xref: /openbmc/qemu/hw/mips/malta.c (revision 259ebed4)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/bootloader.h"
40 #include "hw/pci/pci.h"
41 #include "hw/pci/pci_bus.h"
42 #include "qemu/log.h"
43 #include "hw/mips/bios.h"
44 #include "hw/ide/pci.h"
45 #include "hw/irq.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "qom/object.h"
49 #include "hw/sysbus.h"             /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "sysemu/reset.h"
53 #include "sysemu/runstate.h"
54 #include "qapi/error.h"
55 #include "qemu/error-report.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60 #include "target/mips/internal.h"
61 #include "trace.h"
62 
63 #define ENVP_PADDR          0x2000
64 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
65 #define ENVP_NB_ENTRIES     16
66 #define ENVP_ENTRY_SIZE     256
67 
68 /* Hardware addresses */
69 #define FLASH_ADDRESS       0x1e000000ULL
70 #define FPGA_ADDRESS        0x1f000000ULL
71 #define RESET_ADDRESS       0x1fc00000ULL
72 
73 #define FLASH_SIZE          0x400000
74 
75 #define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
76 
77 typedef struct {
78     MemoryRegion iomem;
79     MemoryRegion iomem_lo; /* 0 - 0x900 */
80     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81     uint32_t leds;
82     uint32_t brk;
83     uint32_t gpout;
84     uint32_t i2cin;
85     uint32_t i2coe;
86     uint32_t i2cout;
87     uint32_t i2csel;
88     CharBackend display;
89     char display_text[9];
90     SerialMM *uart;
91     bool display_inited;
92 } MaltaFPGAState;
93 
94 #define TYPE_MIPS_MALTA "mips-malta"
95 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
96 
97 struct MaltaState {
98     SysBusDevice parent_obj;
99 
100     Clock *cpuclk;
101     MIPSCPSState cps;
102 };
103 
104 static struct _loaderparams {
105     int ram_size, ram_low_size;
106     const char *kernel_filename;
107     const char *kernel_cmdline;
108     const char *initrd_filename;
109 } loaderparams;
110 
111 /* Malta FPGA */
112 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
113 {
114     char leds_text[9];
115     int i;
116 
117     for (i = 7 ; i >= 0 ; i--) {
118         if (s->leds & (1 << i)) {
119             leds_text[i] = '#';
120         } else {
121             leds_text[i] = ' ';
122         }
123     }
124     leds_text[8] = '\0';
125 
126     trace_malta_fpga_leds(leds_text);
127     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128                        leds_text);
129 }
130 
131 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
132 {
133     trace_malta_fpga_display(s->display_text);
134     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
135                        s->display_text);
136 }
137 
138 /*
139  * EEPROM 24C01 / 24C02 emulation.
140  *
141  * Emulation for serial EEPROMs:
142  * 24C01 - 1024 bit (128 x 8)
143  * 24C02 - 2048 bit (256 x 8)
144  *
145  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
146  */
147 
148 #if defined(DEBUG)
149 #  define logout(fmt, ...) \
150           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
151 #else
152 #  define logout(fmt, ...) ((void)0)
153 #endif
154 
155 struct _eeprom24c0x_t {
156   uint8_t tick;
157   uint8_t address;
158   uint8_t command;
159   uint8_t ack;
160   uint8_t scl;
161   uint8_t sda;
162   uint8_t data;
163   /* uint16_t size; */
164   uint8_t contents[256];
165 };
166 
167 typedef struct _eeprom24c0x_t eeprom24c0x_t;
168 
169 static eeprom24c0x_t spd_eeprom = {
170     .contents = {
171         /* 00000000: */
172         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
173         /* 00000008: */
174         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
175         /* 00000010: */
176         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
177         /* 00000018: */
178         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
179         /* 00000020: */
180         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
181         /* 00000028: */
182         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
183         /* 00000030: */
184         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
185         /* 00000038: */
186         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
187         /* 00000040: */
188         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
189         /* 00000048: */
190         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
191         /* 00000050: */
192         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
193         /* 00000058: */
194         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
195         /* 00000060: */
196         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
197         /* 00000068: */
198         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
199         /* 00000070: */
200         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
201         /* 00000078: */
202         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
203     },
204 };
205 
206 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
207 {
208     enum sdram_type type;
209     uint8_t *spd = spd_eeprom.contents;
210     uint8_t nbanks = 0;
211     uint16_t density = 0;
212     int i;
213 
214     /* work in terms of MB */
215     ram_size /= MiB;
216 
217     while ((ram_size >= 4) && (nbanks <= 2)) {
218         int sz_log2 = MIN(31 - clz32(ram_size), 14);
219         nbanks++;
220         density |= 1 << (sz_log2 - 2);
221         ram_size -= 1 << sz_log2;
