xref: /openbmc/qemu/hw/mips/boston.c (revision f7a6df5f)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42 #include "sysemu/runstate.h"
43 
44 #include <libfdt.h>
45 #include "qom/object.h"
46 
47 #define TYPE_BOSTON "mips-boston"
48 typedef struct BostonState BostonState;
49 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
50                          TYPE_BOSTON)
51 
52 struct BostonState {
53     SysBusDevice parent_obj;
54 
55     MachineState *mach;
56     MIPSCPSState cps;
57     SerialMM *uart;
58     Clock *cpuclk;
59 
60     CharBackend lcd_display;
61     char lcd_content[8];
62     bool lcd_inited;
63 
64     hwaddr kernel_entry;
65     hwaddr fdt_base;
66 };
67 
68 enum boston_plat_reg {
69     PLAT_FPGA_BUILD     = 0x00,
70     PLAT_CORE_CL        = 0x04,
71     PLAT_WRAPPER_CL     = 0x08,
72     PLAT_SYSCLK_STATUS  = 0x0c,
73     PLAT_SOFTRST_CTL    = 0x10,
74 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
75     PLAT_DDR3_STATUS    = 0x14,
76 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
77 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
78     PLAT_PCIE_STATUS    = 0x18,
79 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
80 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
81 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
82     PLAT_FLASH_CTL      = 0x1c,
83     PLAT_SPARE0         = 0x20,
84     PLAT_SPARE1         = 0x24,
85     PLAT_SPARE2         = 0x28,
86     PLAT_SPARE3         = 0x2c,
87     PLAT_MMCM_DIV       = 0x30,
88 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
89 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
90 #define PLAT_MMCM_DIV_MUL_SHIFT         16
91 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
92     PLAT_BUILD_CFG      = 0x34,
93 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
94 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
95 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
96 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
97     PLAT_DDR_CFG        = 0x38,
98 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
99 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
100     PLAT_NOC_PCIE0_ADDR = 0x3c,
101     PLAT_NOC_PCIE1_ADDR = 0x40,
102     PLAT_NOC_PCIE2_ADDR = 0x44,
103     PLAT_SYS_CTL        = 0x48,
104 };
105 
106 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
107 {
108     BostonState *s = opaque;
109     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
110         qemu_chr_fe_printf(&s->lcd_display, "        ");
111         s->lcd_inited = true;
112     }
113 }
114 
115 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
116                                 unsigned size)
117 {
118     BostonState *s = opaque;
119     uint64_t val = 0;
120 
121     switch (size) {
122     case 8:
123         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
124         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
125         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
126         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
127         /* fall through */
128     case 4:
129         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
130         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
131         /* fall through */
132     case 2:
133         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
134         /* fall through */
135     case 1:
136         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
137         break;
138     }
139 
140     return val;
141 }
142 
143 static void boston_lcd_write(void *opaque, hwaddr addr,
144                              uint64_t val, unsigned size)
145 {
146     BostonState *s = opaque;
147 
148     switch (size) {
149     case 8:
150         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
151         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
152         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
153         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
154         /* fall through */
155     case 4:
156         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
157         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
158         /* fall through */
159     case 2:
160         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
161         /* fall through */
162     case 1:
163         s->lcd_content[(addr + 0) & 0x7] = val;
164         break;
165     }
166 
167     qemu_chr_fe_printf(&s->lcd_display,
168                        "\r%-8.8s", s->lcd_content);
169 }
170 
171 static const MemoryRegionOps boston_lcd_ops = {
172     .read = boston_lcd_read,
173     .write = boston_lcd_write,
174     .endianness = DEVICE_NATIVE_ENDIAN,
175 };
176 
177 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
178                                     unsigned size)
179 {
180     BostonState *s = opaque;
181     uint32_t gic_freq, val;
182 
183     if (size != 4) {
184         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
185         return 0;
186     }
187 
188     switch (addr & 0xffff) {
189     case PLAT_FPGA_BUILD:
190     case PLAT_CORE_CL:
191     case PLAT_WRAPPER_CL:
192         return 0;
193     case PLAT_DDR3_STATUS:
194         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
195     case PLAT_MMCM_DIV:
196         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
197         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
198         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
199         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
200         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
201         return val;
202     case PLAT_BUILD_CFG:
203         val = PLAT_BUILD_CFG_PCIE0_EN;
204         val |= PLAT_BUILD_CFG_PCIE1_EN;
205         val |= PLAT_BUILD_CFG_PCIE2_EN;
206         return val;
