dev = piix4_create(pci_bus, &isa_bus, &smbus); 1403 1404 /* Interrupt controller */ 1405 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq); 1406 for (int i = 0; i < ISA_NUM_IRQS; i++) { 1407 s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i); 1408 } 1409 1410 /* generate SPD EEPROM data */ 1411 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); 1412 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); 1413 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); 1414 g_free(smbus_eeprom_buf); 1415 1416 /* Super I/O: SMS FDC37M817 */ 1417 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); 1418 1419 /* Network card */ 1420 network_init(pci_bus); 1421 1422 /* Optional PCI video card */ 1423 pci_vga_init(pci_bus); 1424 } 1425 1426 static const TypeInfo mips_malta_device = { 1427 .name = TYPE_MIPS_MALTA, 1428 .parent = TYPE_SYS_BUS_DEVICE, 1429 .instance_size = sizeof(MaltaState), 1430 }; 1431 1432 static void mips_malta_machine_init(MachineClass *mc) 1433 { 1434 mc->desc = "MIPS Malta Core LV"; 1435 mc->init = mips_malta_init; 1436 mc->block_default_type = IF_IDE; 1437 mc->max_cpus = 16; 1438 mc->is_default = true; 1439 #ifdef TARGET_MIPS64 1440 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); 1441 #else 1442 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); 1443 #endif 1444 mc->default_ram_id = "mips_malta.ram"; 1445 } 1446 1447 DEFINE_MACHINE("malta", mips_malta_machine_init) 1448 1449 static void mips_malta_register_types(void) 1450 { 1451 type_register_static(&mips_malta_device); 1452 } 1453 1454 type_init(mips_malta_register_types) 1455