222     }
223 
224     /* split to 2 banks if possible */
225     if ((nbanks == 1) && (density > 1)) {
226         nbanks++;
227         density >>= 1;
228     }
229 
230     if (density & 0xff00) {
231         density = (density & 0xe0) | ((density >> 8) & 0x1f);
232         type = DDR2;
233     } else if (!(density & 0x1f)) {
234         type = DDR2;
235     } else {
236         type = SDR;
237     }
238 
239     if (ram_size) {
240         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
241                     " of SDRAM", ram_size);
242     }
243 
244     /* fill in SPD memory information */
245     spd[2] = type;
246     spd[5] = nbanks;
247     spd[31] = density;
248 
249     /* checksum */
250     spd[63] = 0;
251     for (i = 0; i < 63; i++) {
252         spd[63] += spd[i];
253     }
254 
255     /* copy for SMBUS */
256     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
257 }
258 
259 static void generate_eeprom_serial(uint8_t *eeprom)
260 {
261     int i, pos = 0;
262     uint8_t mac[6] = { 0x00 };
263     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
264 
265     /* version */
266     eeprom[pos++] = 0x01;
267 
268     /* count */
269     eeprom[pos++] = 0x02;
270 
271     /* MAC address */
272     eeprom[pos++] = 0x01; /* MAC */
273     eeprom[pos++] = 0x06; /* length */
274     memcpy(&eeprom[pos], mac, sizeof(mac));
275     pos += sizeof(mac);
276 
277     /* serial number */
278     eeprom[pos++] = 0x02; /* serial */
279     eeprom[pos++] = 0x05; /* length */
280     memcpy(&eeprom[pos], sn, sizeof(sn));
281     pos += sizeof(sn);
282 
283     /* checksum */
284     eeprom[pos] = 0;
285     for (i = 0; i < pos; i++) {
286         eeprom[pos] += eeprom[i];
287     }
288 }
289 
290 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
291 {
292     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
293         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
294     return eeprom->sda;
295 }
296 
297 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
298 {
299     if (eeprom->scl && scl && (eeprom->sda != sda)) {
300         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
301                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
302                 sda ? "stop" : "start");
303         if (!sda) {
304             eeprom->tick = 1;
305             eeprom->command = 0;
306         }
307     } else if (eeprom->tick == 0 && !eeprom->ack) {
308         /* Waiting for start. */
309         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
310                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
311     } else if (!eeprom->scl && scl) {
312         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
313                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
314         if (eeprom->ack) {
315             logout("\ti2c ack bit = 0\n");
316             sda = 0;
317             eeprom->ack = 0;
318         } else if (eeprom->sda == sda) {
319             uint8_t bit = (sda != 0);
320             logout("\ti2c bit = %d\n", bit);
321             if (eeprom->tick < 9) {
322                 eeprom->command <<= 1;
323                 eeprom->command += bit;
324                 eeprom->tick++;
325                 if (eeprom->tick == 9) {
326                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
327                            bit ? "read" : "write");
328                     eeprom->ack = 1;
329                 }
330             } else if (eeprom->tick < 17) {
331                 if (eeprom->command & 1) {
332                     sda = ((eeprom->data & 0x80) != 0);
333                 }
334                 eeprom->address <<= 1;
335                 eeprom->address += bit;
336                 eeprom->tick++;
337                 eeprom->data <<= 1;
338                 if (eeprom->tick == 17) {
339                     eeprom->data = eeprom->contents[eeprom->address];
340                     logout("\taddress 0x%04x, data 0x%02x\n",
341                            eeprom->address, eeprom->data);
342                     eeprom->ack = 1;
343                     eeprom->tick = 0;
344                 }
345             } else if (eeprom->tick >= 17) {
346                 sda = 0;
347             }
348         } else {
349             logout("\tsda changed with raising scl\n");
350         }
351     } else {
352         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
353                scl, eeprom->sda, sda);
354     }
355     eeprom->scl = scl;
356     eeprom->sda = sda;
357 }
358 
359 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
360                                 unsigned size)
361 {
362     MaltaFPGAState *s = opaque;
363     uint32_t val = 0;
364     uint32_t saddr;
365 
366     saddr = (addr & 0xfffff);
367 
368     switch (saddr) {
369 
370     /* SWITCH Register */
371     case 0x00200:
372         val = 0x00000000;
373         break;
374 
375     /* STATUS Register */
376     case 0x00208:
377 #if TARGET_BIG_ENDIAN
378         val = 0x00000012;
379 #else
380         val = 0x00000010;
381 #endif
382         break;
383 
384     /* JMPRS Register */
385     case 0x00210:
386         val = 0x00;
387         break;
388 
389     /* LEDBAR Register */
390     case 0x00408:
391         val = s->leds;
392         break;
393 
394     /* BRKRES Register */
395     case 0x00508:
396         val = s->brk;
397         break;
398 
399     /* UART Registers are handled directly by the serial device */
400 
