xref: /openbmc/qemu/hw/mips/boston.c (revision edf64786)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/cps.h"
31 #include "hw/pci-host/xilinx-pcie.h"
32 #include "hw/qdev-clock.h"
33 #include "hw/qdev-properties.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 #include "sysemu/runstate.h"
42 
43 #include <libfdt.h>
44 #include "qom/object.h"
45 
46 #define TYPE_BOSTON "mips-boston"
47 typedef struct BostonState BostonState;
48 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
49                          TYPE_BOSTON)
50 
51 struct BostonState {
52     SysBusDevice parent_obj;
53 
54     MachineState *mach;
55     MIPSCPSState cps;
56     SerialMM *uart;
57     Clock *cpuclk;
58 
59     CharBackend lcd_display;
60     char lcd_content[8];
61     bool lcd_inited;
62 
63     hwaddr kernel_entry;
64     hwaddr fdt_base;
65 };
66 
67 enum boston_plat_reg {
68     PLAT_FPGA_BUILD     = 0x00,
69     PLAT_CORE_CL        = 0x04,
70     PLAT_WRAPPER_CL     = 0x08,
71     PLAT_SYSCLK_STATUS  = 0x0c,
72     PLAT_SOFTRST_CTL    = 0x10,
73 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
74     PLAT_DDR3_STATUS    = 0x14,
75 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
76 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
77     PLAT_PCIE_STATUS    = 0x18,
78 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
79 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
80 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
81     PLAT_FLASH_CTL      = 0x1c,
82     PLAT_SPARE0         = 0x20,
83     PLAT_SPARE1         = 0x24,
84     PLAT_SPARE2         = 0x28,
85     PLAT_SPARE3         = 0x2c,
86     PLAT_MMCM_DIV       = 0x30,
87 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
88 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
89 #define PLAT_MMCM_DIV_MUL_SHIFT         16
90 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
91     PLAT_BUILD_CFG      = 0x34,
92 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
93 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
94 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
95 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
96     PLAT_DDR_CFG        = 0x38,
97 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
98 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
99     PLAT_NOC_PCIE0_ADDR = 0x3c,
100     PLAT_NOC_PCIE1_ADDR = 0x40,
101     PLAT_NOC_PCIE2_ADDR = 0x44,
102     PLAT_SYS_CTL        = 0x48,
103 };
104 
105 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
106 {
107     BostonState *s = opaque;
108     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
109         qemu_chr_fe_printf(&s->lcd_display, "        ");
110         s->lcd_inited = true;
111     }
112 }
113 
114 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
115                                 unsigned size)
116 {
117     BostonState *s = opaque;
118     uint64_t val = 0;
119 
120     switch (size) {
121     case 8:
122         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
123         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
124         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
125         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
126         /* fall through */
127     case 4:
128         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
129         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
130         /* fall through */
131     case 2:
132         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
133         /* fall through */
134     case 1:
135         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
136         break;
137     }
138 
139     return val;
140 }
141 
142 static void boston_lcd_write(void *opaque, hwaddr addr,
143                              uint64_t val, unsigned size)
144 {
145     BostonState *s = opaque;
146 
147     switch (size) {
148     case 8:
149         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
150         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
151         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
152         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
153         /* fall through */
154     case 4:
155         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
156         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
157         /* fall through */
158     case 2:
159         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
160         /* fall through */
161     case 1:
162         s->lcd_content[(addr + 0) & 0x7] = val;
163         break;
164     }
165 
166     qemu_chr_fe_printf(&s->lcd_display,
167                        "\r%-8.8s", s->lcd_content);
168 }
169 
170 static const MemoryRegionOps boston_lcd_ops = {
171     .read = boston_lcd_read,
172     .write = boston_lcd_write,
173     .endianness = DEVICE_NATIVE_ENDIAN,
174 };
175 
176 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
177                                     unsigned size)
178 {
179     BostonState *s = opaque;
180     uint32_t gic_freq, val;
181 
182     if (size != 4) {
183         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
184         return 0;
185     }
186 
187     switch (addr & 0xffff) {
188     case PLAT_FPGA_BUILD:
189     case PLAT_CORE_CL:
190     case PLAT_WRAPPER_CL:
191         return 0;
192     case PLAT_DDR3_STATUS:
193         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
194     case PLAT_MMCM_DIV:
195         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
196         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
197         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
198         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
199         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
200         return val;
201     case PLAT_BUILD_CFG:
202         val = PLAT_BUILD_CFG_PCIE0_EN;
203         val |= PLAT_BUILD_CFG_PCIE1_EN;
204         val |= PLAT_BUILD_CFG_PCIE2_EN;
205         return val;
206     case PLAT_DDR_CFG:
207         val = s->mach->ram_size / GiB;
208         assert(!(val & ~PLAT_DDR_CFG_SIZE));
209         val |= PLAT_DDR_CFG_MHZ;
210         return val;
211     default:
212         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
213                       addr & 0xffff);
214         return 0;
215     }
216 }
217 
218 static void boston_platreg_write(void *opaque, hwaddr addr,
219                                  uint64_t val, unsigned size)
220 {
221     if (size != 4) {
