xref: /openbmc/qemu/hw/mips/malta.c (revision 6016b7b4)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "qom/object.h"
48 #include "hw/sysbus.h"             /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 
61 #define ENVP_PADDR          0x2000
62 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
63 #define ENVP_NB_ENTRIES     16
64 #define ENVP_ENTRY_SIZE     256
65 
66 /* Hardware addresses */
67 #define FLASH_ADDRESS       0x1e000000ULL
68 #define FPGA_ADDRESS        0x1f000000ULL
69 #define RESET_ADDRESS       0x1fc00000ULL
70 
71 #define FLASH_SIZE          0x400000
72 
73 #define MAX_IDE_BUS         2
74 
75 typedef struct {
76     MemoryRegion iomem;
77     MemoryRegion iomem_lo; /* 0 - 0x900 */
78     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
79     uint32_t leds;
80     uint32_t brk;
81     uint32_t gpout;
82     uint32_t i2cin;
83     uint32_t i2coe;
84     uint32_t i2cout;
85     uint32_t i2csel;
86     CharBackend display;
87     char display_text[9];
88     SerialMM *uart;
89     bool display_inited;
90 } MaltaFPGAState;
91 
92 #define TYPE_MIPS_MALTA "mips-malta"
93 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
94 
95 struct MaltaState {
96     SysBusDevice parent_obj;
97 
98     Clock *cpuclk;
99     MIPSCPSState cps;
100     qemu_irq i8259[ISA_NUM_IRQS];
101 };
102 
103 static struct _loaderparams {
104     int ram_size, ram_low_size;
105     const char *kernel_filename;
106     const char *kernel_cmdline;
107     const char *initrd_filename;
108 } loaderparams;
109 
110 /* Malta FPGA */
111 static void malta_fpga_update_display(void *opaque)
112 {
113     char leds_text[9];
114     int i;
115     MaltaFPGAState *s = opaque;
116 
117     for (i = 7 ; i >= 0 ; i--) {
118         if (s->leds & (1 << i)) {
119             leds_text[i] = '#';
120         } else {
121             leds_text[i] = ' ';
122         }
123     }
124     leds_text[8] = '\0';
125 
126     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
127                        leds_text);
128     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
129                        s->display_text);
130 }
131 
132 /*
133  * EEPROM 24C01 / 24C02 emulation.
134  *
135  * Emulation for serial EEPROMs:
136  * 24C01 - 1024 bit (128 x 8)
137  * 24C02 - 2048 bit (256 x 8)
138  *
139  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
140  */
141 
142 #if defined(DEBUG)
143 #  define logout(fmt, ...) \
144           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
145 #else
146 #  define logout(fmt, ...) ((void)0)
147 #endif
148 
149 struct _eeprom24c0x_t {
150   uint8_t tick;
151   uint8_t address;
152   uint8_t command;
153   uint8_t ack;
154   uint8_t scl;
155   uint8_t sda;
156   uint8_t data;
157   /* uint16_t size; */
158   uint8_t contents[256];
159 };
160 
161 typedef struct _eeprom24c0x_t eeprom24c0x_t;
162 
163 static eeprom24c0x_t spd_eeprom = {
164     .contents = {
165         /* 00000000: */
166         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
167         /* 00000008: */
168         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
169         /* 00000010: */
170         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
171         /* 00000018: */
172         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
173         /* 00000020: */
174         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
175         /* 00000028: */
176         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
177         /* 00000030: */
178         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
179         /* 00000038: */
180         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
181         /* 00000040: */
182         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183         /* 00000048: */
184         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185         /* 00000050: */
186         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
187         /* 00000058: */
188         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189         /* 00000060: */
190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191         /* 00000068: */
192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193         /* 00000070: */
194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195         /* 00000078: */
196         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
197     },
198 };
199 
200 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
201 {
202     enum { SDR = 0x4, DDR2 = 0x8 } type;
203     uint8_t *spd = spd_eeprom.contents;
204     uint8_t nbanks = 0;
205     uint16_t density = 0;
206     int i;
207 
208     /* work in terms of MB */
209     ram_size /= MiB;
210 
211     while ((ram_size >= 4) && (nbanks <= 2)) {
212         int sz_log2 = MIN(31 - clz32(ram_size), 14);
213         nbanks++;
214         density |= 1 << (sz_log2 - 2);
215         ram_size -= 1 << sz_log2;
216     }
217 
218     /* split to 2 banks if possible */
219     if ((nbanks == 1) && (density > 1)) {
220         nbanks++;
221         density >>= 1;
222     }
223 
224     if (density & 0xff00) {
225         density = (density & 0xe0) | ((density >> 8) & 0x1f);
226         type = DDR2;
227     } else if (!(density & 0x1f)) {
228         type = DDR2;
229     } else {
230         type = SDR;
231     }
232 
233     if (ram_size) {
234         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
235                     " of SDRAM", ram_size);
236     }
237 
238     /* fill in SPD memory information */
239     spd[2] = type;
240     spd[5] = nbanks;
241     spd[31] = density;
242 
243     /* checksum */
244     spd[63] = 0;
245     for (i = 0; i < 63; i++) {
246         spd[63] += spd[i];
247     }
248 
249     /* copy for SMBUS */
250     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
251 }
252 
253 static void generate_eeprom_serial(uint8_t *eeprom)
254 {
255     int i, pos = 0;
256     uint8_t mac[6] = { 0x00 };
257     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
258 
259     /* version */
260     eeprom[pos++] = 0x01;
261 
262     /* count */
263     eeprom[pos++] = 0x02;
264 
265     /* MAC address */
266     eeprom[pos++] = 0x01; /* MAC */
267     eeprom[pos++] = 0x06; /* length */
268     memcpy(&eeprom[pos], mac, sizeof(mac));
269     pos += sizeof(mac);
270 
271     /* serial number */
272     eeprom[pos++] = 0x02; /* serial */
273     eeprom[pos++] = 0x05; /* length */
274     memcpy(&eeprom[pos], sn, sizeof(sn));
275     pos += sizeof(sn);
276 
