xref: /openbmc/qemu/hw/mips/malta.c (revision 835fde4a)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "cpu.h"
31 #include "hw/clock.h"
32 #include "hw/southbridge/piix.h"
33 #include "hw/isa/superio.h"
34 #include "hw/char/serial.h"
35 #include "net/net.h"
36 #include "hw/boards.h"
37 #include "hw/i2c/smbus_eeprom.h"
38 #include "hw/block/flash.h"
39 #include "hw/mips/mips.h"
40 #include "hw/mips/cpudevs.h"
41 #include "hw/pci/pci.h"
42 #include "sysemu/sysemu.h"
43 #include "sysemu/arch_init.h"
44 #include "qemu/log.h"
45 #include "hw/mips/bios.h"
46 #include "hw/ide.h"
47 #include "hw/irq.h"
48 #include "hw/loader.h"
49 #include "elf.h"
50 #include "exec/address-spaces.h"
51 #include "qom/object.h"
52 #include "hw/sysbus.h"             /* SysBusDevice */
53 #include "qemu/host-utils.h"
54 #include "sysemu/qtest.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/runstate.h"
57 #include "qapi/error.h"
58 #include "qemu/error-report.h"
59 #include "hw/misc/empty_slot.h"
60 #include "sysemu/kvm.h"
61 #include "semihosting/semihost.h"
62 #include "hw/mips/cps.h"
63 #include "hw/qdev-clock.h"
64 
65 #define ENVP_PADDR          0x2000
66 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
67 #define ENVP_NB_ENTRIES     16
68 #define ENVP_ENTRY_SIZE     256
69 
70 /* Hardware addresses */
71 #define FLASH_ADDRESS       0x1e000000ULL
72 #define FPGA_ADDRESS        0x1f000000ULL
73 #define RESET_ADDRESS       0x1fc00000ULL
74 
75 #define FLASH_SIZE          0x400000
76 
77 #define MAX_IDE_BUS         2
78 
79 typedef struct {
80     MemoryRegion iomem;
81     MemoryRegion iomem_lo; /* 0 - 0x900 */
82     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
83     uint32_t leds;
84     uint32_t brk;
85     uint32_t gpout;
86     uint32_t i2cin;
87     uint32_t i2coe;
88     uint32_t i2cout;
89     uint32_t i2csel;
90     CharBackend display;
91     char display_text[9];
92     SerialMM *uart;
93     bool display_inited;
94 } MaltaFPGAState;
95 
96 #define TYPE_MIPS_MALTA "mips-malta"
97 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
98 
99 struct MaltaState {
100     SysBusDevice parent_obj;
101 
102     Clock *cpuclk;
103     MIPSCPSState cps;
104     qemu_irq i8259[ISA_NUM_IRQS];
105 };
106 
107 static struct _loaderparams {
108     int ram_size, ram_low_size;
109     const char *kernel_filename;
110     const char *kernel_cmdline;
111     const char *initrd_filename;
112 } loaderparams;
113 
114 /* Malta FPGA */
115 static void malta_fpga_update_display(void *opaque)
116 {
117     char leds_text[9];
118     int i;
119     MaltaFPGAState *s = opaque;
120 
121     for (i = 7 ; i >= 0 ; i--) {
122         if (s->leds & (1 << i)) {
123             leds_text[i] = '#';
124         } else {
125             leds_text[i] = ' ';
126         }
127     }
128     leds_text[8] = '\0';
129 
130     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
131                        leds_text);
132     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
133                        s->display_text);
134 }
135 
136 /*
137  * EEPROM 24C01 / 24C02 emulation.