401     /* GPOUT Register */
402     case 0x00a00:
403         val = s->gpout;
404         break;
405 
406     /* XXX: implement a real I2C controller */
407 
408     /* GPINP Register */
409     case 0x00a08:
410         /* IN = OUT until a real I2C control is implemented */
411         if (s->i2csel) {
412             val = s->i2cout;
413         } else {
414             val = 0x00;
415         }
416         break;
417 
418     /* I2CINP Register */
419     case 0x00b00:
420         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
421         break;
422 
423     /* I2COE Register */
424     case 0x00b08:
425         val = s->i2coe;
426         break;
427 
428     /* I2COUT Register */
429     case 0x00b10:
430         val = s->i2cout;
431         break;
432 
433     /* I2CSEL Register */
434     case 0x00b18:
435         val = s->i2csel;
436         break;
437 
438     default:
439         qemu_log_mask(LOG_GUEST_ERROR,
440                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
441                       addr);
442         break;
443     }
444     return val;
445 }
446 
447 static void malta_fpga_write(void *opaque, hwaddr addr,
448                              uint64_t val, unsigned size)
449 {
450     MaltaFPGAState *s = opaque;
451     uint32_t saddr;
452 
453     saddr = (addr & 0xfffff);
454 
455     switch (saddr) {
456 
457     /* SWITCH Register */
458     case 0x00200:
459         break;
460 
461     /* JMPRS Register */
462     case 0x00210:
463         break;
464 
465     /* LEDBAR Register */
466     case 0x00408:
467         s->leds = val & 0xff;
468         malta_fpga_update_display_leds(s);
469         break;
470 
471     /* ASCIIWORD Register */
472     case 0x00410:
473         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
474         malta_fpga_update_display_ascii(s);
475         break;
476 
477     /* ASCIIPOS0 to ASCIIPOS7 Registers */
478     case 0x00418:
479     case 0x00420:
480     case 0x00428:
481     case 0x00430:
482     case 0x00438:
483     case 0x00440:
484     case 0x00448:
485     case 0x00450:
486         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
487         malta_fpga_update_display_ascii(s);
488         break;
489 
490     /* SOFTRES Register */
491     case 0x00500:
492         if (val == 0x42) {
493             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
494         }
495         break;
496 
497     /* BRKRES Register */
498     case 0x00508:
499         s->brk = val & 0xff;
500         break;
501 
502     /* UART Registers are handled directly by the serial device */
503 
504     /* GPOUT Register */
505     case 0x00a00:
506         s->gpout = val & 0xff;
507         break;
508 
509     /* I2COE Register */
510     case 0x00b08:
511         s->i2coe = val & 0x03;
512         break;
513 
514     /* I2COUT Register */
515     case 0x00b10:
516         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
517         s->i2cout = val;
518         break;
519 
520     /* I2CSEL Register */
521     case 0x00b18:
522         s->i2csel = val & 0x01;
523         break;
524 
525     default:
526         qemu_log_mask(LOG_GUEST_ERROR,
527                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
528                       addr);
529         break;
530     }
531 }
532 
533 static const MemoryRegionOps malta_fpga_ops = {
534     .read = malta_fpga_read,
535     .write = malta_fpga_write,
536     .endianness = DEVICE_NATIVE_ENDIAN,
537 };
538 
539 static void malta_fpga_reset(void *opaque)
540 {
541     MaltaFPGAState *s = opaque;
542 
543     s->leds   = 0x00;
544     s->brk    = 0x0a;
545     s->gpout  = 0x00;
546     s->i2cin  = 0x3;
547     s->i2coe  = 0x0;
548     s->i2cout = 0x3;
549     s->i2csel = 0x1;
550 
551     s->display_text[8] = '\0';
552     snprintf(s->display_text, 9, "        ");
553 }
554 
555 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
556 {
557     MaltaFPGAState *s = opaque;
558 
559     if (event == CHR_EVENT_OPENED && !s->display_inited) {
560         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
561         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562         qemu_chr_fe_printf(&s->display, "+        +\r\n");
563         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
564         qemu_chr_fe_printf(&s->display, "\n");
565         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
566         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
567         qemu_chr_fe_printf(&s->display, "+        +\r\n");
568         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
569         s->display_inited = true;
570     }
571 }
572 
573 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
574          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
575 {
576     MaltaFPGAState *s;
577     Chardev *chr;
578 
579     s = g_new0(MaltaFPGAState, 1);
580 
581     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
582                           "malta-fpga", 0x100000);
583     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
584                              &s->iomem, 0, 0x900);
585     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
586                              &s->iomem, 0xa00, 0x100000 - 0xa00);
587 
588     memory_region_add_subregion(address_space, base, &s->iomem_lo);
589     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
590 
591     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
592     qemu_chr_fe_init(&s->display, chr, NULL);