277     /* checksum */
278     eeprom[pos] = 0;
279     for (i = 0; i < pos; i++) {
280         eeprom[pos] += eeprom[i];
281     }
282 }
283 
284 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
285 {
286     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
287         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
288     return eeprom->sda;
289 }
290 
291 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
292 {
293     if (eeprom->scl && scl && (eeprom->sda != sda)) {
294         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
295                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
296                 sda ? "stop" : "start");
297         if (!sda) {
298             eeprom->tick = 1;
299             eeprom->command = 0;
300         }
301     } else if (eeprom->tick == 0 && !eeprom->ack) {
302         /* Waiting for start. */
303         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
304                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
305     } else if (!eeprom->scl && scl) {
306         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
307                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
308         if (eeprom->ack) {
309             logout("\ti2c ack bit = 0\n");
310             sda = 0;
311             eeprom->ack = 0;
312         } else if (eeprom->sda == sda) {
313             uint8_t bit = (sda != 0);
314             logout("\ti2c bit = %d\n", bit);
315             if (eeprom->tick < 9) {
316                 eeprom->command <<= 1;
317                 eeprom->command += bit;
318                 eeprom->tick++;
319                 if (eeprom->tick == 9) {
320                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
321                            bit ? "read" : "write");
322                     eeprom->ack = 1;
323                 }
324             } else if (eeprom->tick < 17) {
325                 if (eeprom->command & 1) {
326                     sda = ((eeprom->data & 0x80) != 0);
327                 }
328                 eeprom->address <<= 1;
329                 eeprom->address += bit;
330                 eeprom->tick++;
331                 eeprom->data <<= 1;
332                 if (eeprom->tick == 17) {
333                     eeprom->data = eeprom->contents[eeprom->address];
334                     logout("\taddress 0x%04x, data 0x%02x\n",
335                            eeprom->address, eeprom->data);
336                     eeprom->ack = 1;
337                     eeprom->tick = 0;
338                 }
339             } else if (eeprom->tick >= 17) {
340                 sda = 0;
341             }
342         } else {
343             logout("\tsda changed with raising scl\n");
344         }
345     } else {
346         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
347                scl, eeprom->sda, sda);
348     }
349     eeprom->scl = scl;
350     eeprom->sda = sda;
351 }
352 
353 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
354                                 unsigned size)
355 {
356     MaltaFPGAState *s = opaque;
357     uint32_t val = 0;
358     uint32_t saddr;
359 
360     saddr = (addr & 0xfffff);
361 
362     switch (saddr) {
363 
364     /* SWITCH Register */
365     case 0x00200:
366         val = 0x00000000;
367         break;
368 
369     /* STATUS Register */
370     case 0x00208:
371 #ifdef TARGET_WORDS_BIGENDIAN
372         val = 0x00000012;
373 #else
374         val = 0x00000010;
375 #endif
376         break;
377 
378     /* JMPRS Register */
379     case 0x00210:
380         val = 0x00;
381         break;
382 
383     /* LEDBAR Register */
384     case 0x00408:
385         val = s->leds;
386         break;
387 
388     /* BRKRES Register */
389     case 0x00508:
390         val = s->brk;
391         break;
392 
393     /* UART Registers are handled directly by the serial device */
394 
395     /* GPOUT Register */
396     case 0x00a00:
397         val = s->gpout;
398         break;
399 
400     /* XXX: implement a real I2C controller */
401 
402     /* GPINP Register */
403     case 0x00a08:
404         /* IN = OUT until a real I2C control is implemented */
405         if (s->i2csel) {
406             val = s->i2cout;
407         } else {
408             val = 0x00;
409         }
410         break;
411 
412     /* I2CINP Register */
413     case 0x00b00:
414         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
415         break;
416 
417     /* I2COE Register */
418     case 0x00b08:
419         val = s->i2coe;
420         break;
421 
422     /* I2COUT Register */
423     case 0x00b10:
424         val = s->i2cout;
425         break;
426 
427     /* I2CSEL Register */
428     case 0x00b18:
429         val = s->i2csel;
430         break;
431 
432     default:
433         qemu_log_mask(LOG_GUEST_ERROR,
434                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
435                       addr);
436         break;
437     }
438     return val;
439 }
440 
441 static void malta_fpga_write(void *opaque, hwaddr addr,
442                              uint64_t val, unsigned size)
443 {
444     MaltaFPGAState *s = opaque;
445     uint32_t saddr;
446 
447     saddr = (addr & 0xfffff);
448 
449     switch (saddr) {
450 
451     /* SWITCH Register */
452     case 0x00200:
453         break;
454 
455     /* JMPRS Register */
456     case 0x00210:
457         break;
458 
459     /* LEDBAR Register */
460     case 0x00408:
461         s->leds = val & 0xff;
462         malta_fpga_update_display(s);
463         break;
464 
465     /* ASCIIWORD Register */
466     case 0x00410:
467         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
468         malta_fpga_update_display(s);
469         break;
470 
471     /* ASCIIPOS0 to ASCIIPOS7 Registers */
472     case 0x00418:
473     case 0x00420:
474     case 0x00428:
475     case 0x00430:
476     case 0x00438:
477     case 0x00440:
478     case 0x00448:
479     case 0x00450:
480         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
481         malta_fpga_update_display(s);
482         break;
483 
484     /* SOFTRES Register */
485     case 0x00500:
486         if (val == 0x42) {
487             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
488         }
489         break;
490 
491     /* BRKRES Register */
492     case 0x00508:
493         s->brk = val & 0xff;
494         break;
495 
496     /* UART Registers are handled directly by the serial device */
497 
498     /* GPOUT Register */
