xref: /openbmc/qemu/hw/mips/malta.c (revision 06d4c71f)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/southbridge/piix.h"
30 #include "hw/isa/superio.h"
31 #include "hw/char/serial.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus_eeprom.h"
35 #include "hw/block/flash.h"
36 #include "hw/mips/mips.h"
37 #include "hw/mips/cpudevs.h"
38 #include "hw/pci/pci.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/arch_init.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "exec/address-spaces.h"
48 #include "hw/sysbus.h"             /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "hw/semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 
60 #define ENVP_ADDR           0x80002000l
61 #define ENVP_NB_ENTRIES     16
62 #define ENVP_ENTRY_SIZE     256
63 
64 /* Hardware addresses */
65 #define FLASH_ADDRESS       0x1e000000ULL
66 #define FPGA_ADDRESS        0x1f000000ULL
67 #define RESET_ADDRESS       0x1fc00000ULL
68 
69 #define FLASH_SIZE          0x400000
70 
71 #define MAX_IDE_BUS         2
72 
73 typedef struct {
74     MemoryRegion iomem;
75     MemoryRegion iomem_lo; /* 0 - 0x900 */
76     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
77     uint32_t leds;
78     uint32_t brk;
79     uint32_t gpout;
80     uint32_t i2cin;
81     uint32_t i2coe;
82     uint32_t i2cout;
83     uint32_t i2csel;
84     CharBackend display;
85     char display_text[9];
86     SerialMM *uart;
87     bool display_inited;
88 } MaltaFPGAState;
89 
90 #define TYPE_MIPS_MALTA "mips-malta"
91 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
92 
93 typedef struct {
94     SysBusDevice parent_obj;
95 
96     MIPSCPSState cps;
97     qemu_irq i8259[ISA_NUM_IRQS];
98 } MaltaState;
99 
100 static struct _loaderparams {
101     int ram_size, ram_low_size;
102     const char *kernel_filename;
103     const char *kernel_cmdline;
104     const char *initrd_filename;
105 } loaderparams;
106 
107 /* Malta FPGA */
108 static void malta_fpga_update_display(void *opaque)
109 {
110     char leds_text[9];
111     int i;
112     MaltaFPGAState *s = opaque;
113 
114     for (i = 7 ; i >= 0 ; i--) {
115         if (s->leds & (1 << i)) {
116             leds_text[i] = '#';
117         } else {
118             leds_text[i] = ' ';
119         }
120     }
121     leds_text[8] = '\0';
122 
123     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
124                        leds_text);
125     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
126                        s->display_text);
127 }
128 
129 /*
130  * EEPROM 24C01 / 24C02 emulation.
131  *
132  * Emulation for serial EEPROMs:
133  * 24C01 - 1024 bit (128 x 8)
134  * 24C02 - 2048 bit (256 x 8)
135  *
136  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
137  */
138 
139 #if defined(DEBUG)
140 #  define logout(fmt, ...) \
141           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
142 #else
143 #  define logout(fmt, ...) ((void)0)
144 #endif
145 
146 struct _eeprom24c0x_t {
147   uint8_t tick;
148   uint8_t address;
149   uint8_t command;
150   uint8_t ack;
151   uint8_t scl;
152   uint8_t sda;
153   uint8_t data;
154   /* uint16_t size; */
155   uint8_t contents[256];
156 };
157 
158 typedef struct _eeprom24c0x_t eeprom24c0x_t;
159 
160 static eeprom24c0x_t spd_eeprom = {
161     .contents = {
162         /* 00000000: */
163         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
164         /* 00000008: */
165         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
166         /* 00000010: */
167         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
168         /* 00000018: */
169         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
170         /* 00000020: */
171         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
172         /* 00000028: */
173         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
174         /* 00000030: */
175         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176         /* 00000038: */
177         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
178         /* 00000040: */
179         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180         /* 00000048: */
181         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182         /* 00000050: */
183         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184         /* 00000058: */
185         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186         /* 00000060: */
187         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188         /* 00000068: */
189         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190         /* 00000070: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000078: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
194     },
195 };
196 
197 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
198 {
199     enum { SDR = 0x4, DDR2 = 0x8 } type;
200     uint8_t *spd = spd_eeprom.contents;
201     uint8_t nbanks = 0;
202     uint16_t density = 0;
203     int i;
204 
205     /* work in terms of MB */
206     ram_size /= MiB;
207 
208     while ((ram_size >= 4) && (nbanks <= 2)) {
209         int sz_log2 = MIN(31 - clz32(ram_size), 14);
210         nbanks++;
211         density |= 1 << (sz_log2 - 2);
212         ram_size -= 1 << sz_log2;
213     }
214 
215     /* split to 2 banks if possible */
216     if ((nbanks == 1) && (density > 1)) {
217         nbanks++;
218         density >>= 1;
219     }
220 
221     if (density & 0xff00) {
222         density = (density & 0xe0) | ((density >> 8) & 0x1f);
223         type = DDR2;
224     } else if (!(density & 0x1f)) {
225         type = DDR2;
226     } else {
227         type = SDR;
228     }
229 
230     if (ram_size) {
231         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
232                     " of SDRAM", ram_size);
233     }
234 
235     /* fill in SPD memory information */
236     spd[2] = type;
237     spd[5] = nbanks;
238     spd[31] = density;
239 
240     /* checksum */
241     spd[63] = 0;
242     for (i = 0; i < 63; i++) {
243         spd[63] += spd[i];
244     }
245 
246     /* copy for SMBUS */
247     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
248 }
249 
250 static void generate_eeprom_serial(uint8_t *eeprom)
251 {
252     int i, pos = 0;
253     uint8_t mac[6] = { 0x00 };
254     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
255 
256     /* version */
257     eeprom[pos++] = 0x01;
258 
259     /* count */
260     eeprom[pos++] = 0x02;
261 
262     /* MAC address */
263     eeprom[pos++] = 0x01; /* MAC */