593     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
594                              malta_fgpa_display_event, NULL, s, NULL, true);
595 
596     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
597                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
598 
599     malta_fpga_reset(s);
600     qemu_register_reset(malta_fpga_reset, s);
601 
602     return s;
603 }
604 
605 /* Network support */
606 static void network_init(PCIBus *pci_bus)
607 {
608     int i;
609 
610     for (i = 0; i < nb_nics; i++) {
611         NICInfo *nd = &nd_table[i];
612         const char *default_devaddr = NULL;
613 
614         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
615             /* The malta board has a PCNet card using PCI SLOT 11 */
616             default_devaddr = "0b";
617 
618         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
619     }
620 }
621 
622 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
623                                          uint64_t kernel_entry)
624 {
625     static const char pci_pins_cfg[PCI_NUM_PINS] = {
626         10, 10, 11, 11 /* PIIX IRQRC[A:D] */
627     };
628 
629     /* Bus endianness is always reversed */
630 #if TARGET_BIG_ENDIAN
631 #define cpu_to_gt32(x) (x)
632 #else
633 #define cpu_to_gt32(x) bswap32(x)
634 #endif
635 
636     /* setup MEM-to-PCI0 mapping as done by YAMON */
637 
638     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
639     bl_gen_write_u32(p, /* GT_ISD */
640                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
641                      cpu_to_gt32(0x1be00000 << 3));
642 
643     /* setup PCI0 io window to 0x18000000-0x181fffff */
644     bl_gen_write_u32(p, /* GT_PCI0IOLD */
645                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
646                      cpu_to_gt32(0x18000000 << 3));
647     bl_gen_write_u32(p, /* GT_PCI0IOHD */
648                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
649                      cpu_to_gt32(0x08000000 << 3));
650 
651     /* setup PCI0 mem windows */
652     bl_gen_write_u32(p, /* GT_PCI0M0LD */
653                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
654                      cpu_to_gt32(0x10000000 << 3));
655     bl_gen_write_u32(p, /* GT_PCI0M0HD */
656                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
657                      cpu_to_gt32(0x07e00000 << 3));
658     bl_gen_write_u32(p, /* GT_PCI0M1LD */
659                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
660                      cpu_to_gt32(0x18200000 << 3));
661     bl_gen_write_u32(p, /* GT_PCI0M1HD */
662                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
663                      cpu_to_gt32(0x0bc00000 << 3));
664 
665 #undef cpu_to_gt32
666 
667     /*
668      * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
669      * Load the PIIX IRQC[A:D] routing config address, then
670      * write routing configuration to the config data register.
671      */
672     bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
673                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
674                      tswap32((1 << 31) /* ConfigEn */
675                              | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
676                              | PIIX_PIRQCA));
677     bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
678                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
679                      tswap32(ldl_be_p(pci_pins_cfg)));
680 
681     bl_gen_jump_kernel(p,
682                        true, ENVP_VADDR - 64,
683                        /*
684                         * If semihosting is used, arguments have already
685                         * been passed, so we preserve $a0.
686                         */
687                        !semihosting_get_argc(), 2,
688                        true, ENVP_VADDR,
689                        true, ENVP_VADDR + 8,
690                        true, loaderparams.ram_low_size,
691                        kernel_entry);
692 }
693 
694 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
695                                       uint64_t kernel_entry)
696 {
697     uint16_t *p;
698 
699     /* Small bootloader */
700     p = (uint16_t *)base;
701 
702     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
703                                 /* bc to_here */
704     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
705                                 /* nop */
706     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
707                                 /* nop */
708     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
709                                 /* nop */
710     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
711                                 /* nop */
712     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
713                                 /* nop */
714     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
715                                 /* nop */
716     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
717                                 /* nop */
718 
719     /* to_here: */
720 
721     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
722 }
723 
724 /*
725  * ROM and pseudo bootloader
726  *
727  * The following code implements a very very simple bootloader. It first
728  * loads the registers a0 to a3 to the values expected by the OS, and
729  * then jump at the kernel address.