138  *
139  * Emulation for serial EEPROMs:
140  * 24C01 - 1024 bit (128 x 8)
141  * 24C02 - 2048 bit (256 x 8)
142  *
143  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
144  */
145 
146 #if defined(DEBUG)
147 #  define logout(fmt, ...) \
148           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
149 #else
150 #  define logout(fmt, ...) ((void)0)
151 #endif
152 
153 struct _eeprom24c0x_t {
154   uint8_t tick;
155   uint8_t address;
156   uint8_t command;
157   uint8_t ack;
158   uint8_t scl;
159   uint8_t sda;
160   uint8_t data;
161   /* uint16_t size; */
162   uint8_t contents[256];
163 };
164 
165 typedef struct _eeprom24c0x_t eeprom24c0x_t;
166 
167 static eeprom24c0x_t spd_eeprom = {
168     .contents = {
169         /* 00000000: */
170         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
171         /* 00000008: */
172         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
173         /* 00000010: */
174         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
175         /* 00000018: */
176         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
177         /* 00000020: */
178         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
179         /* 00000028: */
180         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
181         /* 00000030: */
182         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183         /* 00000038: */
184         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
185         /* 00000040: */
186         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187         /* 00000048: */
188         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189         /* 00000050: */
190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191         /* 00000058: */
192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193         /* 00000060: */
194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195         /* 00000068: */
196         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197         /* 00000070: */
198         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199         /* 00000078: */
200         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
201     },
202 };
203 
204 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
205 {
206     enum { SDR = 0x4, DDR2 = 0x8 } type;
207     uint8_t *spd = spd_eeprom.contents;
208     uint8_t nbanks = 0;
209     uint16_t density = 0;
210     int i;
211 
212     /* work in terms of MB */
213     ram_size /= MiB;
214 
215     while ((ram_size >= 4) && (nbanks <= 2)) {
216         int sz_log2 = MIN(31 - clz32(ram_size), 14);
217         nbanks++;
218         density |= 1 << (sz_log2 - 2);
219         ram_size -= 1 << sz_log2;
220     }
221 
222     /* split to 2 banks if possible */
223     if ((nbanks == 1) && (density > 1)) {
224         nbanks++;
225         density >>= 1;
226     }
227 
228     if (density & 0xff00) {
229         density = (density & 0xe0) | ((density >> 8) & 0x1f);
230         type = DDR2;
231     } else if (!(density & 0x1f)) {
232         type = DDR2;
233     } else {
234         type = SDR;
235     }
236 
237     if (ram_size) {
238         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
239                     " of SDRAM", ram_size);
240     }
241 
242     /* fill in SPD memory information */
243     spd[2] = type;
244     spd[5] = nbanks;
245     spd[31] = density;
246 
247     /* checksum */
248     spd[63] = 0;
249     for (i = 0; i < 63; i++) {
250         spd[63] += spd[i];
251     }
252 
253     /* copy for SMBUS */
254     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
255 }
256 
257 static void generate_eeprom_serial(uint8_t *eeprom)
258 {
259     int i, pos = 0;
260     uint8_t mac[6] = { 0x00 };
261     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
262 
263     /* version */
264     eeprom[pos++] = 0x01;
265 
266     /* count */
267     eeprom[pos++] = 0x02;
268 
269     /* MAC address */
270     eeprom[pos++] = 0x01; /* MAC */
271     eeprom[pos++] = 0x06; /* length */
272     memcpy(&eeprom[pos], mac, sizeof(mac));
273     pos += sizeof(mac);
274 
275     /* serial number */
276     eeprom[pos++] = 0x02; /* serial */
277     eeprom[pos++] = 0x05; /* length */
278     memcpy(&eeprom[pos], sn, sizeof(sn));
279     pos += sizeof(sn);
280 
281     /* checksum */
282     eeprom[pos] = 0;
283     for (i = 0; i < pos; i++) {
284         eeprom[pos] += eeprom[i];
285     }
286 }
287 
288 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
289 {
290     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
291         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
292     return eeprom->sda;
293 }
294 
295 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
296 {
297     if (eeprom->scl && scl && (eeprom->sda != sda)) {
298         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
299                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
300                 sda ? "stop" : "start");
301         if (!sda) {
302             eeprom->tick = 1;
303             eeprom->command = 0;
304         }
305     } else if (eeprom->tick == 0 && !eeprom->ack) {
306         /* Waiting for start. */
307         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
308                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
309     } else if (!eeprom->scl && scl) {
310         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
311                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
312         if (eeprom->ack) {
313             logout("\ti2c ack bit = 0\n");
314             sda = 0;
315             eeprom->ack = 0;
316         } else if (eeprom->sda == sda) {
317             uint8_t bit = (sda != 0);
318             logout("\ti2c bit = %d\n", bit);
319             if (eeprom->tick < 9) {
320                 eeprom->command <<= 1;
321                 eeprom->command += bit;
322                 eeprom->tick++;
323                 if (eeprom->tick == 9) {
324                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
325                            bit ? "read" : "write");
326                     eeprom->ack = 1;
327                 }
328             } else if (eeprom->tick < 17) {
329                 if (eeprom->command & 1) {
330                     sda = ((eeprom->data & 0x80) != 0);
331                 }
332                 eeprom->address <<= 1;
333                 eeprom->address += bit;
334                 eeprom->tick++;
335                 eeprom->data <<= 1;
336                 if (eeprom->tick == 17) {
337                     eeprom->data = eeprom->contents[eeprom->address];
338                     logout("\taddress 0x%04x, data 0x%02x\n",
339                            eeprom->address, eeprom->data);
340                     eeprom->ack = 1;
341                     eeprom->tick = 0;
342                 }
343             } else if (eeprom->tick >= 17) {
344                 sda = 0;
345             }
346         } else {
347             logout("\tsda changed with raising scl\n");
348         }
349     } else {
350         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
351                scl, eeprom->sda, sda);
352     }
353     eeprom->scl = scl;
354     eeprom->sda = sda;
355 }
356 
357 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
358                                 unsigned size)
359 {
360     MaltaFPGAState *s = opaque;
361     uint32_t val = 0;
362     uint32_t saddr;
363 
364     saddr = (addr & 0xfffff);
365 
366     switch (saddr) {
367 
368     /* SWITCH Register */
369     case 0x00200:
370         val = 0x00000000;
371         break;
372 
373     /* STATUS Register */
374     case 0x00208:
375 #ifdef TARGET_WORDS_BIGENDIAN
376         val = 0x00000012;
377 #else
378         val = 0x00000010;
379 #endif
380         break;
381 
382     /* JMPRS Register */
383     case 0x00210:
384         val = 0x00;
385         break;
386 