264     eeprom[pos++] = 0x06; /* length */
265     memcpy(&eeprom[pos], mac, sizeof(mac));
266     pos += sizeof(mac);
267 
268     /* serial number */
269     eeprom[pos++] = 0x02; /* serial */
270     eeprom[pos++] = 0x05; /* length */
271     memcpy(&eeprom[pos], sn, sizeof(sn));
272     pos += sizeof(sn);
273 
274     /* checksum */
275     eeprom[pos] = 0;
276     for (i = 0; i < pos; i++) {
277         eeprom[pos] += eeprom[i];
278     }
279 }
280 
281 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
282 {
283     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
284         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
285     return eeprom->sda;
286 }
287 
288 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
289 {
290     if (eeprom->scl && scl && (eeprom->sda != sda)) {
291         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
292                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
293                 sda ? "stop" : "start");
294         if (!sda) {
295             eeprom->tick = 1;
296             eeprom->command = 0;
297         }
298     } else if (eeprom->tick == 0 && !eeprom->ack) {
299         /* Waiting for start. */
300         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
301                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
302     } else if (!eeprom->scl && scl) {
303         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
304                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
305         if (eeprom->ack) {
306             logout("\ti2c ack bit = 0\n");
307             sda = 0;
308             eeprom->ack = 0;
309         } else if (eeprom->sda == sda) {
310             uint8_t bit = (sda != 0);
311             logout("\ti2c bit = %d\n", bit);
312             if (eeprom->tick < 9) {
313                 eeprom->command <<= 1;
314                 eeprom->command += bit;
315                 eeprom->tick++;
316                 if (eeprom->tick == 9) {
317                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
318                            bit ? "read" : "write");
319                     eeprom->ack = 1;
320                 }
321             } else if (eeprom->tick < 17) {
322                 if (eeprom->command & 1) {
323                     sda = ((eeprom->data & 0x80) != 0);
324                 }
325                 eeprom->address <<= 1;
326                 eeprom->address += bit;
327                 eeprom->tick++;
328                 eeprom->data <<= 1;
329                 if (eeprom->tick == 17) {
330                     eeprom->data = eeprom->contents[eeprom->address];
331                     logout("\taddress 0x%04x, data 0x%02x\n",
332                            eeprom->address, eeprom->data);
333                     eeprom->ack = 1;
334                     eeprom->tick = 0;
335                 }
336             } else if (eeprom->tick >= 17) {
337                 sda = 0;
338             }
339         } else {
340             logout("\tsda changed with raising scl\n");
341         }
342     } else {
343         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
344                scl, eeprom->sda, sda);
345     }
346     eeprom->scl = scl;
347     eeprom->sda = sda;
348 }
349 
350 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
351                                 unsigned size)
352 {
353     MaltaFPGAState *s = opaque;
354     uint32_t val = 0;
355     uint32_t saddr;
356 
357     saddr = (addr & 0xfffff);
358 
359     switch (saddr) {
360 
361     /* SWITCH Register */
362     case 0x00200:
363         val = 0x00000000;
364         break;
365 
366     /* STATUS Register */
367     case 0x00208:
368 #ifdef TARGET_WORDS_BIGENDIAN
369         val = 0x00000012;
370 #else
371         val = 0x00000010;
372 #endif
373         break;
374 
375     /* JMPRS Register */
376     case 0x00210:
377         val = 0x00;
378         break;
379 
380     /* LEDBAR Register */
381     case 0x00408:
382         val = s->leds;
383         break;
384 
385     /* BRKRES Register */
386     case 0x00508:
387         val = s->brk;
388         break;
389 
390     /* UART Registers are handled directly by the serial device */
391 
392     /* GPOUT Register */
393     case 0x00a00:
394         val = s->gpout;
395         break;
396 
397     /* XXX: implement a real I2C controller */
398 
399     /* GPINP Register */
400     case 0x00a08:
401         /* IN = OUT until a real I2C control is implemented */
402         if (s->i2csel) {
403             val = s->i2cout;
404         } else {
405             val = 0x00;
406         }
407         break;
408 
409     /* I2CINP Register */
410     case 0x00b00:
411         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
412         break;
413 
414     /* I2COE Register */
415     case 0x00b08:
416         val = s->i2coe;
417         break;
418 
419     /* I2COUT Register */
420     case 0x00b10:
421         val = s->i2cout;
422         break;
423 
424     /* I2CSEL Register */
425     case 0x00b18:
426         val = s->i2csel;
427         break;
428 
429     default:
430         qemu_log_mask(LOG_GUEST_ERROR,
431                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
432                       addr);
433         break;
434     }
435     return val;
436 }
437 
438 static void malta_fpga_write(void *opaque, hwaddr addr,
439                              uint64_t val, unsigned size)
440 {
441     MaltaFPGAState *s = opaque;
442     uint32_t saddr;
443 
444     saddr = (addr & 0xfffff);
445 
446     switch (saddr) {
447 
448     /* SWITCH Register */
449     case 0x00200:
450         break;
451 
452     /* JMPRS Register */
453     case 0x00210:
454         break;
455 
456     /* LEDBAR Register */
457     case 0x00408:
458         s->leds = val & 0xff;
459         malta_fpga_update_display(s);
460         break;
461 
462     /* ASCIIWORD Register */
463     case 0x00410:
464         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
465         malta_fpga_update_display(s);
466         break;
467 
468     /* ASCIIPOS0 to ASCIIPOS7 Registers */
469     case 0x00418:
470     case 0x00420:
471     case 0x00428:
472     case 0x00430:
473     case 0x00438:
474     case 0x00440:
475     case 0x00448:
476     case 0x00450:
477         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
478         malta_fpga_update_display(s);
479         break;
480 
481     /* SOFTRES Register */
482     case 0x00500:
483         if (val == 0x42) {