730  *
731  * The bootloader should pass the locations of the kernel arguments and
732  * environment variables tables. Those tables contain the 32-bit address
733  * of NULL terminated strings. The environment variables table should be
734  * terminated by a NULL address.
735  *
736  * For a simpler implementation, the number of kernel arguments is fixed
737  * to two (the name of the kernel and the command line), and the two
738  * tables are actually the same one.
739  *
740  * The registers a0 to a3 should contain the following values:
741  *   a0 - number of kernel arguments
742  *   a1 - 32-bit address of the kernel arguments table
743  *   a2 - 32-bit address of the environment variables table
744  *   a3 - RAM size in bytes
745  */
746 static void write_bootloader(uint8_t *base, uint64_t run_addr,
747                              uint64_t kernel_entry)
748 {
749     uint32_t *p;
750 
751     /* Small bootloader */
752     p = (uint32_t *)base;
753 
754     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
755                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
756     stl_p(p++, 0x00000000);                  /* nop */
757 
758     /* YAMON service vector */
759     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
760     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
761     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
762     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
763     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
764     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
765     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
766     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
767     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
768     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
769     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
770     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
771     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
772 
773 
774     /* Second part of the bootloader */
775     p = (uint32_t *) (base + 0x580);
776 
777     /*
778      * Load BAR registers as done by YAMON:
779      *
780      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
781      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
782      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
783      *
784      */
785 
786     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
787 
788     /* YAMON subroutines */
789     p = (uint32_t *) (base + 0x800);
790     stl_p(p++, 0x03e00009);                  /* jalr ra */
791     stl_p(p++, 0x24020000);                  /* li v0,0 */
792     /* 808 YAMON print */
793     stl_p(p++, 0x03e06821);                  /* move t5,ra */
794     stl_p(p++, 0x00805821);                  /* move t3,a0 */
795     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
796     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
797     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
798     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
799     stl_p(p++, 0x00000000);                  /* nop */
800     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
801     stl_p(p++, 0x00000000);                  /* nop */
802     stl_p(p++, 0x1000fff9);                  /* b 814 */
803     stl_p(p++, 0x00000000);                  /* nop */
804     stl_p(p++, 0x01a00009);                  /* jalr t5 */
805     stl_p(p++, 0x01602021);                  /* move a0,t3 */
806     /* 0x83c YAMON print_count */
807     stl_p(p++, 0x03e06821);                  /* move t5,ra */
808     stl_p(p++, 0x00805821);                  /* move t3,a0 */
809     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
810     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
811     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
812     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
813     stl_p(p++, 0x00000000);                  /* nop */
814     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
815     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
816     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
817     stl_p(p++, 0x00000000);                  /* nop */
818     stl_p(p++, 0x01a00009);                  /* jalr t5 */
819     stl_p(p++, 0x01602021);                  /* move a0,t3 */
820     /* 0x870 */
821     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
822     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
823     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
824     stl_p(p++, 0x00000000);                  /* nop */
825     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
826     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
827     stl_p(p++, 0x00000000);                  /* nop */
828     stl_p(p++, 0x03e00009);                  /* jalr ra */
829     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
830 }
831 
832 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
833                                         const char *string, ...)
