xref: /openbmc/qemu/hw/mips/malta.c (revision 8f2aff64)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "cpu.h"
31 #include "hw/clock.h"
32 #include "hw/southbridge/piix.h"
33 #include "hw/isa/superio.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/boards.h"
37 #include "hw/i2c/smbus_eeprom.h"
38 #include "hw/block/flash.h"
39 #include "hw/mips/mips.h"
40 #include "hw/mips/cpudevs.h"
41 #include "hw/pci/pci.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/arch_init.h"
44 #include "qemu/log.h"
45 #include "hw/mips/bios.h"
46 #include "hw/ide.h"
47 #include "hw/irq.h"
48 #include "hw/loader.h"
49 #include "elf.h"
50 #include "exec/address-spaces.h"
51 #include "qom/object.h"
52 #include "hw/sysbus.h"             /* SysBusDevice */
53 #include "qemu/host-utils.h"
54 #include "sysemu/qtest.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/runstate.h"
57 #include "qapi/error.h"
58 #include "qemu/error-report.h"
59 #include "hw/misc/empty_slot.h"
60 #include "sysemu/kvm.h"
61 #include "hw/semihosting/semihost.h"
62 #include "hw/mips/cps.h"
63 #include "hw/qdev-clock.h"
64 
65 #define ENVP_ADDR           0x80002000l
66 #define ENVP_NB_ENTRIES     16
67 #define ENVP_ENTRY_SIZE     256
68 
69 /* Hardware addresses */
70 #define FLASH_ADDRESS       0x1e000000ULL
71 #define FPGA_ADDRESS        0x1f000000ULL
72 #define RESET_ADDRESS       0x1fc00000ULL
73 
74 #define FLASH_SIZE          0x400000
75 
76 #define MAX_IDE_BUS         2
77 
78 typedef struct {
79     MemoryRegion iomem;
80     MemoryRegion iomem_lo; /* 0 - 0x900 */
81     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
82     uint32_t leds;
83     uint32_t brk;
84     uint32_t gpout;
85     uint32_t i2cin;
86     uint32_t i2coe;
87     uint32_t i2cout;
88     uint32_t i2csel;
89     CharBackend display;
90     char display_text[9];
91     SerialMM *uart;
92     bool display_inited;
93 } MaltaFPGAState;
94 
95 #define TYPE_MIPS_MALTA "mips-malta"
96 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
97 
98 struct MaltaState {
99     SysBusDevice parent_obj;
100 
101     Clock *cpuclk;
102     MIPSCPSState cps;
103     qemu_irq i8259[ISA_NUM_IRQS];
104 };
105 
106 static struct _loaderparams {
107     int ram_size, ram_low_size;
108     const char *kernel_filename;
109     const char *kernel_cmdline;
110     const char *initrd_filename;
111 } loaderparams;
112 
113 /* Malta FPGA */
114 static void malta_fpga_update_display(void *opaque)
115 {
116     char leds_text[9];
117     int i;
118     MaltaFPGAState *s = opaque;
119 
120     for (i = 7 ; i >= 0 ; i--) {
121         if (s->leds & (1 << i)) {
122             leds_text[i] = '#';
123         } else {
124             leds_text[i] = ' ';
125         }
126     }
127     leds_text[8] = '\0';
128 
129     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
130                        leds_text);
131     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
132                        s->display_text);
133 }
134 
135 /*
136  * EEPROM 24C01 / 24C02 emulation.
137  *
138  * Emulation for serial EEPROMs:
139  * 24C01 - 1024 bit (128 x 8)
140  * 24C02 - 2048 bit (256 x 8)
141  *
142  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
143  */
144 
145 #if defined(DEBUG)
146 #  define logout(fmt, ...) \
147           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
148 #else
149 #  define logout(fmt, ...) ((void)0)
150 #endif
151 
152 struct _eeprom24c0x_t {
153   uint8_t tick;
154   uint8_t address;
155   uint8_t command;
156   uint8_t ack;
157   uint8_t scl;
158   uint8_t sda;
159   uint8_t data;
160   /* uint16_t size; */
161   uint8_t contents[256];
162 };
163 
164 typedef struct _eeprom24c0x_t eeprom24c0x_t;
165 
166 static eeprom24c0x_t spd_eeprom = {
167     .contents = {
168         /* 00000000: */
169         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
170         /* 00000008: */
171         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
172         /* 00000010: */
173         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
174         /* 00000018: */
175         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
176         /* 00000020: */
177         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
178         /* 00000028: */
179         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180         /* 00000030: */
181         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182         /* 00000038: */
183         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
184         /* 00000040: */
185         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186         /* 00000048: */
187         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188         /* 00000050: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000058: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000060: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194         /* 00000068: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196         /* 00000070: */
197         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
198         /* 00000078: */
199         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
200     },
201 };
202 
203 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
204 {
205     enum { SDR = 0x4, DDR2 = 0x8 } type;
206     uint8_t *spd = spd_eeprom.contents;
207     uint8_t nbanks = 0;
208     uint16_t density = 0;
209     int i;
210 
211     /* work in terms of MB */
212     ram_size /= MiB;
213 
214     while ((ram_size >= 4) && (nbanks <= 2)) {
215         int sz_log2 = MIN(31 - clz32(ram_size), 14);
216         nbanks++;
217         density |= 1 << (sz_log2 - 2);
218         ram_size -= 1 << sz_log2;
219     }
220 
221     /* split to 2 banks if possible */
222     if ((nbanks == 1) && (density > 1)) {
223         nbanks++;
224         density >>= 1;
225     }
226 
227     if (density & 0xff00) {
228         density = (density & 0xe0) | ((density >> 8) & 0x1f);
229         type = DDR2;
230     } else if (!(density & 0x1f)) {
231         type = DDR2;
232     } else {
233         type = SDR;
234     }
235 
236     if (ram_size) {
237         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
238                     " of SDRAM", ram_size);
239     }
240 
241     /* fill in SPD memory information */
242     spd[2] = type;
243     spd[5] = nbanks;
244     spd[31] = density;
245 
246     /* checksum */
247     spd[63] = 0;
248     for (i = 0; i < 63; i++) {
249         spd[63] += spd[i];
250     }
251 
252     /* copy for SMBUS */
253     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
254 }
255 
256 static void generate_eeprom_serial(uint8_t *eeprom)
257 {
258     int i, pos = 0;
259     uint8_t mac[6] = { 0x00 };