484             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
485         }
486         break;
487 
488     /* BRKRES Register */
489     case 0x00508:
490         s->brk = val & 0xff;
491         break;
492 
493     /* UART Registers are handled directly by the serial device */
494 
495     /* GPOUT Register */
496     case 0x00a00:
497         s->gpout = val & 0xff;
498         break;
499 
500     /* I2COE Register */
501     case 0x00b08:
502         s->i2coe = val & 0x03;
503         break;
504 
505     /* I2COUT Register */
506     case 0x00b10:
507         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
508         s->i2cout = val;
509         break;
510 
511     /* I2CSEL Register */
512     case 0x00b18:
513         s->i2csel = val & 0x01;
514         break;
515 
516     default:
517         qemu_log_mask(LOG_GUEST_ERROR,
518                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
519                       addr);
520         break;
521     }
522 }
523 
524 static const MemoryRegionOps malta_fpga_ops = {
525     .read = malta_fpga_read,
526     .write = malta_fpga_write,
527     .endianness = DEVICE_NATIVE_ENDIAN,
528 };
529 
530 static void malta_fpga_reset(void *opaque)
531 {
532     MaltaFPGAState *s = opaque;
533 
534     s->leds   = 0x00;
535     s->brk    = 0x0a;
536     s->gpout  = 0x00;
537     s->i2cin  = 0x3;
538     s->i2coe  = 0x0;
539     s->i2cout = 0x3;
540     s->i2csel = 0x1;
541 
542     s->display_text[8] = '\0';
543     snprintf(s->display_text, 9, "        ");
544 }
545 
546 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
547 {
548     MaltaFPGAState *s = opaque;
549 
550     if (event == CHR_EVENT_OPENED && !s->display_inited) {
551         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
552         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
553         qemu_chr_fe_printf(&s->display, "+        +\r\n");
554         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
555         qemu_chr_fe_printf(&s->display, "\n");
556         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
557         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
558         qemu_chr_fe_printf(&s->display, "+        +\r\n");
559         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560         s->display_inited = true;
561     }
562 }
563 
564 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
565          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
566 {
567     MaltaFPGAState *s;
568     Chardev *chr;
569 
570     s = g_new0(MaltaFPGAState, 1);
571 
572     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
573                           "malta-fpga", 0x100000);
574     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
575                              &s->iomem, 0, 0x900);
576     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
577                              &s->iomem, 0xa00, 0x10000 - 0xa00);
578 
579     memory_region_add_subregion(address_space, base, &s->iomem_lo);
580     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
581 
582     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
583     qemu_chr_fe_init(&s->display, chr, NULL);
584     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
585                              malta_fgpa_display_event, NULL, s, NULL, true);
586 
587     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
588                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
589 
590     malta_fpga_reset(s);
591     qemu_register_reset(malta_fpga_reset, s);
592 
593     return s;
594 }
595 
596 /* Network support */
597 static void network_init(PCIBus *pci_bus)
598 {
599     int i;
600 
601     for (i = 0; i < nb_nics; i++) {
602         NICInfo *nd = &nd_table[i];
603         const char *default_devaddr = NULL;
604 
605         if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
606             /* The malta board has a PCNet card using PCI SLOT 11 */
607             default_devaddr = "0b";
608 
609         pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
610     }
611 }
612 
613 static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr,
614                                       int64_t kernel_entry)
615 {
616     uint16_t *p;
617 
618     /* Small bootloader */
619     p = (uint16_t *)base;
620 
621 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
622 #define NM_HI2(VAL) \
623           (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
624 #define NM_LO(VAL)  ((VAL) & 0xfff)
625 
626     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
627                                 /* bc to_here */
628     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
629                                 /* nop */
630     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
631                                 /* nop */
632     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633                                 /* nop */
634     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635                                 /* nop */
636     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637                                 /* nop */
638     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639                                 /* nop */
640     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641                                 /* nop */
642 
643     /* to_here: */
644     if (semihosting_get_argc()) {
645         /* Preserve a0 content as arguments have been passed    */
646         stw_p(p++, 0x8000); stw_p(p++, 0xc000);
647                                 /* nop                          */
648     } else {
649         stw_p(p++, 0x0080); stw_p(p++, 0x0002);
650                                 /* li a0,2                      */
651     }
652 
653     stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64));
654 
655     stw_p(p++, NM_HI2(ENVP_ADDR - 64));
656                                 /* lui sp,%hi(ENVP_ADDR - 64)   */
657 
658     stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64));
659                                 /* ori sp,sp,%lo(ENVP_ADDR - 64) */
660 
661     stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR));
662 
663     stw_p(p++, NM_HI2(ENVP_ADDR));
664                                 /* lui a1,%hi(ENVP_ADDR)        */
665 
666     stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR));
667                                 /* ori a1,a1,%lo(ENVP_ADDR)     */
668 
669     stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8));
670 
671     stw_p(p++, NM_HI2(ENVP_ADDR + 8));