834 {
835     va_list ap;
836     uint32_t table_addr;
837 
838     if (index >= ENVP_NB_ENTRIES) {
839         return;
840     }
841 
842     if (string == NULL) {
843         prom_buf[index] = 0;
844         return;
845     }
846 
847     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
848     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
849 
850     va_start(ap, string);
851     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
852     va_end(ap);
853 }
854 
855 static void reinitialize_rng_seed(void *opaque)
856 {
857     char *rng_seed_hex = opaque;
858     uint8_t rng_seed[32];
859 
860     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
861     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
862         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
863     }
864 }
865 
866 /* Kernel */
867 static uint64_t load_kernel(void)
868 {
869     uint64_t kernel_entry, kernel_high, initrd_size;
870     long kernel_size;
871     ram_addr_t initrd_offset;
872     uint32_t *prom_buf;
873     long prom_size;
874     int prom_index = 0;
875     uint8_t rng_seed[32];
876     char rng_seed_hex[sizeof(rng_seed) * 2 + 1];
877     size_t rng_seed_prom_offset;
878 
879     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
880                            cpu_mips_kseg0_to_phys, NULL,
881                            &kernel_entry, NULL,
882                            &kernel_high, NULL, TARGET_BIG_ENDIAN, EM_MIPS,
883                            1, 0);
884     if (kernel_size < 0) {
885         error_report("could not load kernel '%s': %s",
886                      loaderparams.kernel_filename,
887                      load_elf_strerror(kernel_size));
888         exit(1);
889     }
890 
891     /* Check where the kernel has been linked */
892     if (kernel_entry <= USEG_LIMIT) {
893         error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
894                      " are not supported");
895         exit(1);
896     }
897 
898     /* load initrd */
899     initrd_size = 0;
900     initrd_offset = 0;
901     if (loaderparams.initrd_filename) {
902         initrd_size = get_image_size(loaderparams.initrd_filename);
903         if (initrd_size > 0) {
904             /*
905              * The kernel allocates the bootmap memory in the low memory after
906              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
907              * pages.
908              */
909             initrd_offset = ROUND_UP(loaderparams.ram_low_size
910                                      - (initrd_size + 128 * KiB),
911                                      INITRD_PAGE_SIZE);
912             if (kernel_high >= initrd_offset) {
913                 error_report("memory too small for initial ram disk '%s'",
914                              loaderparams.initrd_filename);
915                 exit(1);
916             }
917             initrd_size = load_image_targphys(loaderparams.initrd_filename,
918                                               initrd_offset,
919                                               loaderparams.ram_size - initrd_offset);
920         }
921         if (initrd_size == (target_ulong) -1) {
922             error_report("could not load initial ram disk '%s'",
923                          loaderparams.initrd_filename);
924             exit(1);
925         }
926     }
927 
928     /* Setup prom parameters. */
929     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
930     prom_buf = g_malloc(prom_size);
931 
932     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
933     if (initrd_size > 0) {
934         prom_set(prom_buf, prom_index++,
935                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
936                  cpu_mips_phys_to_kseg0(NULL, initrd_offset),
937                  initrd_size, loaderparams.kernel_cmdline);
938     } else {
939         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
940     }
941 
942     prom_set(prom_buf, prom_index++, "memsize");
943     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
944 
945     prom_set(prom_buf, prom_index++, "ememsize");
946     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
947 
948     prom_set(prom_buf, prom_index++, "modetty0");
949     prom_set(prom_buf, prom_index++, "38400n8r");
950 
951     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
952     for (size_t i = 0; i < sizeof(rng_seed); ++i) {
953         sprintf(rng_seed_hex + i * 2, "%02x", rng_seed[i]);
954     }
955     prom_set(prom_buf, prom_index++, "rngseed");
956     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
957                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
958     prom_set(prom_buf, prom_index++, "%s", rng_seed_hex);
959 
960     prom_set(prom_buf, prom_index++, NULL);
961 
962     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
963     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
964             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
965 
966     g_free(prom_buf);
967     return kernel_entry;
968 }
969 
970 static void malta_mips_config(MIPSCPU *cpu)
971 {
972     MachineState *ms = MACHINE(qdev_get_machine());
973     unsigned int smp_cpus = ms->smp.cpus;
974     CPUMIPSState *env = &cpu->env;
975     CPUState *cs = CPU(cpu);
976 
977     if (ase_mt_available(env)) {
978         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
979                                            CP0MVPC0_PTC, 8,
980                                            smp_cpus * cs->nr_threads - 1);
981         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
982                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
983     }
984 }
985 
986 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
987 {
988     int slot;
989 
990     slot = PCI_SLOT(pci_dev->devfn);
991 
992     switch (slot) {
993     /* PIIX4 USB */
994     case 10:
995         return 3;
996     /* AMD 79C973 Ethernet */
997     case 11:
998         return 1;
999     /* Crystal 4281 Sound */
1000     case 12:
1001         return 2;
1002     /* PCI slot 1 to 4 */
1003     case 18 ... 21:
1004         return ((slot - 18) + irq_num) & 0x03;
1005     /* Unknown device, don't do any translation */
1006     default:
1007         return irq_num;
1008     }
1009 }
1010 
1011 static void main_cpu_reset(void *opaque)
1012 {
1013     MIPSCPU *cpu = opaque;
1014     CPUMIPSState *env = &cpu->env;
1015 
1016     cpu_reset(CPU(cpu));
1017 
1018     /*
1019      * The bootloader does not need to be rewritten as it is located in a
1020      * read only location. The kernel location and the arguments table
1021      * location does not change.