260     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
261 
262     /* version */
263     eeprom[pos++] = 0x01;
264 
265     /* count */
266     eeprom[pos++] = 0x02;
267 
268     /* MAC address */
269     eeprom[pos++] = 0x01; /* MAC */
270     eeprom[pos++] = 0x06; /* length */
271     memcpy(&eeprom[pos], mac, sizeof(mac));
272     pos += sizeof(mac);
273 
274     /* serial number */
275     eeprom[pos++] = 0x02; /* serial */
276     eeprom[pos++] = 0x05; /* length */
277     memcpy(&eeprom[pos], sn, sizeof(sn));
278     pos += sizeof(sn);
279 
280     /* checksum */
281     eeprom[pos] = 0;
282     for (i = 0; i < pos; i++) {
283         eeprom[pos] += eeprom[i];
284     }
285 }
286 
287 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
288 {
289     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
290         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
291     return eeprom->sda;
292 }
293 
294 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
295 {
296     if (eeprom->scl && scl && (eeprom->sda != sda)) {
297         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
298                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
299                 sda ? "stop" : "start");
300         if (!sda) {
301             eeprom->tick = 1;
302             eeprom->command = 0;
303         }
304     } else if (eeprom->tick == 0 && !eeprom->ack) {
305         /* Waiting for start. */
306         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
307                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
308     } else if (!eeprom->scl && scl) {
309         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
310                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
311         if (eeprom->ack) {
312             logout("\ti2c ack bit = 0\n");
313             sda = 0;
314             eeprom->ack = 0;
315         } else if (eeprom->sda == sda) {
316             uint8_t bit = (sda != 0);
317             logout("\ti2c bit = %d\n", bit);
318             if (eeprom->tick < 9) {
319                 eeprom->command <<= 1;
320                 eeprom->command += bit;
321                 eeprom->tick++;
322                 if (eeprom->tick == 9) {
323                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
324                            bit ? "read" : "write");
325                     eeprom->ack = 1;
326                 }
327             } else if (eeprom->tick < 17) {
328                 if (eeprom->command & 1) {
329                     sda = ((eeprom->data & 0x80) != 0);
330                 }
331                 eeprom->address <<= 1;
332                 eeprom->address += bit;
333                 eeprom->tick++;
334                 eeprom->data <<= 1;
335                 if (eeprom->tick == 17) {
336                     eeprom->data = eeprom->contents[eeprom->address];
337                     logout("\taddress 0x%04x, data 0x%02x\n",
338                            eeprom->address, eeprom->data);
339                     eeprom->ack = 1;
340                     eeprom->tick = 0;
341                 }
342             } else if (eeprom->tick >= 17) {
343                 sda = 0;
344             }
345         } else {
346             logout("\tsda changed with raising scl\n");
347         }
348     } else {
349         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
350                scl, eeprom->sda, sda);
351     }
352     eeprom->scl = scl;
353     eeprom->sda = sda;
354 }
355 
356 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
357                                 unsigned size)
358 {
359     MaltaFPGAState *s = opaque;
360     uint32_t val = 0;
361     uint32_t saddr;
362 
363     saddr = (addr & 0xfffff);
364 
365     switch (saddr) {
366 
367     /* SWITCH Register */
368     case 0x00200:
369         val = 0x00000000;
370         break;
371 
372     /* STATUS Register */
373     case 0x00208:
374 #ifdef TARGET_WORDS_BIGENDIAN
375         val = 0x00000012;
376 #else
377         val = 0x00000010;
378 #endif
379         break;
380 
381     /* JMPRS Register */
382     case 0x00210:
383         val = 0x00;
384         break;
385 
386     /* LEDBAR Register */
387     case 0x00408:
388         val = s->leds;
389         break;
390 
391     /* BRKRES Register */
392     case 0x00508:
393         val = s->brk;
394         break;
395 
396     /* UART Registers are handled directly by the serial device */
397 
398     /* GPOUT Register */
399     case 0x00a00:
400         val = s->gpout;
401         break;
402 
403     /* XXX: implement a real I2C controller */
404 
405     /* GPINP Register */
406     case 0x00a08:
407         /* IN = OUT until a real I2C control is implemented */
408         if (s->i2csel) {
409             val = s->i2cout;
410         } else {
411             val = 0x00;
412         }
413         break;
414 
415     /* I2CINP Register */
416     case 0x00b00:
417         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
418         break;
419 
420     /* I2COE Register */
421     case 0x00b08:
422         val = s->i2coe;
423         break;
424 
425     /* I2COUT Register */
426     case 0x00b10:
427         val = s->i2cout;
428         break;
429 
430     /* I2CSEL Register */
431     case 0x00b18:
432         val = s->i2csel;
433         break;
434 
435     default:
436         qemu_log_mask(LOG_GUEST_ERROR,
437                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
438                       addr);
439         break;
440     }
441     return val;
442 }
443 
444 static void malta_fpga_write(void *opaque, hwaddr addr,
445                              uint64_t val, unsigned size)
446 {
447     MaltaFPGAState *s = opaque;
448     uint32_t saddr;
449 
450     saddr = (addr & 0xfffff);
451 
452     switch (saddr) {
453 
454     /* SWITCH Register */
455     case 0x00200:
456         break;
457 
458     /* JMPRS Register */
459     case 0x00210:
460         break;
461 
462     /* LEDBAR Register */
463     case 0x00408:
464         s->leds = val & 0xff;
465         malta_fpga_update_display(s);
466         break;
467 
468     /* ASCIIWORD Register */
469     case 0x00410:
470         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
471         malta_fpga_update_display(s);
472         break;
473 
474     /* ASCIIPOS0 to ASCIIPOS7 Registers */
475     case 0x00418:
476     case 0x00420:
477     case 0x00428:
478     case 0x00430:
479     case 0x00438:
480     case 0x00440:
481     case 0x00448:
482     case 0x00450:
483         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
484         malta_fpga_update_display(s);
485         break;
486 
487     /* SOFTRES Register */