387     /* LEDBAR Register */
388     case 0x00408:
389         val = s->leds;
390         break;
391 
392     /* BRKRES Register */
393     case 0x00508:
394         val = s->brk;
395         break;
396 
397     /* UART Registers are handled directly by the serial device */
398 
399     /* GPOUT Register */
400     case 0x00a00:
401         val = s->gpout;
402         break;
403 
404     /* XXX: implement a real I2C controller */
405 
406     /* GPINP Register */
407     case 0x00a08:
408         /* IN = OUT until a real I2C control is implemented */
409         if (s->i2csel) {
410             val = s->i2cout;
411         } else {
412             val = 0x00;
413         }
414         break;
415 
416     /* I2CINP Register */
417     case 0x00b00:
418         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
419         break;
420 
421     /* I2COE Register */
422     case 0x00b08:
423         val = s->i2coe;
424         break;
425 
426     /* I2COUT Register */
427     case 0x00b10:
428         val = s->i2cout;
429         break;
430 
431     /* I2CSEL Register */
432     case 0x00b18:
433         val = s->i2csel;
434         break;
435 
436     default:
437         qemu_log_mask(LOG_GUEST_ERROR,
438                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
439                       addr);
440         break;
441     }
442     return val;
443 }
444 
445 static void malta_fpga_write(void *opaque, hwaddr addr,
446                              uint64_t val, unsigned size)
447 {
448     MaltaFPGAState *s = opaque;
449     uint32_t saddr;
450 
451     saddr = (addr & 0xfffff);
452 
453     switch (saddr) {
454 
455     /* SWITCH Register */
456     case 0x00200:
457         break;
458 
459     /* JMPRS Register */
460     case 0x00210:
461         break;
462 
463     /* LEDBAR Register */
464     case 0x00408:
465         s->leds = val & 0xff;
466         malta_fpga_update_display(s);
467         break;
468 
469     /* ASCIIWORD Register */
470     case 0x00410:
471         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
472         malta_fpga_update_display(s);
473         break;
474 
475     /* ASCIIPOS0 to ASCIIPOS7 Registers */
476     case 0x00418:
477     case 0x00420:
478     case 0x00428:
479     case 0x00430:
480     case 0x00438:
481     case 0x00440:
482     case 0x00448:
483     case 0x00450:
484         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
485         malta_fpga_update_display(s);
486         break;
487 
488     /* SOFTRES Register */
489     case 0x00500:
490         if (val == 0x42) {
491             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
492         }
493         break;
494 
495     /* BRKRES Register */
496     case 0x00508:
497         s->brk = val & 0xff;
498         break;
499 
500     /* UART Registers are handled directly by the serial device */
501 
502     /* GPOUT Register */
503     case 0x00a00:
504         s->gpout = val & 0xff;
505         break;
506 
507     /* I2COE Register */
508     case 0x00b08:
509         s->i2coe = val & 0x03;
510         break;
511 
512     /* I2COUT Register */
513     case 0x00b10:
514         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
515         s->i2cout = val;
516         break;
517 
518     /* I2CSEL Register */
519     case 0x00b18:
520         s->i2csel = val & 0x01;
521         break;
522 
523     default:
524         qemu_log_mask(LOG_GUEST_ERROR,
525                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
526                       addr);
527         break;
528     }
529 }
530 
531 static const MemoryRegionOps malta_fpga_ops = {
532     .read = malta_fpga_read,
533     .write = malta_fpga_write,
534     .endianness = DEVICE_NATIVE_ENDIAN,
535 };
536 
537 static void malta_fpga_reset(void *opaque)
538 {
539     MaltaFPGAState *s = opaque;
540 
541     s->leds   = 0x00;
542     s->brk    = 0x0a;
543     s->gpout  = 0x00;
544     s->i2cin  = 0x3;
545     s->i2coe  = 0x0;
546     s->i2cout = 0x3;
547     s->i2csel = 0x1;
548 
549     s->display_text[8] = '\0';
550     snprintf(s->display_text, 9, "        ");
551 }
552 
553 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
554 {
555     MaltaFPGAState *s = opaque;
556 
557     if (event == CHR_EVENT_OPENED && !s->display_inited) {
558         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
559         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560         qemu_chr_fe_printf(&s->display, "+        +\r\n");
561         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562         qemu_chr_fe_printf(&s->display, "\n");
563         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
564         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
565         qemu_chr_fe_printf(&s->display, "+        +\r\n");
566         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
567         s->display_inited = true;
568     }
569 }
570 
571 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
572          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
573 {
574     MaltaFPGAState *s;
575     Chardev *chr;
576 
577     s = g_new0(MaltaFPGAState, 1);
578 
579     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
580                           "malta-fpga", 0x100000);
581     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
582                              &s->iomem, 0, 0x900);
583     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
584                              &s->iomem, 0xa00, 0x100000 - 0xa00);
585 
586     memory_region_add_subregion(address_space, base, &s->iomem_lo);
587     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
588 
589     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
590     qemu_chr_fe_init(&s->display, chr, NULL);
591     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
592                              malta_fgpa_display_event, NULL, s, NULL, true);
593 
594     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
595                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
596 
597     malta_fpga_reset(s);
598     qemu_register_reset(malta_fpga_reset, s);
599 
600     return s;
601 }
602 
603 /* Network support */
604 static void network_init(PCIBus *pci_bus)
605 {
606     int i;
607 
608     for (i = 0; i < nb_nics; i++) {
609         NICInfo *nd = &nd_table[i];
610         const char *default_devaddr = NULL;
611 
612         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
613             /* The malta board has a PCNet card using PCI SLOT 11 */
614             default_devaddr = "0b";
615 
616         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
617     }
618 }
619 
620 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
621                                       uint64_t kernel_entry)
622 {
623     uint16_t *p;
624 
625     /* Small bootloader */
626     p = (uint16_t *)base;
627 
628 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
629 #define NM_HI2(VAL) \
630           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
631 #define NM_LO(VAL)  ((VAL) & 0xfff)
632 
633     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
634                                 /* bc to_here */
635     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636                                 /* nop */
637     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638                                 /* nop */
639     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640                                 /* nop */
641     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642                                 /* nop */
643     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
644                                 /* nop */
645     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
646                                 /* nop */
647     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
648                                 /* nop */
649 
650     /* to_here: */