1022      */
1023     if (loaderparams.kernel_filename) {
1024         env->CP0_Status &= ~(1 << CP0St_ERL);
1025     }
1026 
1027     malta_mips_config(cpu);
1028 }
1029 
1030 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1031                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1032 {
1033     CPUMIPSState *env;
1034     MIPSCPU *cpu;
1035     int i;
1036 
1037     for (i = 0; i < ms->smp.cpus; i++) {
1038         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1039 
1040         /* Init internal devices */
1041         cpu_mips_irq_init_cpu(cpu);
1042         cpu_mips_clock_init(cpu);
1043         qemu_register_reset(main_cpu_reset, cpu);
1044     }
1045 
1046     cpu = MIPS_CPU(first_cpu);
1047     env = &cpu->env;
1048     *i8259_irq = env->irq[2];
1049     *cbus_irq = env->irq[4];
1050 }
1051 
1052 static void create_cps(MachineState *ms, MaltaState *s,
1053                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1054 {
1055     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1056     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1057                             &error_fatal);
1058     object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1059                             &error_fatal);
1060     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1061     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1062 
1063     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1064 
1065     *i8259_irq = get_cps_irq(&s->cps, 3);
1066     *cbus_irq = NULL;
1067 }
1068 
1069 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1070                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1071 {
1072     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1073         create_cps(ms, s, cbus_irq, i8259_irq);
1074     } else {
1075         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1076     }
1077 }
1078 
1079 static
1080 void mips_malta_init(MachineState *machine)
1081 {
1082     ram_addr_t ram_size = machine->ram_size;
1083     ram_addr_t ram_low_size;
1084     const char *kernel_filename = machine->kernel_filename;
1085     const char *kernel_cmdline = machine->kernel_cmdline;
1086     const char *initrd_filename = machine->initrd_filename;
1087     char *filename;
1088     PFlashCFI01 *fl;
1089     MemoryRegion *system_memory = get_system_memory();
1090     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1091     MemoryRegion *ram_low_postio;
1092     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1093     const size_t smbus_eeprom_size = 8 * 256;
1094     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1095     uint64_t kernel_entry, bootloader_run_addr;
1096     PCIBus *pci_bus;
1097     ISABus *isa_bus;
1098     qemu_irq cbus_irq, i8259_irq;
1099     I2CBus *smbus;
1100     DriveInfo *dinfo;
1101     int fl_idx = 0;
1102     MaltaState *s;
1103     PCIDevice *piix4;
1104     DeviceState *dev;
1105 
1106     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1107     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1108 
1109     /* create CPU */
1110     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1111 
1112     /* allocate RAM */
1113     if (ram_size > 2 * GiB) {
1114         error_report("Too much memory for this machine: %" PRId64 "MB,"
1115                      " maximum 2048MB", ram_size / MiB);
1116         exit(1);
1117     }
1118 
1119     /* register RAM at high address where it is undisturbed by IO */
1120     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1121 
1122     /* alias for pre IO hole access */
1123     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1124                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1125     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1126 
1127     /* alias for post IO hole access, if there is enough RAM */
1128     if (ram_size > 512 * MiB) {
1129         ram_low_postio = g_new(MemoryRegion, 1);
1130         memory_region_init_alias(ram_low_postio, NULL,
1131                                  "mips_malta_low_postio.ram",
1132                                  machine->ram, 512 * MiB,
1133                                  ram_size - 512 * MiB);
1134         memory_region_add_subregion(system_memory, 512 * MiB,
1135                                     ram_low_postio);
1136     }
1137 
1138     /* FPGA */
1139 
1140     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1141     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1142 
1143     /* Load firmware in flash / BIOS. */
1144     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1145     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1146                                FLASH_SIZE,
1147                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1148                                65536,
1149                                4, 0x0000, 0x0000, 0x0000, 0x0000,
1150                                TARGET_BIG_ENDIAN);
1151     bios = pflash_cfi01_get_memory(fl);
1152     fl_idx++;
1153     if (kernel_filename) {
1154         ram_low_size = MIN(ram_size, 256 * MiB);
1155         bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1156 
1157         /* Write a small bootloader to the flash location. */
1158         loaderparams.ram_size = ram_size;
1159         loaderparams.ram_low_size = ram_low_size;
1160         loaderparams.kernel_filename = kernel_filename;
1161         loaderparams.kernel_cmdline = kernel_cmdline;
1162         loaderparams.initrd_filename = initrd_filename;
1163         kernel_entry = load_kernel();
1164 
1165         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1166             write_bootloader(memory_region_get_ram_ptr(bios),
1167                              bootloader_run_addr, kernel_entry);
1168         } else {
1169             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1170                                       bootloader_run_addr, kernel_entry);
1171         }
1172     } else {
1173         target_long bios_size = FLASH_SIZE;
1174         /* Load firmware from flash. */
1175         if (!dinfo) {
1176             /* Load a BIOS image. */
1177             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1178                                       machine->firmware ?: BIOS_FILENAME);
1179             if (filename) {
1180                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1181                                                 BIOS_SIZE);
1182                 g_free(filename);
1183             } else {
1184                 bios_size = -1;
1185             }
1186             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1187                 machine->firmware && !qtest_enabled()) {
1188                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1189                 exit(1);
1190             }
1191         }
1192         /*
1193          * In little endian mode the 32bit words in the bios are swapped,
1194          * a neat trick which allows bi-endian firmware.