222         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
223         return;
224     }
225 
226     switch (addr & 0xffff) {
227     case PLAT_FPGA_BUILD:
228     case PLAT_CORE_CL:
229     case PLAT_WRAPPER_CL:
230     case PLAT_DDR3_STATUS:
231     case PLAT_PCIE_STATUS:
232     case PLAT_MMCM_DIV:
233     case PLAT_BUILD_CFG:
234     case PLAT_DDR_CFG:
235         /* read only */
236         break;
237     case PLAT_SOFTRST_CTL:
238         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
239             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
240         }
241         break;
242     default:
243         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
244                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
245         break;
246     }
247 }
248 
249 static const MemoryRegionOps boston_platreg_ops = {
250     .read = boston_platreg_read,
251     .write = boston_platreg_write,
252     .endianness = DEVICE_NATIVE_ENDIAN,
253 };
254 
255 static void mips_boston_instance_init(Object *obj)
256 {
257     BostonState *s = BOSTON(obj);
258 
259     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
260     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
261 }
262 
263 static const TypeInfo boston_device = {
264     .name          = TYPE_BOSTON,
265     .parent        = TYPE_SYS_BUS_DEVICE,
266     .instance_size = sizeof(BostonState),
267     .instance_init = mips_boston_instance_init,
268 };
269 
270 static void boston_register_types(void)
271 {
272     type_register_static(&boston_device);
273 }
274 type_init(boston_register_types)
275 
276 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
277                          bool is_64b)
278 {
279     const uint32_t cm_base = 0x16100000;
280     const uint32_t gic_base = 0x16120000;
281     const uint32_t cpc_base = 0x16200000;
282 
283     /* Move CM GCRs */
284     if (is_64b) {
285         stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
286         stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
287     } else {
288         stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
289         stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
290     }
291     stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
292     stl_p(p++, 0x01094025);                     /* or   $8, $9 */
293     stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
294     if (is_64b) {
295         stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
296     } else {
297         stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
298     }
299     stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
300 
301     /* Move & enable GIC GCRs */
302     stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
303     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
304     if (is_64b) {
305         stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
306     } else {
307         stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
308     }
309 
310     /* Move & enable CPC GCRs */
311     stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
312     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
313     if (is_64b) {
314         stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
315     } else {
316         stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
317     }
318 
319     /*
320      * Setup argument registers to follow the UHI boot protocol:
321      *
322      * a0/$4 = -2
323      * a1/$5 = virtual address of FDT
324      * a2/$6 = 0
325      * a3/$7 = 0
326      */
327     stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
328                                                 /* lui  $5, hi(fdt_addr) */
329     stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
330     if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
331         stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
332     }
333     stl_p(p++, 0x34060000);                     /* li   $6, 0 */
334     stl_p(p++, 0x34070000);                     /* li   $7, 0 */
335 
336     /* Load kernel entry address & jump to it */
337                                                 /* lui  $25, hi(kernel_entry) */
338     stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
339                                                 /* ori  $25, lo(kernel_entry) */
340     stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
341     stl_p(p++, 0x03200009);                     /* jr   $25 */
342 }
343 
344 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
345                                      const void *match_data, hwaddr *load_addr)
346 {
347     BostonState *s = BOSTON(opaque);
348     MachineState *machine = s->mach;
349     const char *cmdline;
350     int err;
351     size_t ram_low_sz, ram_high_sz;
352     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
353     g_autofree void *fdt = g_malloc0(fdt_sz);
354 
355     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
356     if (err) {
357         fprintf(stderr, "unable to open FDT\n");
358         return NULL;
359     }
360 
361     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
362             ? machine->kernel_cmdline : " ";
363     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
364     if (err < 0) {
365         fprintf(stderr, "couldn't set /chosen/bootargs\n");
366         return NULL;
367     }
368 
369     ram_low_sz = MIN(256 * MiB, machine->ram_size);
370     ram_high_sz = machine->ram_size - ram_low_sz;
371     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
372                                  1, 0x00000000, 1, ram_low_sz,
373                                  1, 0x90000000, 1, ram_high_sz);
374 
375     fdt = g_realloc(fdt, fdt_totalsize(fdt));
376     qemu_fdt_dumpdtb(fdt, fdt_sz);
377 
378     s->fdt_base = *load_addr;
379 
380     return g_steal_pointer(&fdt);
381 }
382 
383 static const void *boston_kernel_filter(void *opaque, const void *kernel,
384                                         hwaddr *load_addr, hwaddr *entry_addr)
385 {
386     BostonState *s = BOSTON(opaque);
387 
388     s->kernel_entry = *entry_addr;
389 
390     return kernel;
391 }
392 
393 static const struct fit_loader_match boston_matches[] = {
394     { "img,boston" },
395     { NULL },
396 };
397 
398 static const struct fit_loader boston_fit_loader = {
399     .matches = boston_matches,
400     .addr_to_phys = cpu_mips_kseg0_to_phys,
401     .fdt_filter = boston_fdt_filter,