207     case PLAT_DDR_CFG:
208         val = s->mach->ram_size / GiB;
209         assert(!(val & ~PLAT_DDR_CFG_SIZE));
210         val |= PLAT_DDR_CFG_MHZ;
211         return val;
212     default:
213         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
214                       addr & 0xffff);
215         return 0;
216     }
217 }
218 
219 static void boston_platreg_write(void *opaque, hwaddr addr,
220                                  uint64_t val, unsigned size)
221 {
222     if (size != 4) {
223         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
224         return;
225     }
226 
227     switch (addr & 0xffff) {
228     case PLAT_FPGA_BUILD:
229     case PLAT_CORE_CL:
230     case PLAT_WRAPPER_CL:
231     case PLAT_DDR3_STATUS:
232     case PLAT_PCIE_STATUS:
233     case PLAT_MMCM_DIV:
234     case PLAT_BUILD_CFG:
235     case PLAT_DDR_CFG:
236         /* read only */
237         break;
238     case PLAT_SOFTRST_CTL:
239         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
240             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
241         }
242         break;
243     default:
244         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
245                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
246         break;
247     }
248 }
249 
250 static const MemoryRegionOps boston_platreg_ops = {
251     .read = boston_platreg_read,
252     .write = boston_platreg_write,
253     .endianness = DEVICE_NATIVE_ENDIAN,
254 };
255 
256 static void mips_boston_instance_init(Object *obj)
257 {
258     BostonState *s = BOSTON(obj);
259 
260     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
261     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
262 }
263 
264 static const TypeInfo boston_device = {
265     .name          = TYPE_BOSTON,
266     .parent        = TYPE_SYS_BUS_DEVICE,
267     .instance_size = sizeof(BostonState),
268     .instance_init = mips_boston_instance_init,
269 };
270 
271 static void boston_register_types(void)
272 {
273     type_register_static(&boston_device);
274 }
275 type_init(boston_register_types)
276 
277 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
278 {
279     const uint32_t cm_base = 0x16100000;
280     const uint32_t gic_base = 0x16120000;
281     const uint32_t cpc_base = 0x16200000;
282 
283     /* Move CM GCRs */
284     bl_gen_write_ulong(&p,
285                        cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
286                        cm_base);
287 
288     /* Move & enable GIC GCRs */
289     bl_gen_write_ulong(&p,
290                        cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_GIC_BASE_OFS),
291                        gic_base | GCR_GIC_BASE_GICEN_MSK);
292 
293     /* Move & enable CPC GCRs */
294     bl_gen_write_ulong(&p,
295                        cpu_mips_phys_to_kseg1(NULL, cm_base + GCR_CPC_BASE_OFS),
296                        cpc_base | GCR_CPC_BASE_CPCEN_MSK);
297 
298     /*
299      * Setup argument registers to follow the UHI boot protocol:
300      *
301      * a0/$4 = -2
302      * a1/$5 = virtual address of FDT
303      * a2/$6 = 0
304      * a3/$7 = 0
305      */
306     bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
307 }
308 
309 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
310                                      const void *match_data, hwaddr *load_addr)
311 {
312     BostonState *s = BOSTON(opaque);
313     MachineState *machine = s->mach;
314     const char *cmdline;
315     int err;
316     size_t ram_low_sz, ram_high_sz;
317     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
318     g_autofree void *fdt = g_malloc0(fdt_sz);
319 
320     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
321     if (err) {
322         fprintf(stderr, "unable to open FDT\n");
323         return NULL;
324     }
325 
326     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
327             ? machine->kernel_cmdline : " ";
328     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
329     if (err < 0) {
330         fprintf(stderr, "couldn't set /chosen/bootargs\n");
331         return NULL;
332     }
333 
334     ram_low_sz = MIN(256 * MiB, machine->ram_size);
335     ram_high_sz = machine->ram_size - ram_low_sz;
336     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
337                                  1, 0x00000000, 1, ram_low_sz,
338                                  1, 0x90000000, 1, ram_high_sz);
339 
340     fdt = g_realloc(fdt, fdt_totalsize(fdt));
341     qemu_fdt_dumpdtb(fdt, fdt_sz);
342 
343     s->fdt_base = *load_addr;
344 
345     return g_steal_pointer(&fdt);
346 }
347 
348 static const void *boston_kernel_filter(void *opaque, const void *kernel,
349                                         hwaddr *load_addr, hwaddr *entry_addr)
350 {
351     BostonState *s = BOSTON(opaque);
352 
353     s->kernel_entry = *entry_addr;
354 
355     return kernel;
356 }
357 
358 static const struct fit_loader_match boston_matches[] = {
359     { "img,boston" },
360     { NULL },
361 };
362 
363 static const struct fit_loader boston_fit_loader = {
364     .matches = boston_matches,
365     .addr_to_phys = cpu_mips_kseg0_to_phys,
366     .fdt_filter = boston_fdt_filter,
367     .kernel_filter = boston_kernel_filter,
368 };
369 
370 static inline XilinxPCIEHost *
371 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
372                  hwaddr cfg_base, uint64_t cfg_size,
373                  hwaddr mmio_base, uint64_t mmio_size,
374                  qemu_irq irq, bool link_up)
375 {
376     DeviceState *dev;
377     MemoryRegion *cfg, *mmio;
378 
379     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
380 
381     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
382     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