672                                 /* lui a2,%hi(ENVP_ADDR + 8)    */
673 
674     stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8));
675                                 /* ori a2,a2,%lo(ENVP_ADDR + 8) */
676 
677     stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
678 
679     stw_p(p++, NM_HI2(loaderparams.ram_low_size));
680                                 /* lui a3,%hi(loaderparams.ram_low_size) */
681 
682     stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
683                                 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
684 
685     /*
686      * Load BAR registers as done by YAMON:
687      *
688      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
689      *  - set up PCI0 MEM0 at 0x10000000, size 0x8000000
690      *  - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
691      *
692      */
693     stw_p(p++, 0xe040); stw_p(p++, 0x0681);
694                                 /* lui t1, %hi(0xb4000000)      */
695 
696 #ifdef TARGET_WORDS_BIGENDIAN
697 
698     stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
699                                 /* lui t0, %hi(0xdf000000)      */
700 
701     /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c)  */
702     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
703                                 /* sw t0, 0x68(t1)              */
704 
705     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
706                                 /* lui t1, %hi(0xbbe00000)      */
707 
708     stw_p(p++, 0xe020); stw_p(p++, 0x0801);
709                                 /* lui t0, %hi(0xc0000000)      */
710 
711     /* 0x48 corresponds to GT_PCI0IOLD                          */
712     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
713                                 /* sw t0, 0x48(t1)              */
714 
715     stw_p(p++, 0xe020); stw_p(p++, 0x0800);
716                                 /* lui t0, %hi(0x40000000)      */
717 
718     /* 0x50 corresponds to GT_PCI0IOHD                          */
719     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
720                                 /* sw t0, 0x50(t1)              */
721 
722     stw_p(p++, 0xe020); stw_p(p++, 0x0001);
723                                 /* lui t0, %hi(0x80000000)      */
724 
725     /* 0x58 corresponds to GT_PCI0M0LD                          */
726     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
727                                 /* sw t0, 0x58(t1)              */
728 
729     stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
730                                 /* lui t0, %hi(0x3f000000)      */
731 
732     /* 0x60 corresponds to GT_PCI0M0HD                          */
733     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
734                                 /* sw t0, 0x60(t1)              */
735 
736     stw_p(p++, 0xe020); stw_p(p++, 0x0821);
737                                 /* lui t0, %hi(0xc1000000)      */
738 
739     /* 0x80 corresponds to GT_PCI0M1LD                          */
740     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
741                                 /* sw t0, 0x80(t1)              */
742 
743     stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
744                                 /* lui t0, %hi(0x5e000000)      */
745 
746 #else
747 
748     stw_p(p++, 0x0020); stw_p(p++, 0x00df);
749                                 /* addiu[32] t0, $0, 0xdf       */
750 
751     /* 0x68 corresponds to GT_ISD                               */
752     stw_p(p++, 0x8422); stw_p(p++, 0x9068);
753                                 /* sw t0, 0x68(t1)              */
754 
755     /* Use kseg2 remapped address 0x1be00000                    */
756     stw_p(p++, 0xe040); stw_p(p++, 0x077d);
757                                 /* lui t1, %hi(0xbbe00000)      */
758 
759     stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
760                                 /* addiu[32] t0, $0, 0xc0       */
761 
762     /* 0x48 corresponds to GT_PCI0IOLD                          */
763     stw_p(p++, 0x8422); stw_p(p++, 0x9048);
764                                 /* sw t0, 0x48(t1)              */
765 
766     stw_p(p++, 0x0020); stw_p(p++, 0x0040);
767                                 /* addiu[32] t0, $0, 0x40       */
768 
769     /* 0x50 corresponds to GT_PCI0IOHD                          */
770     stw_p(p++, 0x8422); stw_p(p++, 0x9050);
771                                 /* sw t0, 0x50(t1)              */
772 
773     stw_p(p++, 0x0020); stw_p(p++, 0x0080);
774                                 /* addiu[32] t0, $0, 0x80       */
775 
776     /* 0x58 corresponds to GT_PCI0M0LD                          */
777     stw_p(p++, 0x8422); stw_p(p++, 0x9058);
778                                 /* sw t0, 0x58(t1)              */
779 
780     stw_p(p++, 0x0020); stw_p(p++, 0x003f);
781                                 /* addiu[32] t0, $0, 0x3f       */
782 
783     /* 0x60 corresponds to GT_PCI0M0HD                          */
784     stw_p(p++, 0x8422); stw_p(p++, 0x9060);
785                                 /* sw t0, 0x60(t1)              */
786 
787     stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
788                                 /* addiu[32] t0, $0, 0xc1       */
789 
790     /* 0x80 corresponds to GT_PCI0M1LD                          */
791     stw_p(p++, 0x8422); stw_p(p++, 0x9080);
792                                 /* sw t0, 0x80(t1)              */
793 
794     stw_p(p++, 0x0020); stw_p(p++, 0x005e);
795                                 /* addiu[32] t0, $0, 0x5e       */
796 
797 #endif
798 
799     /* 0x88 corresponds to GT_PCI0M1HD                          */
800     stw_p(p++, 0x8422); stw_p(p++, 0x9088);
801                                 /* sw t0, 0x88(t1)              */
802 
803     stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
804 
805     stw_p(p++, NM_HI2(kernel_entry));
806                                 /* lui t9,%hi(kernel_entry)     */
807 
808     stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
809                                 /* ori t9,t9,%lo(kernel_entry)  */
810 
811     stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
812                                 /* jalrc   t8                   */
813 }
814 
815 /*
816  * ROM and pseudo bootloader
817  *
818  * The following code implements a very very simple bootloader. It first
819  * loads the registers a0 to a3 to the values expected by the OS, and
820  * then jump at the kernel address.