499     case 0x00a00:
500         s->gpout = val & 0xff;
501         break;
502 
503     /* I2COE Register */
504     case 0x00b08:
505         s->i2coe = val & 0x03;
506         break;
507 
508     /* I2COUT Register */
509     case 0x00b10:
510         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
511         s->i2cout = val;
512         break;
513 
514     /* I2CSEL Register */
515     case 0x00b18:
516         s->i2csel = val & 0x01;
517         break;
518 
519     default:
520         qemu_log_mask(LOG_GUEST_ERROR,
521                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
522                       addr);
523         break;
524     }
525 }
526 
527 static const MemoryRegionOps malta_fpga_ops = {
528     .read = malta_fpga_read,
529     .write = malta_fpga_write,
530     .endianness = DEVICE_NATIVE_ENDIAN,
531 };
532 
533 static void malta_fpga_reset(void *opaque)
534 {
535     MaltaFPGAState *s = opaque;
536 
537     s->leds   = 0x00;
538     s->brk    = 0x0a;
539     s->gpout  = 0x00;
540     s->i2cin  = 0x3;
541     s->i2coe  = 0x0;
542     s->i2cout = 0x3;
543     s->i2csel = 0x1;
544 
545     s->display_text[8] = '\0';
546     snprintf(s->display_text, 9, "        ");
547 }
548 
549 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
550 {
551     MaltaFPGAState *s = opaque;
552 
553     if (event == CHR_EVENT_OPENED && !s->display_inited) {
554         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
555         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
556         qemu_chr_fe_printf(&s->display, "+        +\r\n");
557         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
558         qemu_chr_fe_printf(&s->display, "\n");
559         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
560         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
561         qemu_chr_fe_printf(&s->display, "+        +\r\n");
562         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
563         s->display_inited = true;
564     }
565 }
566 
567 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
568          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
569 {
570     MaltaFPGAState *s;
571     Chardev *chr;
572 
573     s = g_new0(MaltaFPGAState, 1);
574 
575     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
576                           "malta-fpga", 0x100000);
577     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
578                              &s->iomem, 0, 0x900);
579     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
580                              &s->iomem, 0xa00, 0x100000 - 0xa00);
581 
582     memory_region_add_subregion(address_space, base, &s->iomem_lo);
583     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
584 
585     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
586     qemu_chr_fe_init(&s->display, chr, NULL);
587     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
588                              malta_fgpa_display_event, NULL, s, NULL, true);
589 
590     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
591                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
592 
593     malta_fpga_reset(s);
594     qemu_register_reset(malta_fpga_reset, s);
595 
596     return s;
597 }
598 
599 /* Network support */
600 static void network_init(PCIBus *pci_bus)
601 {
602     int i;
603 
604     for (i = 0; i < nb_nics; i++) {
605         NICInfo *nd = &nd_table[i];
606         const char *default_devaddr = NULL;
607 
608         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
609             /* The malta board has a PCNet card using PCI SLOT 11 */
610             default_devaddr = "0b";
611 
612         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
613     }
614 }
615 
616 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
617                                       uint64_t kernel_entry)
618 {
619     uint16_t *p;
620 
621     /* Small bootloader */
622     p = (uint16_t *)base;
623 
624 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
625 #define NM_HI2(VAL) \
626           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
627 #define NM_LO(VAL)  ((VAL) & 0xfff)
628 
629     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
630                                 /* bc to_here */
631     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
632                                 /* nop */
633     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
634                                 /* nop */
635     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
636                                 /* nop */
637     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
638                                 /* nop */
639     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
640                                 /* nop */
641     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
642                                 /* nop */
643     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
644                                 /* nop */
645 
646     /* to_here: */
647     if (semihosting_get_argc()) {
648         /* Preserve a0 content as arguments have been passed    */
649         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
650                                 /* nop                          */
651     } else {
652         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
653                                 /* li a0,2                      */
654     }
655 
656     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
657 
658     stw_p(p++, NM_HI2(ENVP_VADDR - 64));
659                                 /* lui sp,%hi(ENVP_VADDR - 64)   */
660 
661     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
662                                 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
663 
664     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
665 
666     stw_p(p++, NM_HI2(ENVP_VADDR));
667                                 /* lui a1,%hi(ENVP_VADDR)        */
668 
669     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
670                                 /* ori a1,a1,%lo(ENVP_VADDR)     */
671 
672     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
673 
674     stw_p(p++, NM_HI2(ENVP_VADDR + 8));
675                                 /* lui a2,%hi(ENVP_VADDR + 8)    */
676 
677     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
678                                 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
679 