651     if (semihosting_get_argc()) {
652         /* Preserve a0 content as arguments have been passed    */
653         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
654                                 /* nop                          */
655     } else {
656         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
657                                 /* li a0,2                      */
658     }
659 
660     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
661 
662     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
663                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
664 
665     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
666                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
667 
668     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
669 
670     stw_p(p++, NM_HI2(ENVP_VADDR));
671                                 /* lui a1,%hi(ENVP_VADDR)        */
672 
673     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
674                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
675 
676     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
677 
678     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
679                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
680 
681     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
682                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
683 
684     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
685 
686     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
687                                 /* lui a3,%hi(loaderparams.ram_low_size) */
688 
689     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
690                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
691 
692     /*
693      * Load BAR registers as done by YAMON:
694      *
695      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
696      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
697      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
698      *
699      */
700     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
701                                 /* lui t1, %hi(0xb4000000)      */
702 
703 #ifdef TARGET_WORDS_BIGENDIAN
704 
705     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
706                                 /* lui t0, %hi(0xdf000000)      */
707 
708     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
709     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
710                                 /* sw t0, 0x68(t1)              */
711 
712     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
713                                 /* lui t1, %hi(0xbbe00000)      */
714 
715     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
716                                 /* lui t0, %hi(0xc0000000)      */
717 
718     /* 0x48 corresponds to GT_PCI0IOLD                          */
719     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
720                                 /* sw t0, 0x48(t1)              */
721 
722     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
723                                 /* lui t0, %hi(0x40000000)      */
724 
725     /* 0x50 corresponds to GT_PCI0IOHD                          */
726     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
727                                 /* sw t0, 0x50(t1)              */
728 
729     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
730                                 /* lui t0, %hi(0x80000000)      */
731 
732     /* 0x58 corresponds to GT_PCI0M0LD                          */
733     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
734                                 /* sw t0, 0x58(t1)              */
735 
736     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
737                                 /* lui t0, %hi(0x3f000000)      */
738 
739     /* 0x60 corresponds to GT_PCI0M0HD                          */
740     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
741                                 /* sw t0, 0x60(t1)              */
742 
743     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
744                                 /* lui t0, %hi(0xc1000000)      */
745 
746     /* 0x80 corresponds to GT_PCI0M1LD                          */
747     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
748                                 /* sw t0, 0x80(t1)              */
749 
750     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
751                                 /* lui t0, %hi(0x5e000000)      */
752 
753 #else
754 
755     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
756                                 /* addiu[32] t0, $0, 0xdf       */
757 
758     /* 0x68 corresponds to GT_ISD                               */
759     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
760                                 /* sw t0, 0x68(t1)              */
761 
762     /* Use kseg2 remapped address 0x1be00000                    */
763     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
764                                 /* lui t1, %hi(0xbbe00000)      */
765 
766     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
767                                 /* addiu[32] t0, $0, 0xc0       */
768 
769     /* 0x48 corresponds to GT_PCI0IOLD                          */
770     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
771                                 /* sw t0, 0x48(t1)              */
772 
773     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
774                                 /* addiu[32] t0, $0, 0x40       */
775 
776     /* 0x50 corresponds to GT_PCI0IOHD                          */
777     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
778                                 /* sw t0, 0x50(t1)              */
779 
780     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
781                                 /* addiu[32] t0, $0, 0x80       */
782 
783     /* 0x58 corresponds to GT_PCI0M0LD                          */
784     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
785                                 /* sw t0, 0x58(t1)              */
786 
787     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
788                                 /* addiu[32] t0, $0, 0x3f       */
789 
790     /* 0x60 corresponds to GT_PCI0M0HD                          */
791     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
792                                 /* sw t0, 0x60(t1)              */
793 
794     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
795                                 /* addiu[32] t0, $0, 0xc1       */
796 
797     /* 0x80 corresponds to GT_PCI0M1LD                          */
798     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
799                                 /* sw t0, 0x80(t1)              */
800 
801     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
802                                 /* addiu[32] t0, $0, 0x5e       */
803 
804 #endif
805 
806     /* 0x88 corresponds to GT_PCI0M1HD                          */
807     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
808                                 /* sw t0, 0x88(t1)              */
809 
810     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
811 
812     stw_p(p++, NM_HI2(kernel_entry));
813                                 /* lui t9,%hi(kernel_entry)     */
814 
815     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
816                                 /* ori t9,t9,%lo(kernel_entry)  */
817 
818     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
819                                 /* jalrc   t8                   */
820 }
821 
822 /*
823  * ROM and pseudo bootloader
824  *
825  * The following code implements a very very simple bootloader. It first
826  * loads the registers a0 to a3 to the values expected by the OS, and
827  * then jump at the kernel address.