821  *
822  * The bootloader should pass the locations of the kernel arguments and
823  * environment variables tables. Those tables contain the 32-bit address
824  * of NULL terminated strings. The environment variables table should be
825  * terminated by a NULL address.
826  *
827  * For a simpler implementation, the number of kernel arguments is fixed
828  * to two (the name of the kernel and the command line), and the two
829  * tables are actually the same one.
830  *
831  * The registers a0 to a3 should contain the following values:
832  *   a0 - number of kernel arguments
833  *   a1 - 32-bit address of the kernel arguments table
834  *   a2 - 32-bit address of the environment variables table
835  *   a3 - RAM size in bytes
836  */
837 static void write_bootloader(uint8_t *base, int64_t run_addr,
838                              int64_t kernel_entry)
839 {
840     uint32_t *p;
841 
842     /* Small bootloader */
843     p = (uint32_t *)base;
844 
845     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
846                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
847     stl_p(p++, 0x00000000);                  /* nop */
848 
849     /* YAMON service vector */
850     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
851     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
852     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
853     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
854     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
855     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
856     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
857     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
858     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
859     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
860     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
861     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
862     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
863 
864 
865     /* Second part of the bootloader */
866     p = (uint32_t *) (base + 0x580);
867 
868     if (semihosting_get_argc()) {
869         /* Preserve a0 content as arguments have been passed */
870         stl_p(p++, 0x00000000);              /* nop */
871     } else {
872         stl_p(p++, 0x24040002);              /* addiu a0, zero, 2 */
873     }
874 
875     /* lui sp, high(ENVP_ADDR) */
876     stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff));
877     /* ori sp, sp, low(ENVP_ADDR) */
878     stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));
879     /* lui a1, high(ENVP_ADDR) */
880     stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));
881     /* ori a1, a1, low(ENVP_ADDR) */
882     stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));
883     /* lui a2, high(ENVP_ADDR + 8) */
884     stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff));
885     /* ori a2, a2, low(ENVP_ADDR + 8) */
886     stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));
887     /* lui a3, high(ram_low_size) */
888     stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
889     /* ori a3, a3, low(ram_low_size) */
890     stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
891 
892     /* Load BAR registers as done by YAMON */
893     stl_p(p++, 0x3c09b400);                  /* lui t1, 0xb400 */
894 
895 #ifdef TARGET_WORDS_BIGENDIAN
896     stl_p(p++, 0x3c08df00);                  /* lui t0, 0xdf00 */
897 #else
898     stl_p(p++, 0x340800df);                  /* ori t0, r0, 0x00df */
899 #endif
900     stl_p(p++, 0xad280068);                  /* sw t0, 0x0068(t1) */
901 
902     stl_p(p++, 0x3c09bbe0);                  /* lui t1, 0xbbe0 */
903 
904 #ifdef TARGET_WORDS_BIGENDIAN
905     stl_p(p++, 0x3c08c000);                  /* lui t0, 0xc000 */
906 #else
907     stl_p(p++, 0x340800c0);                  /* ori t0, r0, 0x00c0 */
908 #endif
909     stl_p(p++, 0xad280048);                  /* sw t0, 0x0048(t1) */
910 #ifdef TARGET_WORDS_BIGENDIAN
911     stl_p(p++, 0x3c084000);                  /* lui t0, 0x4000 */
912 #else
913     stl_p(p++, 0x34080040);                  /* ori t0, r0, 0x0040 */
914 #endif
915     stl_p(p++, 0xad280050);                  /* sw t0, 0x0050(t1) */
916 
917 #ifdef TARGET_WORDS_BIGENDIAN
918     stl_p(p++, 0x3c088000);                  /* lui t0, 0x8000 */
919 #else
920     stl_p(p++, 0x34080080);                  /* ori t0, r0, 0x0080 */
921 #endif
922     stl_p(p++, 0xad280058);                  /* sw t0, 0x0058(t1) */
923 #ifdef TARGET_WORDS_BIGENDIAN
924     stl_p(p++, 0x3c083f00);                  /* lui t0, 0x3f00 */
925 #else
926     stl_p(p++, 0x3408003f);                  /* ori t0, r0, 0x003f */
927 #endif
928     stl_p(p++, 0xad280060);                  /* sw t0, 0x0060(t1) */
929 
930 #ifdef TARGET_WORDS_BIGENDIAN
931     stl_p(p++, 0x3c08c100);                  /* lui t0, 0xc100 */
932 #else
933     stl_p(p++, 0x340800c1);                  /* ori t0, r0, 0x00c1 */
934 #endif
935     stl_p(p++, 0xad280080);                  /* sw t0, 0x0080(t1) */
936 #ifdef TARGET_WORDS_BIGENDIAN
937     stl_p(p++, 0x3c085e00);                  /* lui t0, 0x5e00 */
938 #else
939     stl_p(p++, 0x3408005e);                  /* ori t0, r0, 0x005e */
940 #endif
941     stl_p(p++, 0xad280088);                  /* sw t0, 0x0088(t1) */
942 
943     /* Jump to kernel code */
944     stl_p(p++, 0x3c1f0000 |
945           ((kernel_entry >> 16) & 0xffff));  /* lui ra, high(kernel_entry) */
946     stl_p(p++, 0x37ff0000 |
947           (kernel_entry & 0xffff));          /* ori ra, ra, low(kernel_entry) */
948     stl_p(p++, 0x03e00009);                  /* jalr ra */
949     stl_p(p++, 0x00000000);                  /* nop */
950 
951     /* YAMON subroutines */
952     p = (uint32_t *) (base + 0x800);
953     stl_p(p++, 0x03e00009);                  /* jalr ra */
954     stl_p(p++, 0x24020000);                  /* li v0,0 */
955     /* 808 YAMON print */
956     stl_p(p++, 0x03e06821);                  /* move t5,ra */
957     stl_p(p++, 0x00805821);                  /* move t3,a0 */
958     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
959     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
960     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
961     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
962     stl_p(p++, 0x00000000);                  /* nop */
963     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
964     stl_p(p++, 0x00000000);                  /* nop */
965     stl_p(p++, 0x1000fff9);                  /* b 814 */
966     stl_p(p++, 0x00000000);                  /* nop */
967     stl_p(p++, 0x01a00009);                  /* jalr t5 */
968     stl_p(p++, 0x01602021);                  /* move a0,t3 */
969     /* 0x83c YAMON print_count */
970     stl_p(p++, 0x03e06821);                  /* move t5,ra */
971     stl_p(p++, 0x00805821);                  /* move t3,a0 */