680     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
681 
682     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
683                                 /* lui a3,%hi(loaderparams.ram_low_size) */
684 
685     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
686                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
687 
688     /*
689      * Load BAR registers as done by YAMON:
690      *
691      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
692      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
693      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
694      *
695      */
696     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
697                                 /* lui t1, %hi(0xb4000000)      */
698 
699 #ifdef TARGET_WORDS_BIGENDIAN
700 
701     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
702                                 /* lui t0, %hi(0xdf000000)      */
703 
704     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
705     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
706                                 /* sw t0, 0x68(t1)              */
707 
708     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
709                                 /* lui t1, %hi(0xbbe00000)      */
710 
711     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
712                                 /* lui t0, %hi(0xc0000000)      */
713 
714     /* 0x48 corresponds to GT_PCI0IOLD                          */
715     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
716                                 /* sw t0, 0x48(t1)              */
717 
718     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
719                                 /* lui t0, %hi(0x40000000)      */
720 
721     /* 0x50 corresponds to GT_PCI0IOHD                          */
722     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
723                                 /* sw t0, 0x50(t1)              */
724 
725     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
726                                 /* lui t0, %hi(0x80000000)      */
727 
728     /* 0x58 corresponds to GT_PCI0M0LD                          */
729     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
730                                 /* sw t0, 0x58(t1)              */
731 
732     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
733                                 /* lui t0, %hi(0x3f000000)      */
734 
735     /* 0x60 corresponds to GT_PCI0M0HD                          */
736     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
737                                 /* sw t0, 0x60(t1)              */
738 
739     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
740                                 /* lui t0, %hi(0xc1000000)      */
741 
742     /* 0x80 corresponds to GT_PCI0M1LD                          */
743     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
744                                 /* sw t0, 0x80(t1)              */
745 
746     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
747                                 /* lui t0, %hi(0x5e000000)      */
748 
749 #else
750 
751     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
752                                 /* addiu[32] t0, $0, 0xdf       */
753 
754     /* 0x68 corresponds to GT_ISD                               */
755     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
756                                 /* sw t0, 0x68(t1)              */
757 
758     /* Use kseg2 remapped address 0x1be00000                    */
759     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
760                                 /* lui t1, %hi(0xbbe00000)      */
761 
762     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
763                                 /* addiu[32] t0, $0, 0xc0       */
764 
765     /* 0x48 corresponds to GT_PCI0IOLD                          */
766     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
767                                 /* sw t0, 0x48(t1)              */
768 
769     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
770                                 /* addiu[32] t0, $0, 0x40       */
771 
772     /* 0x50 corresponds to GT_PCI0IOHD                          */
773     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
774                                 /* sw t0, 0x50(t1)              */
775 
776     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
777                                 /* addiu[32] t0, $0, 0x80       */
778 
779     /* 0x58 corresponds to GT_PCI0M0LD                          */
780     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
781                                 /* sw t0, 0x58(t1)              */
782 
783     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
784                                 /* addiu[32] t0, $0, 0x3f       */
785 
786     /* 0x60 corresponds to GT_PCI0M0HD                          */
787     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
788                                 /* sw t0, 0x60(t1)              */
789 
790     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
791                                 /* addiu[32] t0, $0, 0xc1       */
792 
793     /* 0x80 corresponds to GT_PCI0M1LD                          */
794     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
795                                 /* sw t0, 0x80(t1)              */
796 
797     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
798                                 /* addiu[32] t0, $0, 0x5e       */
799 
800 #endif
801 
802     /* 0x88 corresponds to GT_PCI0M1HD                          */
803     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
804                                 /* sw t0, 0x88(t1)              */
805 
806     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
807 
808     stw_p(p++, NM_HI2(kernel_entry));
809                                 /* lui t9,%hi(kernel_entry)     */
810 
811     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
812                                 /* ori t9,t9,%lo(kernel_entry)  */
813 
814     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
815                                 /* jalrc   t8                   */
816 }
817 
818 /*
819  * ROM and pseudo bootloader
820  *
821  * The following code implements a very very simple bootloader. It first
822  * loads the registers a0 to a3 to the values expected by the OS, and
823  * then jump at the kernel address.