383     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
384     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
385     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
386     qdev_prop_set_bit(dev, "link_up", link_up);
387 
388     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
389 
390     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
391     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
392 
393     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
394     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
395 
396     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
397 
398     return XILINX_PCIE_HOST(dev);
399 }
400 
401 static void boston_mach_init(MachineState *machine)
402 {
403     DeviceState *dev;
404     BostonState *s;
405     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
406     MemoryRegion *sys_mem = get_system_memory();
407     XilinxPCIEHost *pcie2;
408     PCIDevice *ahci;
409     DriveInfo *hd[6];
410     Chardev *chr;
411     int fw_size, fit_err;
412 
413     if ((machine->ram_size % GiB) ||
414         (machine->ram_size > (2 * GiB))) {
415         error_report("Memory size must be 1GB or 2GB");
416         exit(1);
417     }
418 
419     dev = qdev_new(TYPE_BOSTON);
420     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
421 
422     s = BOSTON(dev);
423     s->mach = machine;
424 
425     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
426         error_report("Boston requires CPUs which support CPS");
427         exit(1);
428     }
429 
430     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
431     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
432                             &error_fatal);
433     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
434                             &error_fatal);
435     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
436                           qdev_get_clock_out(dev, "cpu-refclk"));
437     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
438 
439     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
440 
441     flash =  g_new(MemoryRegion, 1);
442     memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
443                            &error_fatal);
444     memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
445 
446     memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
447 
448     ddr_low_alias = g_new(MemoryRegion, 1);
449     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
450                              machine->ram, 0,
451                              MIN(machine->ram_size, (256 * MiB)));
452     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
453 
454     xilinx_pcie_init(sys_mem, 0,
455                      0x10000000, 32 * MiB,
456                      0x40000000, 1 * GiB,
457                      get_cps_irq(&s->cps, 2), false);
458 
459     xilinx_pcie_init(sys_mem, 1,
460                      0x12000000, 32 * MiB,
461                      0x20000000, 512 * MiB,
462                      get_cps_irq(&s->cps, 1), false);
463 
464     pcie2 = xilinx_pcie_init(sys_mem, 2,
465                              0x14000000, 32 * MiB,
466                              0x16000000, 1 * MiB,
467                              get_cps_irq(&s->cps, 0), true);
468 
469     platreg = g_new(MemoryRegion, 1);
470     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
471                           "boston-platregs", 0x1000);
472     memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
473 
474     s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
475                              get_cps_irq(&s->cps, 3), 10000000,
476                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
477 
478     lcd = g_new(MemoryRegion, 1);
479     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
480     memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
481 
482     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
483     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
484     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
485                              boston_lcd_event, NULL, s, NULL, true);
486 
487     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
488                                            PCI_DEVFN(0, 0),
489                                            true, TYPE_ICH9_AHCI);
490     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
491     ide_drive_get(hd, ahci_get_num_ports(ahci));
492     ahci_ide_create_devs(ahci, hd);
493 
494     if (machine->firmware) {
495         fw_size = load_image_targphys(machine->firmware,
496                                       0x1fc00000, 4 * MiB);
497         if (fw_size == -1) {
498             error_report("unable to load firmware image '%s'",
499                           machine->firmware);
500             exit(1);
501         }
502     } else if (machine->kernel_filename) {
503         fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
504         if (fit_err) {
505             error_report("unable to load FIT image");
506             exit(1);
507         }
508 
509         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
510                      s->kernel_entry, s->fdt_base);
511     } else if (!qtest_enabled()) {
512         error_report("Please provide either a -kernel or -bios argument");
513         exit(1);
514     }
515 }
516 
517 static void boston_mach_class_init(MachineClass *mc)
518 {
519     mc->desc = "MIPS Boston";
520     mc->init = boston_mach_init;
521     mc->block_default_type = IF_IDE;
522     mc->default_ram_size = 1 * GiB;
523     mc->default_ram_id = "boston.ddr";
524     mc->max_cpus = 16;
525     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
526 }
527 
528 DEFINE_MACHINE("boston", boston_mach_class_init)
529