488     case 0x00500:
489         if (val == 0x42) {
490             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
491         }
492         break;
493 
494     /* BRKRES Register */
495     case 0x00508:
496         s->brk = val & 0xff;
497         break;
498 
499     /* UART Registers are handled directly by the serial device */
500 
501     /* GPOUT Register */
502     case 0x00a00:
503         s->gpout = val & 0xff;
504         break;
505 
506     /* I2COE Register */
507     case 0x00b08:
508         s->i2coe = val & 0x03;
509         break;
510 
511     /* I2COUT Register */
512     case 0x00b10:
513         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
514         s->i2cout = val;
515         break;
516 
517     /* I2CSEL Register */
518     case 0x00b18:
519         s->i2csel = val & 0x01;
520         break;
521 
522     default:
523         qemu_log_mask(LOG_GUEST_ERROR,
524                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
525                       addr);
526         break;
527     }
528 }
529 
530 static const MemoryRegionOps malta_fpga_ops = {
531     .read = malta_fpga_read,
532     .write = malta_fpga_write,
533     .endianness = DEVICE_NATIVE_ENDIAN,
534 };
535 
536 static void malta_fpga_reset(void *opaque)
537 {
538     MaltaFPGAState *s = opaque;
539 
540     s->leds   = 0x00;
541     s->brk    = 0x0a;
542     s->gpout  = 0x00;
543     s->i2cin  = 0x3;
544     s->i2coe  = 0x0;
545     s->i2cout = 0x3;
546     s->i2csel = 0x1;
547 
548     s->display_text[8] = '\0';
549     snprintf(s->display_text, 9, "        ");
550 }
551 
552 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
553 {
554     MaltaFPGAState *s = opaque;
555 
556     if (event == CHR_EVENT_OPENED && !s->display_inited) {
557         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
558         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
559         qemu_chr_fe_printf(&s->display, "+        +\r\n");
560         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
561         qemu_chr_fe_printf(&s->display, "\n");
562         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
563         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
564         qemu_chr_fe_printf(&s->display, "+        +\r\n");
565         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
566         s->display_inited = true;
567     }
568 }
569 
570 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
571          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
572 {
573     MaltaFPGAState *s;
574     Chardev *chr;
575 
576     s = g_new0(MaltaFPGAState, 1);
577 
578     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
579                           "malta-fpga", 0x100000);
580     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
581                              &s->iomem, 0, 0x900);
582     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
583                              &s->iomem, 0xa00, 0x100000 - 0xa00);
584 
585     memory_region_add_subregion(address_space, base, &s->iomem_lo);
586     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
587 
588     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
589     qemu_chr_fe_init(&s->display, chr, NULL);
590     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
591                              malta_fgpa_display_event, NULL, s, NULL, true);
592 
593     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
594                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
595 
596     malta_fpga_reset(s);
597     qemu_register_reset(malta_fpga_reset, s);
598 
599     return s;
600 }
601 
602 /* Network support */
603 static void network_init(PCIBus *pci_bus)
604 {
605     int i;
606 
607     for (i = 0; i < nb_nics; i++) {
608         NICInfo *nd = &nd_table[i];
609         const char *default_devaddr = NULL;
610 
611         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
612             /* The malta board has a PCNet card using PCI SLOT 11 */
613             default_devaddr = "0b";
614 
615         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
616     }
617 }
618 
619 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
620                                       int64_t kernel_entry)
621 {
622     uint16_t *p;
623 
624     /* Small bootloader */
625     p = (uint16_t *)base;
626 
627 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
628 #define NM_HI2(VAL) \
629           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
630 #define NM_LO(VAL)  ((VAL) & 0xfff)
631 
632     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
633                                 /* bc to_here */
634     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635                                 /* nop */
636     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637                                 /* nop */
638     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639                                 /* nop */
640     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641                                 /* nop */
642     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643                                 /* nop */
644     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
645                                 /* nop */
646     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
647                                 /* nop */
648 
649     /* to_here: */
650     if (semihosting_get_argc()) {
651         /* Preserve a0 content as arguments have been passed    */
652         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
653                                 /* nop                          */
654     } else {
655         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
656                                 /* li a0,2                      */
657     }
658 
659     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
660 
661     stw_p(p++, NM_HI2(ENVP_ADDR - 64));
662                                 /* lui sp,%hi(ENVP_ADDR - 64)   */
663 
664     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
665                                 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
666 
667     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
668 
669     stw_p(p++, NM_HI2(ENVP_ADDR));
670                                 /* lui a1,%hi(ENVP_ADDR)        */
671 
672     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
673                                 /* ori a1,a1,%lo(ENVP_ADDR)     */
674 
675     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
676 
677     stw_p(p++, NM_HI2(ENVP_ADDR + 8));
678                                 /* lui a2,%hi(ENVP_ADDR + 8)    */