824  *
825  * The bootloader should pass the locations of the kernel arguments and
826  * environment variables tables. Those tables contain the 32-bit address
827  * of NULL terminated strings. The environment variables table should be
828  * terminated by a NULL address.
829  *
830  * For a simpler implementation, the number of kernel arguments is fixed
831  * to two (the name of the kernel and the command line), and the two
832  * tables are actually the same one.
833  *
834  * The registers a0 to a3 should contain the following values:
835  *   a0 - number of kernel arguments
836  *   a1 - 32-bit address of the kernel arguments table
837  *   a2 - 32-bit address of the environment variables table
838  *   a3 - RAM size in bytes
839  */
840 static void write_bootloader(uint8_t *base, uint64_t run_addr,
841                              uint64_t kernel_entry)
842 {
843     uint32_t *p;
844 
845     /* Small bootloader */
846     p = (uint32_t *)base;
847 
848     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
849                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
850     stl_p(p++, 0x00000000);                  /* nop */
851 
852     /* YAMON service vector */
853     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
854     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
855     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
856     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
857     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
858     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
859     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
860     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
861     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
862     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
863     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
864     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
865     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
866 
867 
868     /* Second part of the bootloader */
869     p = (uint32_t *) (base + 0x580);
870 
871     if (semihosting_get_argc()) {
872         /* Preserve a0 content as arguments have been passed */
873         stl_p(p++, 0x00000000);              /* nop */
874     } else {
875         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
876     }
877 
878     /* lui sp, high(ENVP_VADDR) */
879     stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
880     /* ori sp, sp, low(ENVP_VADDR) */
881     stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
882     /* lui a1, high(ENVP_VADDR) */
883     stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
884     /* ori a1, a1, low(ENVP_VADDR) */
885     stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
886     /* lui a2, high(ENVP_VADDR + 8) */
887     stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
888     /* ori a2, a2, low(ENVP_VADDR + 8) */
889     stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
890     /* lui a3, high(ram_low_size) */
891     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
892     /* ori a3, a3, low(ram_low_size) */
893     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
894 
895     /* Load BAR registers as done by YAMON */
896     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
897 
898 #ifdef TARGET_WORDS_BIGENDIAN
899     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
900 #else
901     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
902 #endif
903     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
904 
905     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
906 
907 #ifdef TARGET_WORDS_BIGENDIAN
908     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
909 #else
910     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
911 #endif
912     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
913 #ifdef TARGET_WORDS_BIGENDIAN
914     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
915 #else
916     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
917 #endif
918     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
919 
920 #ifdef TARGET_WORDS_BIGENDIAN
921     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
922 #else
923     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
924 #endif
925     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
926 #ifdef TARGET_WORDS_BIGENDIAN
927     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
928 #else
929     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
930 #endif
931     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
932 
933 #ifdef TARGET_WORDS_BIGENDIAN
934     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
935 #else
936     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
937 #endif
938     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
939 #ifdef TARGET_WORDS_BIGENDIAN
940     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
941 #else
942     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
943 #endif
944     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
945 
946     /* Jump to kernel code */
947     stl_p(p++, 0x3c1f0000 |
948           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
949     stl_p(p++, 0x37ff0000 |
950           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
951     stl_p(p++, 0x03e00009);                  /* jalr ra */
952     stl_p(p++, 0x00000000);                  /* nop */
953 
954     /* YAMON subroutines */
955     p = (uint32_t *) (base + 0x800);
956     stl_p(p++, 0x03e00009);                  /* jalr ra */
957     stl_p(p++, 0x24020000);                  /* li v0,0 */
958     /* 808 YAMON print */
959     stl_p(p++, 0x03e06821);                  /* move t5,ra */
960     stl_p(p++, 0x00805821);                  /* move t3,a0 */
961     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
962     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
963     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
964     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
965     stl_p(p++, 0x00000000);                  /* nop */
966     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
967     stl_p(p++, 0x00000000);                  /* nop */
968     stl_p(p++, 0x1000fff9);                  /* b 814 */
969     stl_p(p++, 0x00000000);                  /* nop */
970     stl_p(p++, 0x01a00009);                  /* jalr t5 */
971     stl_p(p++, 0x01602021);                  /* move a0,t3 */
972     /* 0x83c YAMON print_count */
973     stl_p(p++, 0x03e06821);                  /* move t5,ra */
974     stl_p(p++, 0x00805821);                  /* move t3,a0 */
975     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
976     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
977     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
978     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
979     stl_p(p++, 0x00000000);                  /* nop */
980     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
981     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
982     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
983     stl_p(p++, 0x00000000);                  /* nop */
984     stl_p(p++, 0x01a00009);                  /* jalr t5 */
985     stl_p(p++, 0x01602021);                  /* move a0,t3 */
986     /* 0x870 */
987     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
988     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
989     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
990     stl_p(p++, 0x00000000);                  /* nop */
991     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
992     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
993     stl_p(p++, 0x00000000);                  /* nop */
994     stl_p(p++, 0x03e00009);                  /* jalr ra */
995     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
996 
997 }
998 
999 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
1000                                         const char *string, ...)