828  *
829  * The bootloader should pass the locations of the kernel arguments and
830  * environment variables tables. Those tables contain the 32-bit address
831  * of NULL terminated strings. The environment variables table should be
832  * terminated by a NULL address.
833  *
834  * For a simpler implementation, the number of kernel arguments is fixed
835  * to two (the name of the kernel and the command line), and the two
836  * tables are actually the same one.
837  *
838  * The registers a0 to a3 should contain the following values:
839  *   a0 - number of kernel arguments
840  *   a1 - 32-bit address of the kernel arguments table
841  *   a2 - 32-bit address of the environment variables table
842  *   a3 - RAM size in bytes
843  */
844 static void write_bootloader(uint8_t *base, uint64_t run_addr,
845                              uint64_t kernel_entry)
846 {
847     uint32_t *p;
848 
849     /* Small bootloader */
850     p = (uint32_t *)base;
851 
852     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
853                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
854     stl_p(p++, 0x00000000);                  /* nop */
855 
856     /* YAMON service vector */
857     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
858     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
859     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
860     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
861     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
862     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
863     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
864     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
865     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
866     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
867     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
868     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
869     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
870 
871 
872     /* Second part of the bootloader */
873     p = (uint32_t *) (base + 0x580);
874 
875     if (semihosting_get_argc()) {
876         /* Preserve a0 content as arguments have been passed */
877         stl_p(p++, 0x00000000);              /* nop */
878     } else {
879         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
880     }
881 
882     /* lui sp, high(ENVP_VADDR) */
883     stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
884     /* ori sp, sp, low(ENVP_VADDR) */
885     stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
886     /* lui a1, high(ENVP_VADDR) */
887     stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
888     /* ori a1, a1, low(ENVP_VADDR) */
889     stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
890     /* lui a2, high(ENVP_VADDR + 8) */
891     stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
892     /* ori a2, a2, low(ENVP_VADDR + 8) */
893     stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
894     /* lui a3, high(ram_low_size) */
895     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
896     /* ori a3, a3, low(ram_low_size) */
897     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
898 
899     /* Load BAR registers as done by YAMON */
900     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
901 
902 #ifdef TARGET_WORDS_BIGENDIAN
903     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
904 #else
905     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
906 #endif
907     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
908 
909     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
910 
911 #ifdef TARGET_WORDS_BIGENDIAN
912     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
913 #else
914     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
915 #endif
916     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
917 #ifdef TARGET_WORDS_BIGENDIAN
918     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
919 #else
920     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
921 #endif
922     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
923 
924 #ifdef TARGET_WORDS_BIGENDIAN
925     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
926 #else
927     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
928 #endif
929     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
930 #ifdef TARGET_WORDS_BIGENDIAN
931     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
932 #else
933     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
934 #endif
935     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
936 
937 #ifdef TARGET_WORDS_BIGENDIAN
938     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
939 #else
940     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
941 #endif
942     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
943 #ifdef TARGET_WORDS_BIGENDIAN
944     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
945 #else
946     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
947 #endif
948     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
949 
950     /* Jump to kernel code */
951     stl_p(p++, 0x3c1f0000 |
952           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
953     stl_p(p++, 0x37ff0000 |
954           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
955     stl_p(p++, 0x03e00009);                  /* jalr ra */
956     stl_p(p++, 0x00000000);                  /* nop */
957 
958     /* YAMON subroutines */
959     p = (uint32_t *) (base + 0x800);
960     stl_p(p++, 0x03e00009);                  /* jalr ra */
961     stl_p(p++, 0x24020000);                  /* li v0,0 */
962     /* 808 YAMON print */
963     stl_p(p++, 0x03e06821);                  /* move t5,ra */
964     stl_p(p++, 0x00805821);                  /* move t3,a0 */
965     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
966     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
967     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
968     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
969     stl_p(p++, 0x00000000);                  /* nop */
970     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
971     stl_p(p++, 0x00000000);                  /* nop */
972     stl_p(p++, 0x1000fff9);                  /* b 814 */
973     stl_p(p++, 0x00000000);                  /* nop */
974     stl_p(p++, 0x01a00009);                  /* jalr t5 */
975     stl_p(p++, 0x01602021);                  /* move a0,t3 */
976     /* 0x83c YAMON print_count */
977     stl_p(p++, 0x03e06821);                  /* move t5,ra */
978     stl_p(p++, 0x00805821);                  /* move t3,a0 */
979     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
980     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
981     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
982     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
983     stl_p(p++, 0x00000000);                  /* nop */
984     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
985     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
986     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
987     stl_p(p++, 0x00000000);                  /* nop */
988     stl_p(p++, 0x01a00009);                  /* jalr t5 */
989     stl_p(p++, 0x01602021);                  /* move a0,t3 */
990     /* 0x870 */
991     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
992     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
993     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
994     stl_p(p++, 0x00000000);                  /* nop */
995     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
996     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
997     stl_p(p++, 0x00000000);                  /* nop */
998     stl_p(p++, 0x03e00009);                  /* jalr ra */
999     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
1000 
1001 }
1002 
1003 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1004                                         const char *string, ...)