972     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
973     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
974     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
975     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
976     stl_p(p++, 0x00000000);                  /* nop */
977     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
978     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
979     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
980     stl_p(p++, 0x00000000);                  /* nop */
981     stl_p(p++, 0x01a00009);                  /* jalr t5 */
982     stl_p(p++, 0x01602021);                  /* move a0,t3 */
983     /* 0x870 */
984     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
985     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
986     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
987     stl_p(p++, 0x00000000);                  /* nop */
988     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
989     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
990     stl_p(p++, 0x00000000);                  /* nop */
991     stl_p(p++, 0x03e00009);                  /* jalr ra */
992     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
993 
994 }
995 
996 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
997                                         const char *string, ...)
998 {
999     va_list ap;
1000     int32_t table_addr;
1001 
1002     if (index >= ENVP_NB_ENTRIES) {
1003         return;
1004     }
1005 
1006     if (string == NULL) {
1007         prom_buf[index] = 0;
1008         return;
1009     }
1010 
1011     table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1012     prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
1013 
1014     va_start(ap, string);
1015     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1016     va_end(ap);
1017 }
1018 
1019 /* Kernel */
1020 static int64_t load_kernel(void)
1021 {
1022     int64_t kernel_entry, kernel_high, initrd_size;
1023     long kernel_size;
1024     ram_addr_t initrd_offset;
1025     int big_endian;
1026     uint32_t *prom_buf;
1027     long prom_size;
1028     int prom_index = 0;
1029     uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1030 
1031 #ifdef TARGET_WORDS_BIGENDIAN
1032     big_endian = 1;
1033 #else
1034     big_endian = 0;
1035 #endif
1036 
1037     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1038                            cpu_mips_kseg0_to_phys, NULL,
1039                            (uint64_t *)&kernel_entry, NULL,
1040                            (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS,
1041                            1, 0);
1042     if (kernel_size < 0) {
1043         error_report("could not load kernel '%s': %s",
1044                      loaderparams.kernel_filename,
1045                      load_elf_strerror(kernel_size));
1046         exit(1);
1047     }
1048 
1049     /* Check where the kernel has been linked */
1050     if (kernel_entry & 0x80000000ll) {
1051         if (kvm_enabled()) {
1052             error_report("KVM guest kernels must be linked in useg. "
1053                          "Did you forget to enable CONFIG_KVM_GUEST?");
1054             exit(1);
1055         }
1056 
1057         xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1058     } else {
1059         /* if kernel entry is in useg it is probably a KVM T&E kernel */
1060         mips_um_ksegs_enable();
1061 
1062         xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1063     }
1064 
1065     /* load initrd */
1066     initrd_size = 0;
1067     initrd_offset = 0;
1068     if (loaderparams.initrd_filename) {
1069         initrd_size = get_image_size(loaderparams.initrd_filename);
1070         if (initrd_size > 0) {
1071             /*
1072              * The kernel allocates the bootmap memory in the low memory after
1073              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
1074              * pages.
1075              */
1076             initrd_offset = (loaderparams.ram_low_size - initrd_size
1077                              - (128 * KiB)
1078                              - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
1079             if (kernel_high >= initrd_offset) {
1080                 error_report("memory too small for initial ram disk '%s'",
1081                              loaderparams.initrd_filename);
1082                 exit(1);
1083             }
1084             initrd_size = load_image_targphys(loaderparams.initrd_filename,
1085                                               initrd_offset,
1086                                               ram_size - initrd_offset);
1087         }
1088         if (initrd_size == (target_ulong) -1) {
1089             error_report("could not load initial ram disk '%s'",
1090                          loaderparams.initrd_filename);
1091             exit(1);
1092         }
1093     }
1094 
1095     /* Setup prom parameters. */
1096     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1097     prom_buf = g_malloc(prom_size);
1098 
1099     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1100     if (initrd_size > 0) {
1101         prom_set(prom_buf, prom_index++,
1102                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1103                  xlate_to_kseg0(NULL, initrd_offset),
1104                  initrd_size, loaderparams.kernel_cmdline);
1105     } else {
1106         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1107     }
1108 
1109     prom_set(prom_buf, prom_index++, "memsize");
1110     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1111 
1112     prom_set(prom_buf, prom_index++, "ememsize");
1113     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1114 
1115     prom_set(prom_buf, prom_index++, "modetty0");
1116     prom_set(prom_buf, prom_index++, "38400n8r");
1117     prom_set(prom_buf, prom_index++, NULL);
1118 
1119     rom_add_blob_fixed("prom", prom_buf, prom_size,
1120                        cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
1121 
1122     g_free(prom_buf);
1123     return kernel_entry;
1124 }
1125 
1126 static void malta_mips_config(MIPSCPU *cpu)
1127 {
1128     MachineState *ms = MACHINE(qdev_get_machine());
1129     unsigned int smp_cpus = ms->smp.cpus;
1130     CPUMIPSState *env = &cpu->env;
1131     CPUState *cs = CPU(cpu);
1132 
1133     env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
1134                          ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
1135 }
1136 
1137 static void main_cpu_reset(void *opaque)
1138 {
1139     MIPSCPU *cpu = opaque;
1140     CPUMIPSState *env = &cpu->env;
1141 
1142     cpu_reset(CPU(cpu));
1143 
1144     /*
1145      * The bootloader does not need to be rewritten as it is located in a
1146      * read only location. The kernel location and the arguments table
1147      * location does not change.