1001 {
1002     va_list ap;
1003     uint32_t table_addr;
1004 
1005     if (index >= ENVP_NB_ENTRIES) {
1006         return;
1007     }
1008 
1009     if (string == NULL) {
1010         prom_buf[index] = 0;
1011         return;
1012     }
1013 
1014     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1015     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1016 
1017     va_start(ap, string);
1018     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1019     va_end(ap);
1020 }
1021 
1022 /* Kernel */
1023 static uint64_t load_kernel(void)
1024 {
1025     uint64_t kernel_entry, kernel_high, initrd_size;
1026     long kernel_size;
1027     ram_addr_t initrd_offset;
1028     int big_endian;
1029     uint32_t *prom_buf;
1030     long prom_size;
1031     int prom_index = 0;
1032     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1033 
1034 #ifdef TARGET_WORDS_BIGENDIAN
1035     big_endian = 1;
1036 #else
1037     big_endian = 0;
1038 #endif
1039 
1040     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1041                            cpu_mips_kseg0_to_phys, NULL,
1042                            &kernel_entry, NULL,
1043                            &kernel_high, NULL, big_endian, EM_MIPS,
1044                            1, 0);
1045     if (kernel_size < 0) {
1046         error_report("could not load kernel '%s': %s",
1047                      loaderparams.kernel_filename,
1048                      load_elf_strerror(kernel_size));
1049         exit(1);
1050     }
1051 
1052     /* Check where the kernel has been linked */
1053     if (kernel_entry & 0x80000000ll) {
1054         if (kvm_enabled()) {
1055             error_report("KVM guest kernels must be linked in useg. "
1056                          "Did you forget to enable CONFIG_KVM_GUEST?");
1057             exit(1);
1058         }
1059 
1060         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1061     } else {
1062         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1063         mips_um_ksegs_enable();
1064 
1065         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1066     }
1067 
1068     /* load initrd */
1069     initrd_size = 0;
1070     initrd_offset = 0;
1071     if (loaderparams.initrd_filename) {
1072         initrd_size = get_image_size(loaderparams.initrd_filename);
1073         if (initrd_size > 0) {
1074             /*
1075              * The kernel allocates the bootmap memory in the low memory after
1076              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1077              * pages.
1078              */
1079             initrd_offset = ROUND_UP(loaderparams.ram_low_size
1080                                      - (initrd_size + 128 * KiB),
1081                                      INITRD_PAGE_SIZE);
1082             if (kernel_high >= initrd_offset) {
1083                 error_report("memory too small for initial ram disk '%s'",
1084                              loaderparams.initrd_filename);
1085                 exit(1);
1086             }
1087             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1088                                               initrd_offset,
1089                                               loaderparams.ram_size - initrd_offset);
1090         }
1091         if (initrd_size == (target_ulong) -1) {
1092             error_report("could not load initial ram disk '%s'",
1093                          loaderparams.initrd_filename);
1094             exit(1);
1095         }
1096     }
1097 
1098     /* Setup prom parameters. */
1099     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1100     prom_buf = g_malloc(prom_size);
1101 
1102     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1103     if (initrd_size > 0) {
1104         prom_set(prom_buf, prom_index++,
1105                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1106                  xlate_to_kseg0(NULL, initrd_offset),
1107                  initrd_size, loaderparams.kernel_cmdline);
1108     } else {
1109         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1110     }
1111 
1112     prom_set(prom_buf, prom_index++, "memsize");
1113     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1114 
1115     prom_set(prom_buf, prom_index++, "ememsize");
1116     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1117 
1118     prom_set(prom_buf, prom_index++, "modetty0");
1119     prom_set(prom_buf, prom_index++, "38400n8r");
1120     prom_set(prom_buf, prom_index++, NULL);
1121 
1122     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1123 
1124     g_free(prom_buf);
1125     return kernel_entry;
1126 }
1127 
1128 static void malta_mips_config(MIPSCPU *cpu)
1129 {
1130     MachineState *ms = MACHINE(qdev_get_machine());
1131     unsigned int smp_cpus = ms->smp.cpus;
1132     CPUMIPSState *env = &cpu->env;
1133     CPUState *cs = CPU(cpu);
1134 
1135     if (ase_mt_available(env)) {
1136         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1137                                            CP0MVPC0_PTC, 8,
1138                                            smp_cpus * cs->nr_threads - 1);
1139         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1140                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
1141     }
1142 }
1143 
1144 static void main_cpu_reset(void *opaque)
1145 {
1146     MIPSCPU *cpu = opaque;
1147     CPUMIPSState *env = &cpu->env;
1148 
1149     cpu_reset(CPU(cpu));
1150 
1151     /*
1152      * The bootloader does not need to be rewritten as it is located in a
1153      * read only location. The kernel location and the arguments table
1154      * location does not change.