1005 {
1006     va_list ap;
1007     uint32_t table_addr;
1008 
1009     if (index >= ENVP_NB_ENTRIES) {
1010         return;
1011     }
1012 
1013     if (string == NULL) {
1014         prom_buf[index] = 0;
1015         return;
1016     }
1017 
1018     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1019     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1020 
1021     va_start(ap, string);
1022     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1023     va_end(ap);
1024 }
1025 
1026 /* Kernel */
1027 static uint64_t load_kernel(void)
1028 {
1029     uint64_t kernel_entry, kernel_high, initrd_size;
1030     long kernel_size;
1031     ram_addr_t initrd_offset;
1032     int big_endian;
1033     uint32_t *prom_buf;
1034     long prom_size;
1035     int prom_index = 0;
1036     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1037 
1038 #ifdef TARGET_WORDS_BIGENDIAN
1039     big_endian = 1;
1040 #else
1041     big_endian = 0;
1042 #endif
1043 
1044     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1045                            cpu_mips_kseg0_to_phys, NULL,
1046                            &kernel_entry, NULL,
1047                            &kernel_high, NULL, big_endian, EM_MIPS,
1048                            1, 0);
1049     if (kernel_size < 0) {
1050         error_report("could not load kernel '%s': %s",
1051                      loaderparams.kernel_filename,
1052                      load_elf_strerror(kernel_size));
1053         exit(1);
1054     }
1055 
1056     /* Check where the kernel has been linked */
1057     if (kernel_entry & 0x80000000ll) {
1058         if (kvm_enabled()) {
1059             error_report("KVM guest kernels must be linked in useg. "
1060                          "Did you forget to enable CONFIG_KVM_GUEST?");
1061             exit(1);
1062         }
1063 
1064         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1065     } else {
1066         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1067         mips_um_ksegs_enable();
1068 
1069         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1070     }
1071 
1072     /* load initrd */
1073     initrd_size = 0;
1074     initrd_offset = 0;
1075     if (loaderparams.initrd_filename) {
1076         initrd_size = get_image_size(loaderparams.initrd_filename);
1077         if (initrd_size > 0) {
1078             /*
1079              * The kernel allocates the bootmap memory in the low memory after
1080              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1081              * pages.
1082              */
1083             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1084                                      - (initrd_size + 128 * KiB),
1085                                      INITRD_PAGE_SIZE);
1086             if (kernel_high >= initrd_offset) {
1087                 error_report("memory too small for initial ram disk '%s'",
1088                              loaderparams.initrd_filename);
1089                 exit(1);
1090             }
1091             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1092                                               initrd_offset,
1093                                               loaderparams.ram_size - initrd_offset);
1094         }
1095         if (initrd_size == (target_ulong) -1) {
1096             error_report("could not load initial ram disk '%s'",
1097                          loaderparams.initrd_filename);
1098             exit(1);
1099         }
1100     }
1101 
1102     /* Setup prom parameters. */
1103     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1104     prom_buf = g_malloc(prom_size);
1105 
1106     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1107     if (initrd_size > 0) {
1108         prom_set(prom_buf, prom_index++,
1109                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1110                  xlate_to_kseg0(NULL, initrd_offset),
1111                  initrd_size, loaderparams.kernel_cmdline);
1112     } else {
1113         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1114     }
1115 
1116     prom_set(prom_buf, prom_index++, "memsize");
1117     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1118 
1119     prom_set(prom_buf, prom_index++, "ememsize");
1120     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1121 
1122     prom_set(prom_buf, prom_index++, "modetty0");
1123     prom_set(prom_buf, prom_index++, "38400n8r");
1124     prom_set(prom_buf, prom_index++, NULL);
1125 
1126     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1127 
1128     g_free(prom_buf);
1129     return kernel_entry;
1130 }
1131 
1132 static void malta_mips_config(MIPSCPU *cpu)
1133 {
1134     MachineState *ms = MACHINE(qdev_get_machine());
1135     unsigned int smp_cpus = ms->smp.cpus;
1136     CPUMIPSState *env = &cpu->env;
1137     CPUState *cs = CPU(cpu);
1138 
1139     if (ase_mt_available(env)) {
1140         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1141                                            CP0MVPC0_PTC, 8,
1142                                            smp_cpus * cs->nr_threads - 1);
1143         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1144                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1145     }
1146 }
1147 
1148 static void main_cpu_reset(void *opaque)
1149 {
1150     MIPSCPU *cpu = opaque;
1151     CPUMIPSState *env = &cpu->env;
1152 
1153     cpu_reset(CPU(cpu));
1154 
1155     /*
1156      * The bootloader does not need to be rewritten as it is located in a
1157      * read only location. The kernel location and the arguments table
1158      * location does not change.