679 
680     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
681                                 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
682 
683     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
684 
685     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
686                                 /* lui a3,%hi(loaderparams.ram_low_size) */
687 
688     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
689                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
690 
691     /*
692      * Load BAR registers as done by YAMON:
693      *
694      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
695      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
696      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
697      *
698      */
699     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
700                                 /* lui t1, %hi(0xb4000000)      */
701 
702 #ifdef TARGET_WORDS_BIGENDIAN
703 
704     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
705                                 /* lui t0, %hi(0xdf000000)      */
706 
707     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
708     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
709                                 /* sw t0, 0x68(t1)              */
710 
711     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
712                                 /* lui t1, %hi(0xbbe00000)      */
713 
714     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
715                                 /* lui t0, %hi(0xc0000000)      */
716 
717     /* 0x48 corresponds to GT_PCI0IOLD                          */
718     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
719                                 /* sw t0, 0x48(t1)              */
720 
721     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
722                                 /* lui t0, %hi(0x40000000)      */
723 
724     /* 0x50 corresponds to GT_PCI0IOHD                          */
725     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
726                                 /* sw t0, 0x50(t1)              */
727 
728     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
729                                 /* lui t0, %hi(0x80000000)      */
730 
731     /* 0x58 corresponds to GT_PCI0M0LD                          */
732     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
733                                 /* sw t0, 0x58(t1)              */
734 
735     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
736                                 /* lui t0, %hi(0x3f000000)      */
737 
738     /* 0x60 corresponds to GT_PCI0M0HD                          */
739     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
740                                 /* sw t0, 0x60(t1)              */
741 
742     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
743                                 /* lui t0, %hi(0xc1000000)      */
744 
745     /* 0x80 corresponds to GT_PCI0M1LD                          */
746     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
747                                 /* sw t0, 0x80(t1)              */
748 
749     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
750                                 /* lui t0, %hi(0x5e000000)      */
751 
752 #else
753 
754     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
755                                 /* addiu[32] t0, $0, 0xdf       */
756 
757     /* 0x68 corresponds to GT_ISD                               */
758     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
759                                 /* sw t0, 0x68(t1)              */
760 
761     /* Use kseg2 remapped address 0x1be00000                    */
762     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
763                                 /* lui t1, %hi(0xbbe00000)      */
764 
765     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
766                                 /* addiu[32] t0, $0, 0xc0       */
767 
768     /* 0x48 corresponds to GT_PCI0IOLD                          */
769     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
770                                 /* sw t0, 0x48(t1)              */
771 
772     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
773                                 /* addiu[32] t0, $0, 0x40       */
774 
775     /* 0x50 corresponds to GT_PCI0IOHD                          */
776     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
777                                 /* sw t0, 0x50(t1)              */
778 
779     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
780                                 /* addiu[32] t0, $0, 0x80       */
781 
782     /* 0x58 corresponds to GT_PCI0M0LD                          */
783     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
784                                 /* sw t0, 0x58(t1)              */
785 
786     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
787                                 /* addiu[32] t0, $0, 0x3f       */
788 
789     /* 0x60 corresponds to GT_PCI0M0HD                          */
790     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
791                                 /* sw t0, 0x60(t1)              */
792 
793     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
794                                 /* addiu[32] t0, $0, 0xc1       */
795 
796     /* 0x80 corresponds to GT_PCI0M1LD                          */
797     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
798                                 /* sw t0, 0x80(t1)              */
799 
800     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
801                                 /* addiu[32] t0, $0, 0x5e       */
802 
803 #endif
804 
805     /* 0x88 corresponds to GT_PCI0M1HD                          */
806     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
807                                 /* sw t0, 0x88(t1)              */
808 
809     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
810 
811     stw_p(p++, NM_HI2(kernel_entry));
812                                 /* lui t9,%hi(kernel_entry)     */
813 
814     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
815                                 /* ori t9,t9,%lo(kernel_entry)  */
816 
817     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
818                                 /* jalrc   t8                   */
819 }
820 
821 /*
822  * ROM and pseudo bootloader
823  *
824  * The following code implements a very very simple bootloader. It first
825  * loads the registers a0 to a3 to the values expected by the OS, and
826  * then jump at the kernel address.