1155      */
1156     if (loaderparams.kernel_filename) {
1157         env->CP0_Status &= ~(1 << CP0St_ERL);
1158     }
1159 
1160     malta_mips_config(cpu);
1161 
1162     if (kvm_enabled()) {
1163         /* Start running from the bootloader we wrote to end of RAM */
1164         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1165     }
1166 }
1167 
1168 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1169                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1170 {
1171     CPUMIPSState *env;
1172     MIPSCPU *cpu;
1173     int i;
1174 
1175     for (i = 0; i < ms->smp.cpus; i++) {
1176         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1177 
1178         /* Init internal devices */
1179         cpu_mips_irq_init_cpu(cpu);
1180         cpu_mips_clock_init(cpu);
1181         qemu_register_reset(main_cpu_reset, cpu);
1182     }
1183 
1184     cpu = MIPS_CPU(first_cpu);
1185     env = &cpu->env;
1186     *i8259_irq = env->irq[2];
1187     *cbus_irq = env->irq[4];
1188 }
1189 
1190 static void create_cps(MachineState *ms, MaltaState *s,
1191                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1192 {
1193     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1194     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1195                             &error_fatal);
1196     object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1197                             &error_fatal);
1198     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1199     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1200 
1201     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1202 
1203     *i8259_irq = get_cps_irq(&s->cps, 3);
1204     *cbus_irq = NULL;
1205 }
1206 
1207 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1208                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1209 {
1210     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1211         create_cps(ms, s, cbus_irq, i8259_irq);
1212     } else {
1213         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1214     }
1215 }
1216 
1217 static
1218 void mips_malta_init(MachineState *machine)
1219 {
1220     ram_addr_t ram_size = machine->ram_size;
1221     ram_addr_t ram_low_size;
1222     const char *kernel_filename = machine->kernel_filename;
1223     const char *kernel_cmdline = machine->kernel_cmdline;
1224     const char *initrd_filename = machine->initrd_filename;
1225     char *filename;
1226     PFlashCFI01 *fl;
1227     MemoryRegion *system_memory = get_system_memory();
1228     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1229     MemoryRegion *ram_low_postio;
1230     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1231     const size_t smbus_eeprom_size = 8 * 256;
1232     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1233     uint64_t kernel_entry, bootloader_run_addr;
1234     PCIBus *pci_bus;
1235     ISABus *isa_bus;
1236     qemu_irq cbus_irq, i8259_irq;
1237     I2CBus *smbus;
1238     DriveInfo *dinfo;
1239     int fl_idx = 0;
1240     int be;
1241     MaltaState *s;
1242     DeviceState *dev;
1243 
1244     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1245     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1246 
1247     /* create CPU */
1248     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1249 
1250     /* allocate RAM */
1251     if (ram_size > 2 * GiB) {
1252         error_report("Too much memory for this machine: %" PRId64 "MB,"
1253                      " maximum 2048MB", ram_size / MiB);
1254         exit(1);
1255     }
1256 
1257     /* register RAM at high address where it is undisturbed by IO */
1258     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1259 
1260     /* alias for pre IO hole access */
1261     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1262                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1263     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1264 
1265     /* alias for post IO hole access, if there is enough RAM */
1266     if (ram_size > 512 * MiB) {
1267         ram_low_postio = g_new(MemoryRegion, 1);
1268         memory_region_init_alias(ram_low_postio, NULL,
1269                                  "mips_malta_low_postio.ram",
1270                                  machine->ram, 512 * MiB,
1271                                  ram_size - 512 * MiB);
1272         memory_region_add_subregion(system_memory, 512 * MiB,
1273                                     ram_low_postio);
1274     }
1275 
1276 #ifdef TARGET_WORDS_BIGENDIAN
1277     be = 1;
1278 #else
1279     be = 0;
1280 #endif
1281 
1282     /* FPGA */
1283 
1284     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1285     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1286 
1287     /* Load firmware in flash / BIOS. */
1288     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1289     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1290                                FLASH_SIZE,
1291                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1292                                65536,
1293                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1294     bios = pflash_cfi01_get_memory(fl);
1295     fl_idx++;
1296     if (kernel_filename) {
1297         ram_low_size = MIN(ram_size, 256 * MiB);
1298         /* For KVM we reserve 1MB of RAM for running bootloader */
1299         if (kvm_enabled()) {
1300             ram_low_size -= 0x100000;
1301             bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1302         } else {
1303             bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1304         }
1305 
1306         /* Write a small bootloader to the flash location. */
1307         loaderparams.ram_size = ram_size;
1308         loaderparams.ram_low_size = ram_low_size;
1309         loaderparams.kernel_filename = kernel_filename;
1310         loaderparams.kernel_cmdline = kernel_cmdline;
1311         loaderparams.initrd_filename = initrd_filename;