402     .kernel_filter = boston_kernel_filter,
403 };
404 
405 static inline XilinxPCIEHost *
406 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
407                  hwaddr cfg_base, uint64_t cfg_size,
408                  hwaddr mmio_base, uint64_t mmio_size,
409                  qemu_irq irq, bool link_up)
410 {
411     DeviceState *dev;
412     MemoryRegion *cfg, *mmio;
413 
414     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
415 
416     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
417     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
418     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
419     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
420     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
421     qdev_prop_set_bit(dev, "link_up", link_up);
422 
423     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
424 
425     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
426     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
427 
428     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
429     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
430 
431     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
432 
433     return XILINX_PCIE_HOST(dev);
434 }
435 
436 static void boston_mach_init(MachineState *machine)
437 {
438     DeviceState *dev;
439     BostonState *s;
440     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
441     MemoryRegion *sys_mem = get_system_memory();
442     XilinxPCIEHost *pcie2;
443     PCIDevice *ahci;
444     DriveInfo *hd[6];
445     Chardev *chr;
446     int fw_size, fit_err;
447 
448     if ((machine->ram_size % GiB) ||
449         (machine->ram_size > (2 * GiB))) {
450         error_report("Memory size must be 1GB or 2GB");
451         exit(1);
452     }
453 
454     dev = qdev_new(TYPE_BOSTON);
455     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
456 
457     s = BOSTON(dev);
458     s->mach = machine;
459 
460     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
461         error_report("Boston requires CPUs which support CPS");
462         exit(1);
463     }
464 
465     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
466     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
467                             &error_fatal);
468     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
469                             &error_fatal);
470     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
471                           qdev_get_clock_out(dev, "cpu-refclk"));
472     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
473 
474     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
475 
476     flash =  g_new(MemoryRegion, 1);
477     memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB,
478                            &error_fatal);
479     memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
480 
481     memory_region_add_subregion_overlap(sys_mem, 0x80000000, machine->ram, 0);
482 
483     ddr_low_alias = g_new(MemoryRegion, 1);
484     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
485                              machine->ram, 0,
486                              MIN(machine->ram_size, (256 * MiB)));
487     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
488 
489     xilinx_pcie_init(sys_mem, 0,
490                      0x10000000, 32 * MiB,
491                      0x40000000, 1 * GiB,
492                      get_cps_irq(&s->cps, 2), false);
493 
494     xilinx_pcie_init(sys_mem, 1,
495                      0x12000000, 32 * MiB,
496                      0x20000000, 512 * MiB,
497                      get_cps_irq(&s->cps, 1), false);
498 
499     pcie2 = xilinx_pcie_init(sys_mem, 2,
500                              0x14000000, 32 * MiB,
501                              0x16000000, 1 * MiB,
502                              get_cps_irq(&s->cps, 0), true);
503 
504     platreg = g_new(MemoryRegion, 1);
505     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
506                           "boston-platregs", 0x1000);
507     memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
508 
509     s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
510                              get_cps_irq(&s->cps, 3), 10000000,
511                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
512 
513     lcd = g_new(MemoryRegion, 1);
514     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
515     memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
516 
517     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
518     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
519     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
520                              boston_lcd_event, NULL, s, NULL, true);
521 
522     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
523                                            PCI_DEVFN(0, 0),
524                                            true, TYPE_ICH9_AHCI);
525     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
526     ide_drive_get(hd, ahci_get_num_ports(ahci));
527     ahci_ide_create_devs(ahci, hd);
528 
529     if (machine->firmware) {
530         fw_size = load_image_targphys(machine->firmware,
531                                       0x1fc00000, 4 * MiB);
532         if (fw_size == -1) {
533             error_report("unable to load firmware image '%s'",
534                           machine->firmware);
535             exit(1);
536         }
537     } else if (machine->kernel_filename) {
538         fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
539         if (fit_err) {
540             error_report("unable to load FIT image");
541             exit(1);
542         }
543 
544         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
545                      s->kernel_entry, s->fdt_base,
546                      cpu_type_is_64bit(machine->cpu_type));
547     } else if (!qtest_enabled()) {
548         error_report("Please provide either a -kernel or -bios argument");
549         exit(1);
550     }
551 }
552 
553 static void boston_mach_class_init(MachineClass *mc)
554 {
555     mc->desc = "MIPS Boston";
556     mc->init = boston_mach_init;
557     mc->block_default_type = IF_IDE;
558     mc->default_ram_size = 1 * GiB;
559     mc->default_ram_id = "boston.ddr";
560     mc->max_cpus = 16;
561     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
562 }
563 
564 DEFINE_MACHINE("boston", boston_mach_class_init)
565