827  *
828  * The bootloader should pass the locations of the kernel arguments and
829  * environment variables tables. Those tables contain the 32-bit address
830  * of NULL terminated strings. The environment variables table should be
831  * terminated by a NULL address.
832  *
833  * For a simpler implementation, the number of kernel arguments is fixed
834  * to two (the name of the kernel and the command line), and the two
835  * tables are actually the same one.
836  *
837  * The registers a0 to a3 should contain the following values:
838  *   a0 - number of kernel arguments
839  *   a1 - 32-bit address of the kernel arguments table
840  *   a2 - 32-bit address of the environment variables table
841  *   a3 - RAM size in bytes
842  */
843 static void write_bootloader(uint8_t *base, int64_t run_addr,
844                              int64_t kernel_entry)
845 {
846     uint32_t *p;
847 
848     /* Small bootloader */
849     p = (uint32_t *)base;
850 
851     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
852                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
853     stl_p(p++, 0x00000000);                  /* nop */
854 
855     /* YAMON service vector */
856     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
857     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
858     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
859     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
860     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
861     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
862     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
863     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
864     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
865     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
866     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
867     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
868     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
869 
870 
871     /* Second part of the bootloader */
872     p = (uint32_t *) (base + 0x580);
873 
874     if (semihosting_get_argc()) {
875         /* Preserve a0 content as arguments have been passed */
876         stl_p(p++, 0x00000000);              /* nop */
877     } else {
878         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
879     }
880 
881     /* lui sp, high(ENVP_ADDR) */
882     stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
883     /* ori sp, sp, low(ENVP_ADDR) */
884     stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
885     /* lui a1, high(ENVP_ADDR) */
886     stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
887     /* ori a1, a1, low(ENVP_ADDR) */
888     stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
889     /* lui a2, high(ENVP_ADDR + 8) */
890     stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
891     /* ori a2, a2, low(ENVP_ADDR + 8) */
892     stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
893     /* lui a3, high(ram_low_size) */
894     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
895     /* ori a3, a3, low(ram_low_size) */
896     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
897 
898     /* Load BAR registers as done by YAMON */
899     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
900 
901 #ifdef TARGET_WORDS_BIGENDIAN
902     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
903 #else
904     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
905 #endif
906     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
907 
908     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
909 
910 #ifdef TARGET_WORDS_BIGENDIAN
911     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
912 #else
913     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
914 #endif
915     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
916 #ifdef TARGET_WORDS_BIGENDIAN
917     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
918 #else
919     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
920 #endif
921     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
922 
923 #ifdef TARGET_WORDS_BIGENDIAN
924     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
925 #else
926     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
927 #endif
928     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
929 #ifdef TARGET_WORDS_BIGENDIAN
930     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
931 #else
932     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
933 #endif
934     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
935 
936 #ifdef TARGET_WORDS_BIGENDIAN
937     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
938 #else
939     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
940 #endif
941     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
942 #ifdef TARGET_WORDS_BIGENDIAN
943     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
944 #else
945     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
946 #endif
947     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
948 
949     /* Jump to kernel code */
950     stl_p(p++, 0x3c1f0000 |
951           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
952     stl_p(p++, 0x37ff0000 |
953           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
954     stl_p(p++, 0x03e00009);                  /* jalr ra */
955     stl_p(p++, 0x00000000);                  /* nop */
956 
957     /* YAMON subroutines */
958     p = (uint32_t *) (base + 0x800);
959     stl_p(p++, 0x03e00009);                  /* jalr ra */
960     stl_p(p++, 0x24020000);                  /* li v0,0 */
961     /* 808 YAMON print */
962     stl_p(p++, 0x03e06821);                  /* move t5,ra */
963     stl_p(p++, 0x00805821);                  /* move t3,a0 */
964     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
965     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
966     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
967     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
968     stl_p(p++, 0x00000000);                  /* nop */
969     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
970     stl_p(p++, 0x00000000);                  /* nop */
971     stl_p(p++, 0x1000fff9);                  /* b 814 */
972     stl_p(p++, 0x00000000);                  /* nop */
973     stl_p(p++, 0x01a00009);                  /* jalr t5 */
974     stl_p(p++, 0x01602021);                  /* move a0,t3 */
975     /* 0x83c YAMON print_count */
976     stl_p(p++, 0x03e06821);                  /* move t5,ra */
977     stl_p(p++, 0x00805821);                  /* move t3,a0 */
978     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
979     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
980     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
981     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
982     stl_p(p++, 0x00000000);                  /* nop */
983     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
984     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
985     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
986     stl_p(p++, 0x00000000);                  /* nop */
987     stl_p(p++, 0x01a00009);                  /* jalr t5 */
988     stl_p(p++, 0x01602021);                  /* move a0,t3 */
989     /* 0x870 */
990     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
991     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
992     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
993     stl_p(p++, 0x00000000);                  /* nop */
994     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
995     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
996     stl_p(p++, 0x00000000);                  /* nop */
997     stl_p(p++, 0x03e00009);                  /* jalr ra */
998     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
999 
1000 }
1001 
1002 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1003                                         const char *string, ...)