1312         kernel_entry = load_kernel();
1313 
1314         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1315             write_bootloader(memory_region_get_ram_ptr(bios),
1316                              bootloader_run_addr, kernel_entry);
1317         } else {
1318             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1319                                       bootloader_run_addr, kernel_entry);
1320         }
1321         if (kvm_enabled()) {
1322             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1323             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1324                                     ram_low_size,
1325                              bootloader_run_addr, kernel_entry);
1326         }
1327     } else {
1328         target_long bios_size = FLASH_SIZE;
1329         /* The flash region isn't executable from a KVM guest */
1330         if (kvm_enabled()) {
1331             error_report("KVM enabled but no -kernel argument was specified. "
1332                          "Booting from flash is not supported with KVM.");
1333             exit(1);
1334         }
1335         /* Load firmware from flash. */
1336         if (!dinfo) {
1337             /* Load a BIOS image. */
1338             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1339                                       machine->firmware ?: BIOS_FILENAME);
1340             if (filename) {
1341                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1342                                                 BIOS_SIZE);
1343                 g_free(filename);
1344             } else {
1345                 bios_size = -1;
1346             }
1347             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1348                 machine->firmware && !qtest_enabled()) {
1349                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1350                 exit(1);
1351             }
1352         }
1353         /*
1354          * In little endian mode the 32bit words in the bios are swapped,
1355          * a neat trick which allows bi-endian firmware.
1356          */
1357 #ifndef TARGET_WORDS_BIGENDIAN
1358         {
1359             uint32_t *end, *addr;
1360             const size_t swapsize = MIN(bios_size, 0x3e0000);
1361             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1362             if (!addr) {
1363                 addr = memory_region_get_ram_ptr(bios);
1364             }
1365             end = (void *)addr + swapsize;
1366             while (addr < end) {
1367                 bswap32s(addr);
1368                 addr++;
1369             }
1370         }
1371 #endif
1372     }
1373 
1374     /*
1375      * Map the BIOS at a 2nd physical location, as on the real board.
1376      * Copy it so that we can patch in the MIPS revision, which cannot be
1377      * handled by an overlapping region as the resulting ROM code subpage
1378      * regions are not executable.
1379      */
1380     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1381                            &error_fatal);
1382     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1383                   FLASH_ADDRESS, BIOS_SIZE)) {
1384         memcpy(memory_region_get_ram_ptr(bios_copy),
1385                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1386     }
1387     memory_region_set_readonly(bios_copy, true);
1388     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1389 
1390     /* Board ID = 0x420 (Malta Board with CoreLV) */
1391     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1392 
1393     /* Northbridge */
1394     pci_bus = gt64120_register(s->i8259);
1395     /*
1396      * The whole address space decoded by the GT-64120A doesn't generate
1397      * exception when accessing invalid memory. Create an empty slot to
1398      * emulate this feature.
1399      */
1400     empty_slot_init("GT64120", 0, 0x20000000);
1401 
1402     /* Southbridge */
1403     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1404 
1405     /* Interrupt controller */
1406     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1407     for (int i = 0; i < ISA_NUM_IRQS; i++) {
1408         s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1409     }
1410 
1411     /* generate SPD EEPROM data */
1412     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1413     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1414     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1415     g_free(smbus_eeprom_buf);
1416 
1417     /* Super I/O: SMS FDC37M817 */
1418     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1419 
1420     /* Network card */
1421     network_init(pci_bus);
1422 
1423     /* Optional PCI video card */
1424     pci_vga_init(pci_bus);
1425 }
1426 
1427 static void mips_malta_instance_init(Object *obj)
1428 {
1429     MaltaState *s = MIPS_MALTA(obj);
1430 
1431     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1432     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1433 }
1434 
1435 static const TypeInfo mips_malta_device = {
1436     .name          = TYPE_MIPS_MALTA,
1437     .parent        = TYPE_SYS_BUS_DEVICE,
1438     .instance_size = sizeof(MaltaState),
1439     .instance_init = mips_malta_instance_init,
1440 };
1441 
1442 static void mips_malta_machine_init(MachineClass *mc)
1443 {
1444     mc->desc = "MIPS Malta Core LV";
1445     mc->init = mips_malta_init;
1446     mc->block_default_type = IF_IDE;
1447     mc->max_cpus = 16;
1448     mc->is_default = true;
1449 #ifdef TARGET_MIPS64
1450     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1451 #else
1452     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1453 #endif
1454     mc->default_ram_id = "mips_malta.ram";
1455 }
1456 
1457 DEFINE_MACHINE("malta", mips_malta_machine_init)
1458 
1459 static void mips_malta_register_types(void)
1460 {
1461     type_register_static(&mips_malta_device);
1462 }
1463 
1464 type_init(mips_malta_register_types)
1465