1148      */
1149     if (loaderparams.kernel_filename) {
1150         env->CP0_Status &= ~(1 << CP0St_ERL);
1151     }
1152 
1153     malta_mips_config(cpu);
1154 
1155     if (kvm_enabled()) {
1156         /* Start running from the bootloader we wrote to end of RAM */
1157         env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1158     }
1159 }
1160 
1161 static void create_cpu_without_cps(MachineState *ms,
1162                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1163 {
1164     CPUMIPSState *env;
1165     MIPSCPU *cpu;
1166     int i;
1167 
1168     for (i = 0; i < ms->smp.cpus; i++) {
1169         cpu = MIPS_CPU(cpu_create(ms->cpu_type));
1170 
1171         /* Init internal devices */
1172         cpu_mips_irq_init_cpu(cpu);
1173         cpu_mips_clock_init(cpu);
1174         qemu_register_reset(main_cpu_reset, cpu);
1175     }
1176 
1177     cpu = MIPS_CPU(first_cpu);
1178     env = &cpu->env;
1179     *i8259_irq = env->irq[2];
1180     *cbus_irq = env->irq[4];
1181 }
1182 
1183 static void create_cps(MachineState *ms, MaltaState *s,
1184                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1185 {
1186     sysbus_init_child_obj(OBJECT(s), "cps", OBJECT(&s->cps), sizeof(s->cps),
1187                           TYPE_MIPS_CPS);
1188     object_property_set_str(OBJECT(&s->cps), ms->cpu_type, "cpu-type",
1189                             &error_fatal);
1190     object_property_set_int(OBJECT(&s->cps), ms->smp.cpus, "num-vp",
1191                             &error_fatal);
1192     object_property_set_bool(OBJECT(&s->cps), true, "realized",
1193                              &error_fatal);
1194 
1195     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1196 
1197     *i8259_irq = get_cps_irq(&s->cps, 3);
1198     *cbus_irq = NULL;
1199 }
1200 
1201 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1202                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1203 {
1204     if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) {
1205         create_cps(ms, s, cbus_irq, i8259_irq);
1206     } else {
1207         create_cpu_without_cps(ms, cbus_irq, i8259_irq);
1208     }
1209 }
1210 
1211 static
1212 void mips_malta_init(MachineState *machine)
1213 {
1214     ram_addr_t ram_size = machine->ram_size;
1215     ram_addr_t ram_low_size;
1216     const char *kernel_filename = machine->kernel_filename;
1217     const char *kernel_cmdline = machine->kernel_cmdline;
1218     const char *initrd_filename = machine->initrd_filename;
1219     char *filename;
1220     PFlashCFI01 *fl;
1221     MemoryRegion *system_memory = get_system_memory();
1222     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1223     MemoryRegion *ram_low_postio;
1224     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1225     const size_t smbus_eeprom_size = 8 * 256;
1226     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1227     int64_t kernel_entry, bootloader_run_addr;
1228     PCIBus *pci_bus;
1229     ISABus *isa_bus;
1230     qemu_irq cbus_irq, i8259_irq;
1231     I2CBus *smbus;
1232     DriveInfo *dinfo;
1233     int fl_idx = 0;
1234     int be;
1235 
1236     DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1237     MaltaState *s = MIPS_MALTA(dev);
1238 
1239     /*
1240      * The whole address space decoded by the GT-64120A doesn't generate
1241      * exception when accessing invalid memory. Create an empty slot to
1242      * emulate this feature.