1004 {
1005     va_list ap;
1006     int32_t table_addr;
1007 
1008     if (index >= ENVP_NB_ENTRIES) {
1009         return;
1010     }
1011 
1012     if (string == NULL) {
1013         prom_buf[index] = 0;
1014         return;
1015     }
1016 
1017     table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1018     prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1019 
1020     va_start(ap, string);
1021     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1022     va_end(ap);
1023 }
1024 
1025 /* Kernel */
1026 static int64_t load_kernel(void)
1027 {
1028     int64_t kernel_entry, kernel_high, initrd_size;
1029     long kernel_size;
1030     ram_addr_t initrd_offset;
1031     int big_endian;
1032     uint32_t *prom_buf;
1033     long prom_size;
1034     int prom_index = 0;
1035     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1036 
1037 #ifdef TARGET_WORDS_BIGENDIAN
1038     big_endian = 1;
1039 #else
1040     big_endian = 0;
1041 #endif
1042 
1043     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1044                            cpu_mips_kseg0_to_phys, NULL,
1045                            (uint64_t *)&kernel_entry, NULL,
1046                            (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1047                            1, 0);
1048     if (kernel_size < 0) {
1049         error_report("could not load kernel '%s': %s",
1050                      loaderparams.kernel_filename,
1051                      load_elf_strerror(kernel_size));
1052         exit(1);
1053     }
1054 
1055     /* Check where the kernel has been linked */
1056     if (kernel_entry & 0x80000000ll) {
1057         if (kvm_enabled()) {
1058             error_report("KVM guest kernels must be linked in useg. "
1059                          "Did you forget to enable CONFIG_KVM_GUEST?");
1060             exit(1);
1061         }
1062 
1063         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1064     } else {
1065         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1066         mips_um_ksegs_enable();
1067 
1068         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1069     }
1070 
1071     /* load initrd */
1072     initrd_size = 0;
1073     initrd_offset = 0;
1074     if (loaderparams.initrd_filename) {
1075         initrd_size = get_image_size(loaderparams.initrd_filename);
1076         if (initrd_size > 0) {
1077             /*
1078              * The kernel allocates the bootmap memory in the low memory after
1079              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1080              * pages.
1081              */
1082             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1083                                      - (initrd_size + 128 * KiB),
1084                                      INITRD_PAGE_SIZE);
1085             if (kernel_high >= initrd_offset) {
1086                 error_report("memory too small for initial ram disk '%s'",
1087                              loaderparams.initrd_filename);
1088                 exit(1);
1089             }
1090             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1091                                               initrd_offset,
1092                                               loaderparams.ram_size - initrd_offset);
1093         }
1094         if (initrd_size == (target_ulong) -1) {
1095             error_report("could not load initial ram disk '%s'",
1096                          loaderparams.initrd_filename);
1097             exit(1);
1098         }
1099     }
1100 
1101     /* Setup prom parameters. */
1102     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1103     prom_buf = g_malloc(prom_size);
1104 
1105     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1106     if (initrd_size > 0) {
1107         prom_set(prom_buf, prom_index++,
1108                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1109                  xlate_to_kseg0(NULL, initrd_offset),
1110                  initrd_size, loaderparams.kernel_cmdline);
1111     } else {
1112         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1113     }
1114 
1115     prom_set(prom_buf, prom_index++, "memsize");
1116     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1117 
1118     prom_set(prom_buf, prom_index++, "ememsize");
1119     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1120 
1121     prom_set(prom_buf, prom_index++, "modetty0");
1122     prom_set(prom_buf, prom_index++, "38400n8r");
1123     prom_set(prom_buf, prom_index++, NULL);
1124 
1125     rom_add_blob_fixed("prom", prom_buf, prom_size,
1126                        cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1127 
1128     g_free(prom_buf);
1129     return kernel_entry;
1130 }
1131 
1132 static void malta_mips_config(MIPSCPU *cpu)
1133 {
1134     MachineState *ms = MACHINE(qdev_get_machine());
1135     unsigned int smp_cpus = ms->smp.cpus;
1136     CPUMIPSState *env = &cpu->env;
1137     CPUState *cs = CPU(cpu);
1138 
1139     if (ase_mt_available(env)) {
1140         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141                                            CP0MVPC0_PTC, 8,
1142                                            smp_cpus * cs->nr_threads - 1);
1143         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1144                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1145     }
1146 }
1147 
1148 static void main_cpu_reset(void *opaque)
1149 {
1150     MIPSCPU *cpu = opaque;
1151     CPUMIPSState *env = &cpu->env;
1152 
1153     cpu_reset(CPU(cpu));
1154 
1155     /*
1156      * The bootloader does not need to be rewritten as it is located in a
1157      * read only location. The kernel location and the arguments table
1158      * location does not change.