1159      */
1160     if (loaderparams.kernel_filename) {
1161         env->CP0_Status &= ~(1 << CP0St_ERL);
1162     }
1163 
1164     malta_mips_config(cpu);
1165 
1166     if (kvm_enabled()) {
1167         /* Start running from the bootloader we wrote to end of RAM */
1168         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1169     }
1170 }
1171 
1172 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1173                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1174 {
1175     CPUMIPSState *env;
1176     MIPSCPU *cpu;
1177     int i;
1178 
1179     for (i = 0; i < ms->smp.cpus; i++) {
1180         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1181 
1182         /* Init internal devices */
1183         cpu_mips_irq_init_cpu(cpu);
1184         cpu_mips_clock_init(cpu);
1185         qemu_register_reset(main_cpu_reset, cpu);
1186     }
1187 
1188     cpu = MIPS_CPU(first_cpu);
1189     env = &cpu->env;
1190     *i8259_irq = env->irq[2];
1191     *cbus_irq = env->irq[4];
1192 }
1193 
1194 static void create_cps(MachineState *ms, MaltaState *s,
1195                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1196 {
1197     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1198     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1199                             &error_fatal);
1200     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1201                             &error_fatal);
1202     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1203     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1204 
1205     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1206 
1207     *i8259_irq = get_cps_irq(&s->cps, 3);
1208     *cbus_irq = NULL;
1209 }
1210 
1211 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1212                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1213 {
1214     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1215         create_cps(ms, s, cbus_irq, i8259_irq);
1216     } else {
1217         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1218     }
1219 }
1220 
1221 static
1222 void mips_malta_init(MachineState *machine)
1223 {
1224     ram_addr_t ram_size = machine->ram_size;
1225     ram_addr_t ram_low_size;
1226     const char *kernel_filename = machine->kernel_filename;
1227     const char *kernel_cmdline = machine->kernel_cmdline;
1228     const char *initrd_filename = machine->initrd_filename;
1229     char *filename;
1230     PFlashCFI01 *fl;
1231     MemoryRegion *system_memory = get_system_memory();
1232     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1233     MemoryRegion *ram_low_postio;
1234     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1235     const size_t smbus_eeprom_size = 8 * 256;
1236     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1237     uint64_t kernel_entry, bootloader_run_addr;
1238     PCIBus *pci_bus;
1239     ISABus *isa_bus;
1240     qemu_irq cbus_irq, i8259_irq;
1241     I2CBus *smbus;
1242     DriveInfo *dinfo;
1243     int fl_idx = 0;
1244     int be;
1245     MaltaState *s;
1246     DeviceState *dev;
1247 
1248     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1249     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1250 
1251     /* create CPU */
1252     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1253 
1254     /* allocate RAM */
1255     if (ram_size > 2 * GiB) {
1256         error_report("Too much memory for this machine: %" PRId64 "MB,"
1257                      " maximum 2048MB", ram_size / MiB);
1258         exit(1);
1259     }
1260 
1261     /* register RAM at high address where it is undisturbed by IO */
1262     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1263 
1264     /* alias for pre IO hole access */
1265     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1266                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1267     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1268 
1269     /* alias for post IO hole access, if there is enough RAM */
1270     if (ram_size > 512 * MiB) {
1271         ram_low_postio = g_new(MemoryRegion, 1);
1272         memory_region_init_alias(ram_low_postio, NULL,
1273                                  "mips_malta_low_postio.ram",
1274                                  machine->ram, 512 * MiB,
1275                                  ram_size - 512 * MiB);
1276         memory_region_add_subregion(system_memory, 512 * MiB,
1277                                     ram_low_postio);
1278     }
1279 
1280 #ifdef TARGET_WORDS_BIGENDIAN
1281     be = 1;
1282 #else
1283     be = 0;
1284 #endif
1285 
1286     /* FPGA */
1287 
1288     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1289     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1290 
1291     /* Load firmware in flash / BIOS. */
1292     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1293     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1294                                FLASH_SIZE,
1295                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1296                                65536,
1297                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1298     bios = pflash_cfi01_get_memory(fl);
1299     fl_idx++;
1300     if (kernel_filename) {
1301         ram_low_size = MIN(ram_size, 256 * MiB);
1302         /* For KVM we reserve 1MB of RAM for running bootloader */
1303         if (kvm_enabled()) {
1304             ram_low_size -= 0x100000;
1305             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1306         } else {
1307             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1308         }
1309 
1310         /* Write a small bootloader to the flash location. */
1311         loaderparams.ram_size = ram_size;
1312         loaderparams.ram_low_size = ram_low_size;
1313         loaderparams.kernel_filename = kernel_filename;
1314         loaderparams.kernel_cmdline = kernel_cmdline;
1315         loaderparams.initrd_filename = initrd_filename;