1243      */
1244     empty_slot_init(0, 0x20000000);
1245 
1246     qdev_init_nofail(dev);
1247 
1248     /* create CPU */
1249     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1250 
1251     /* allocate RAM */
1252     if (ram_size > 2 * GiB) {
1253         error_report("Too much memory for this machine: %" PRId64 "MB,"
1254                      " maximum 2048MB", ram_size / MiB);
1255         exit(1);
1256     }
1257 
1258     /* register RAM at high address where it is undisturbed by IO */
1259     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1260 
1261     /* alias for pre IO hole access */
1262     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1263                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1264     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1265 
1266     /* alias for post IO hole access, if there is enough RAM */
1267     if (ram_size > 512 * MiB) {
1268         ram_low_postio = g_new(MemoryRegion, 1);
1269         memory_region_init_alias(ram_low_postio, NULL,
1270                                  "mips_malta_low_postio.ram",
1271                                  machine->ram, 512 * MiB,
1272                                  ram_size - 512 * MiB);
1273         memory_region_add_subregion(system_memory, 512 * MiB,
1274                                     ram_low_postio);
1275     }
1276 
1277 #ifdef TARGET_WORDS_BIGENDIAN
1278     be = 1;
1279 #else
1280     be = 0;
1281 #endif
1282 
1283     /* FPGA */
1284 
1285     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1286     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1287 
1288     /* Load firmware in flash / BIOS. */
1289     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1290     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1291                                FLASH_SIZE,
1292                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1293                                65536,
1294                                4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1295     bios = pflash_cfi01_get_memory(fl);
1296     fl_idx++;
1297     if (kernel_filename) {
1298         ram_low_size = MIN(ram_size, 256 * MiB);
1299         /* For KVM we reserve 1MB of RAM for running bootloader */
1300         if (kvm_enabled()) {
1301             ram_low_size -= 0x100000;
1302             bootloader_run_addr = 0x40000000 + ram_low_size;
1303         } else {
1304             bootloader_run_addr = 0xbfc00000;
1305         }
1306 
1307         /* Write a small bootloader to the flash location. */
1308         loaderparams.ram_size = ram_size;
1309         loaderparams.ram_low_size = ram_low_size;
1310         loaderparams.kernel_filename = kernel_filename;
1311         loaderparams.kernel_cmdline = kernel_cmdline;
1312         loaderparams.initrd_filename = initrd_filename;
1313         kernel_entry = load_kernel();
1314 
1315         if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1316             write_bootloader(memory_region_get_ram_ptr(bios),
1317                              bootloader_run_addr, kernel_entry);
1318         } else {
1319             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1320                                       bootloader_run_addr, kernel_entry);
1321         }
1322         if (kvm_enabled()) {
1323             /* Write the bootloader code @ the end of RAM, 1MB reserved */
1324             write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1325                                     ram_low_size,
1326                              bootloader_run_addr, kernel_entry);
1327         }
1328     } else {
1329         target_long bios_size = FLASH_SIZE;
1330         /* The flash region isn't executable from a KVM guest */
1331         if (kvm_enabled()) {
1332             error_report("KVM enabled but no -kernel argument was specified. "
1333                          "Booting from flash is not supported with KVM.");
1334             exit(1);
1335         }
1336         /* Load firmware from flash. */
1337         if (!dinfo) {
1338             /* Load a BIOS image. */
1339             if (bios_name == NULL) {
1340                 bios_name = BIOS_FILENAME;
1341             }
1342             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1343             if (filename) {
1344                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1345                                                 BIOS_SIZE);
1346                 g_free(filename);
1347             } else {
1348                 bios_size = -1;
1349             }
1350             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1351                 !kernel_filename && !qtest_enabled()) {
1352                 error_report("Could not load MIPS bios '%s', and no "
1353                              "-kernel argument was specified", bios_name);
1354                 exit(1);
1355             }
1356         }
1357         /*
1358          * In little endian mode the 32bit words in the bios are swapped,
1359          * a neat trick which allows bi-endian firmware.
1360          */
1361 #ifndef TARGET_WORDS_BIGENDIAN
1362         {
1363             uint32_t *end, *addr;
1364             const size_t swapsize = MIN(bios_size, 0x3e0000);
1365             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1366             if (!addr) {
1367                 addr = memory_region_get_ram_ptr(bios);
1368             }
1369             end = (void *)addr + swapsize;
1370             while (addr < end) {
1371                 bswap32s(addr);
1372                 addr++;
1373             }
1374         }
1375 #endif
1376     }
1377 
1378     /*
1379      * Map the BIOS at a 2nd physical location, as on the real board.
1380      * Copy it so that we can patch in the MIPS revision, which cannot be
1381      * handled by an overlapping region as the resulting ROM code subpage
1382      * regions are not executable.
1383      */
1384     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1385                            &error_fatal);
1386     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1387                   FLASH_ADDRESS, BIOS_SIZE)) {
1388         memcpy(memory_region_get_ram_ptr(bios_copy),
1389                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1390     }
1391     memory_region_set_readonly(bios_copy, true);
1392     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1393 
1394     /* Board ID = 0x420 (Malta Board with CoreLV) */
1395     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1396 
1397     /* Northbridge */
1398     pci_bus = gt64120_register(s->i8259);
1399 
1400     /* Southbridge */
1401     dev = piix4_create(pci_bus, &isa_bus, &smbus);
1402 
1403     /* Interrupt controller */
1404     qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1405     for (int i = 0; i < ISA_NUM_IRQS; i++) {
1406         s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i);
1407     }
1408 
1409     /* generate SPD EEPROM data */
1410     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1411     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1412     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1413     g_free(smbus_eeprom_buf);
1414 
1415     /* Super I/O: SMS FDC37M817 */
1416     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1417 
1418     /* Network card */
1419     network_init(pci_bus);
1420 
1421     /* Optional PCI video card */
1422     pci_vga_init(pci_bus);
1423 }
1424 
1425 static const TypeInfo mips_malta_device = {
1426     .name          = TYPE_MIPS_MALTA,
1427     .parent        = TYPE_SYS_BUS_DEVICE,
1428     .instance_size = sizeof(MaltaState),
1429 };
1430 
1431 static void mips_malta_machine_init(MachineClass *mc)
1432 {
1433     mc->desc = "MIPS Malta Core LV";
1434     mc->init = mips_malta_init;
1435     mc->block_default_type = IF_IDE;
1436     mc->max_cpus = 16;
1437     mc->is_default = true;
1438 #ifdef TARGET_MIPS64
1439     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1440 #else
1441     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1442 #endif
1443     mc->default_ram_id = "mips_malta.ram";
1444 }
1445 
1446 DEFINE_MACHINE("malta", mips_malta_machine_init)
1447 
1448 static void mips_malta_register_types(void)
1449 {
1450     type_register_static(&mips_malta_device);
1451 }
1452 
1453 type_init(mips_malta_register_types)
1454