1159      */
1160     if (loaderparams.kernel_filename) {
1161         env->CP0_Status &= ~(1 << CP0St_ERL);
1162     }
1163 
1164     malta_mips_config(cpu);
1165 
1166     if (kvm_enabled()) {
1167         /* Start running from the bootloader we wrote to end of RAM */
1168         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1169     }
1170 }
1171 
1172 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1173                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1174 {
1175     CPUMIPSState *env;
1176     MIPSCPU *cpu;
1177     int i;
1178 
1179     for (i = 0; i < ms->smp.cpus; i++) {
1180         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1181 
1182         /* Init internal devices */
1183         cpu_mips_irq_init_cpu(cpu);
1184         cpu_mips_clock_init(cpu);
1185         qemu_register_reset(main_cpu_reset, cpu);
1186     }
1187 
1188     cpu = MIPS_CPU(first_cpu);
1189     env = &cpu->env;
1190     *i8259_irq = env->irq[2];
1191     *cbus_irq = env->irq[4];
1192 }
1193 
1194 static void create_cps(MachineState *ms, MaltaState *s,
1195                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1196 {
1197     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1198     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1199                             &error_fatal);
1200     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1201                             &error_fatal);
1202     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1203     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1204 
1205     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1206 
1207     *i8259_irq = get_cps_irq(&s->cps, 3);
1208     *cbus_irq = NULL;
1209 }
1210 
1211 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1212                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1213 {
1214     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1215         create_cps(ms, s, cbus_irq, i8259_irq);
1216     } else {
1217         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1218     }
1219 }
1220 
1221 static
1222 void mips_malta_init(MachineState *machine)
1223 {
1224     ram_addr_t ram_size = machine->ram_size;
1225     ram_addr_t ram_low_size;
1226     const char *kernel_filename = machine->kernel_filename;
1227     const char *kernel_cmdline = machine->kernel_cmdline;
1228     const char *initrd_filename = machine->initrd_filename;
1229     char *filename;
1230     PFlashCFI01 *fl;
1231     MemoryRegion *system_memory = get_system_memory();
1232     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1233     MemoryRegion *ram_low_postio;
1234     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1235     const size_t smbus_eeprom_size = 8 * 256;
1236     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1237     int64_t kernel_entry, bootloader_run_addr;
1238     PCIBus *pci_bus;
1239     ISABus *isa_bus;
1240     qemu_irq cbus_irq, i8259_irq;
1241     I2CBus *smbus;
1242     DriveInfo *dinfo;
1243     int fl_idx = 0;
1244     int be;
1245     MaltaState *s;
1246     DeviceState *dev;
1247 
1248     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1249     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1250 
1251     /* create CPU */
1252     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1253 
1254     /* allocate RAM */
1255     if (ram_size > 2 * GiB) {
1256         error_report("Too much memory for this machine: %" PRId64 "MB,"
1257                      " maximum 2048MB", ram_size / MiB);
1258         exit(1);
1259     }
1260 
1261     /* register RAM at high address where it is undisturbed by IO */
1262     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1263 
1264     /* alias for pre IO hole access */
1265     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1266                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1267     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1268 
1269     /* alias for post IO hole access, if there is enough RAM */
1270     if (ram_size > 512 * MiB) {
1271         ram_low_postio = g_new(MemoryRegion, 1);
1272         memory_region_init_alias(ram_low_postio, NULL,
1273                                  "mips_malta_low_postio.ram",
1274                                  machine->ram, 512 * MiB,
1275                                  ram_size - 512 * MiB);
1276         memory_region_add_subregion(system_memory, 512 * MiB,
1277                                     ram_low_postio);
1278     }
1279 
1280 #ifdef TARGET_WORDS_BIGENDIAN
1281     be = 1;
1282 #else
1283     be = 0;
1284 #endif
1285 
1286     /* FPGA */
1287 
1288     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1289     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1290 
1291     /* Load firmware in flash / BIOS. */
1292     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1293     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1294                                FLASH_SIZE,
1295                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1296                                65536,
1297                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1298     bios = pflash_cfi01_get_memory(fl);
1299     fl_idx++;
1300     if (kernel_filename) {
1301         ram_low_size = MIN(ram_size, 256 * MiB);
1302         /* For KVM we reserve 1MB of RAM for running bootloader */
1303         if (kvm_enabled()) {
1304             ram_low_size -= 0x100000;
1305             bootloader_run_addr = 0x40000000 + ram_low_size;
1306         } else {
1307             bootloader_run_addr = 0xbfc00000;
1308         }
1309 
1310         /* Write a small bootloader to the flash location. */
1311         loaderparams.ram_size = ram_size;
1312         loaderparams.ram_low_size = ram_low_size;
1313         loaderparams.kernel_filename = kernel_filename;
1314         loaderparams.kernel_cmdline = kernel_cmdline;
1315         loaderparams.initrd_filename = initrd_filename;