1195          */
1196 #if !TARGET_BIG_ENDIAN
1197         {
1198             uint32_t *end, *addr;
1199             const size_t swapsize = MIN(bios_size, 0x3e0000);
1200             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1201             if (!addr) {
1202                 addr = memory_region_get_ram_ptr(bios);
1203             }
1204             end = (void *)addr + swapsize;
1205             while (addr < end) {
1206                 bswap32s(addr);
1207                 addr++;
1208             }
1209         }
1210 #endif
1211     }
1212 
1213     /*
1214      * Map the BIOS at a 2nd physical location, as on the real board.
1215      * Copy it so that we can patch in the MIPS revision, which cannot be
1216      * handled by an overlapping region as the resulting ROM code subpage
1217      * regions are not executable.
1218      */
1219     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1220                            &error_fatal);
1221     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1222                   FLASH_ADDRESS, BIOS_SIZE)) {
1223         memcpy(memory_region_get_ram_ptr(bios_copy),
1224                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1225     }
1226     memory_region_set_readonly(bios_copy, true);
1227     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1228 
1229     /* Board ID = 0x420 (Malta Board with CoreLV) */
1230     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1231 
1232     /* Northbridge */
1233     dev = qdev_new("gt64120");
1234     qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1235     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1236     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1237     pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1238 
1239     /* Southbridge */
1240     piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1241     qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1242     pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1243     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1244 
1245     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1246     pci_ide_create_devs(PCI_DEVICE(dev));
1247 
1248     /* Interrupt controller */
1249     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1250 
1251     /* generate SPD EEPROM data */
1252     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1253     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1254     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1255     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1256     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1257     g_free(smbus_eeprom_buf);
1258 
1259     /* Super I/O: SMS FDC37M817 */
1260     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1261 
1262     /* Network card */
1263     network_init(pci_bus);
1264 
1265     /* Optional PCI video card */
1266     pci_vga_init(pci_bus);
1267 }
1268 
1269 static void mips_malta_instance_init(Object *obj)
1270 {
1271     MaltaState *s = MIPS_MALTA(obj);
1272 
1273     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1274     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1275 }
1276 
1277 static const TypeInfo mips_malta_device = {
1278     .name          = TYPE_MIPS_MALTA,
1279     .parent        = TYPE_SYS_BUS_DEVICE,
1280     .instance_size = sizeof(MaltaState),
1281     .instance_init = mips_malta_instance_init,
1282 };
1283 
1284 GlobalProperty malta_compat[] = {
1285     { "PIIX4_PM", "memory-hotplug-support", "off" },
1286     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1287     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1288     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1289 };
1290 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1291 
1292 static void mips_malta_machine_init(MachineClass *mc)
1293 {
1294     mc->desc = "MIPS Malta Core LV";
1295     mc->init = mips_malta_init;
1296     mc->block_default_type = IF_IDE;
1297     mc->max_cpus = 16;
1298     mc->is_default = true;
1299 #ifdef TARGET_MIPS64
1300     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1301 #else
1302     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1303 #endif
1304     mc->default_ram_id = "mips_malta.ram";
1305     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1306 }
1307 
1308 DEFINE_MACHINE("malta", mips_malta_machine_init)
1309 
1310 static void mips_malta_register_types(void)
1311 {
1312     type_register_static(&mips_malta_device);
1313 }
1314 
1315 type_init(mips_malta_register_types)
1316