1316         kernel_entry = load_kernel();
1317 
1318         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1319             write_bootloader(memory_region_get_ram_ptr(bios),
1320                              bootloader_run_addr, kernel_entry);
1321         } else {
1322             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1323                                       bootloader_run_addr, kernel_entry);
1324         }
1325         if (kvm_enabled()) {
1326             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1327             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1328                                     ram_low_size,
1329                              bootloader_run_addr, kernel_entry);
1330         }
1331     } else {
1332         target_long bios_size = FLASH_SIZE;
1333         /* The flash region isn't executable from a KVM guest */
1334         if (kvm_enabled()) {
1335             error_report("KVM enabled but no -kernel argument was specified. "
1336                          "Booting from flash is not supported with KVM.");
1337             exit(1);
1338         }
1339         /* Load firmware from flash. */
1340         if (!dinfo) {
1341             /* Load a BIOS image. */
1342             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1343                                       machine->firmware ?: BIOS_FILENAME);
1344             if (filename) {
1345                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1346                                                 BIOS_SIZE);
1347                 g_free(filename);
1348             } else {
1349                 bios_size = -1;
1350             }
1351             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1352                 machine->firmware && !qtest_enabled()) {
1353                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1354                 exit(1);
1355             }
1356         }
1357         /*
1358          * In little endian mode the 32bit words in the bios are swapped,
1359          * a neat trick which allows bi-endian firmware.
1360          */
1361 #ifndef TARGET_WORDS_BIGENDIAN
1362         {
1363             uint32_t *end, *addr;
1364             const size_t swapsize = MIN(bios_size, 0x3e0000);
1365             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1366             if (!addr) {
1367                 addr = memory_region_get_ram_ptr(bios);
1368             }
1369             end = (void *)addr + swapsize;
1370             while (addr < end) {
1371                 bswap32s(addr);
1372                 addr++;
1373             }
1374         }
1375 #endif
1376     }
1377 
1378     /*
1379      * Map the BIOS at a 2nd physical location, as on the real board.
1380      * Copy it so that we can patch in the MIPS revision, which cannot be
1381      * handled by an overlapping region as the resulting ROM code subpage
1382      * regions are not executable.
1383      */
1384     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1385                            &error_fatal);
1386     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1387                   FLASH_ADDRESS, BIOS_SIZE)) {
1388         memcpy(memory_region_get_ram_ptr(bios_copy),
1389                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1390     }
1391     memory_region_set_readonly(bios_copy, true);
1392     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1393 
1394     /* Board ID = 0x420 (Malta Board with CoreLV) */
1395     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1396 
1397     /* Northbridge */
1398     pci_bus = gt64120_register(s->i8259);
1399     /*
1400      * The whole address space decoded by the GT-64120A doesn't generate
1401      * exception when accessing invalid memory. Create an empty slot to
1402      * emulate this feature.
1403      */
1404     empty_slot_init("GT64120", 0, 0x20000000);
1405 
1406     /* Southbridge */
1407     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1408 
1409     /* Interrupt controller */
1410     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1411     for (int i = 0; i < ISA_NUM_IRQS; i++) {
1412         s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1413     }
1414 
1415     /* generate SPD EEPROM data */
1416     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1417     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1418     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1419     g_free(smbus_eeprom_buf);
1420 
1421     /* Super I/O: SMS FDC37M817 */
1422     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1423 
1424     /* Network card */
1425     network_init(pci_bus);
1426 
1427     /* Optional PCI video card */
1428     pci_vga_init(pci_bus);
1429 }
1430 
1431 static void mips_malta_instance_init(Object *obj)
1432 {
1433     MaltaState *s = MIPS_MALTA(obj);
1434 
1435     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1436     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1437 }
1438 
1439 static const TypeInfo mips_malta_device = {
1440     .name          = TYPE_MIPS_MALTA,
1441     .parent        = TYPE_SYS_BUS_DEVICE,
1442     .instance_size = sizeof(MaltaState),
1443     .instance_init = mips_malta_instance_init,
1444 };
1445 
1446 static void mips_malta_machine_init(MachineClass *mc)
1447 {
1448     mc->desc = "MIPS Malta Core LV";
1449     mc->init = mips_malta_init;
1450     mc->block_default_type = IF_IDE;
1451     mc->max_cpus = 16;
1452     mc->is_default = true;
1453 #ifdef TARGET_MIPS64
1454     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1455 #else
1456     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1457 #endif
1458     mc->default_ram_id = "mips_malta.ram";
1459 }
1460 
1461 DEFINE_MACHINE("malta", mips_malta_machine_init)
1462 
1463 static void mips_malta_register_types(void)
1464 {
1465     type_register_static(&mips_malta_device);
1466 }
1467 
1468 type_init(mips_malta_register_types)
1469