1316         kernel_entry = load_kernel();
1317 
1318         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1319             write_bootloader(memory_region_get_ram_ptr(bios),
1320                              bootloader_run_addr, kernel_entry);
1321         } else {
1322             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1323                                       bootloader_run_addr, kernel_entry);
1324         }
1325         if (kvm_enabled()) {
1326             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1327             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1328                                     ram_low_size,
1329                              bootloader_run_addr, kernel_entry);
1330         }
1331     } else {
1332         target_long bios_size = FLASH_SIZE;
1333         /* The flash region isn't executable from a KVM guest */
1334         if (kvm_enabled()) {
1335             error_report("KVM enabled but no -kernel argument was specified. "
1336                          "Booting from flash is not supported with KVM.");
1337             exit(1);
1338         }
1339         /* Load firmware from flash. */
1340         if (!dinfo) {
1341             /* Load a BIOS image. */
1342             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1343                                       machine->firmware ?: BIOS_FILENAME);
1344             if (filename) {
1345                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1346                                                 BIOS_SIZE);
1347                 g_free(filename);
1348             } else {
1349                 bios_size = -1;
1350             }
1351             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1352                 machine->firmware && !qtest_enabled()) {
1353                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1354                 exit(1);
1355             }
1356         }
1357         /*
1358          * In little endian mode the 32bit words in the bios are swapped,
1359          * a neat trick which allows bi-endian firmware.
1360          */
1361 #ifndef TARGET_WORDS_BIGENDIAN
1362         {
1363             uint32_t *end, *addr;
1364             const size_t swapsize = MIN(bios_size, 0x3e0000);
1365             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1366             if (!addr) {
1367                 addr = memory_region_get_ram_ptr(bios);
1368             }
1369             end = (void *)addr + swapsize;
1370             while (addr < end) {
1371                 bswap32s(addr);
1372                 addr++;
1373             }
1374         }
1375 #endif
1376     }
1377 
1378     /*
1379      * Map the BIOS at a 2nd physical location, as on the real board.
1380      * Copy it so that we can patch in the MIPS revision, which cannot be
1381      * handled by an overlapping region as the resulting ROM code subpage
1382      * regions are not executable.
1383      */
1384     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1385                            &error_fatal);
1386     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1387                   FLASH_ADDRESS, BIOS_SIZE)) {
1388         memcpy(memory_region_get_ram_ptr(bios_copy),
1389                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1390     }
1391     memory_region_set_readonly(bios_copy, true);
1392     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1393 
1394     /* Board ID = 0x420 (Malta Board with CoreLV) */
1395     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1396 
1397     /* Northbridge */
1398     pci_bus = gt64120_register(s->i8259);
1399     /*
1400      * The whole address space decoded by the GT-64120A doesn't generate
1401      * exception when accessing invalid memory. Create an empty slot to
1402      * emulate this feature.
1403      */
1404     empty_slot_init("GT64120", 0, 0x20000000);
1405 
1406     /* Southbridge */
1407     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1408 
1409     /* Interrupt controller */
1410     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1411     for (int i = 0; i < ISA_NUM_IRQS; i++) {
1412         s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1413     }
1414 
1415     /* generate SPD EEPROM data */
1416     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1417     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1418     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1419     g_free(smbus_eeprom_buf);
1420 
1421     /* Super I/O: SMS FDC37M817 */
1422     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1423 
1424     /* Network card */
1425     network_init(pci_bus);
1426 
1427     /* Optional PCI video card */
1428     pci_vga_init(pci_bus);
1429 }
1430 
1431 static void mips_malta_instance_init(Object *obj)
1432 {
1433     MaltaState *s = MIPS_MALTA(obj);
1434 
1435     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1436     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1437 }
1438 
1439 static const TypeInfo mips_malta_device = {
1440     .name          = TYPE_MIPS_MALTA,
1441     .parent        = TYPE_SYS_BUS_DEVICE,
1442     .instance_size = sizeof(MaltaState),
1443     .instance_init = mips_malta_instance_init,
1444 };
1445 
1446 static void mips_malta_machine_init(MachineClass *mc)
1447 {
1448     mc->desc = "MIPS Malta Core LV";
1449     mc->init = mips_malta_init;
1450     mc->block_default_type = IF_IDE;
1451     mc->max_cpus = 16;
1452     mc->is_default = true;
1453 #ifdef TARGET_MIPS64
1454     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1455 #else
1456     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1457 #endif
1458     mc->default_ram_id = "mips_malta.ram";
1459 }
1460 
1461 DEFINE_MACHINE("malta", mips_malta_machine_init)
1462 
1463 static void mips_malta_register_types(void)
1464 {
1465     type_register_static(&mips_malta_device);
1466 }
1467 
1468 type_init(mips_malta_register_types)
1469