xref: /openbmc/qemu/hw/mips/boston.c (revision ed75658a)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "elf.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci-pci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/guest-random.h"
38 #include "qemu/log.h"
39 #include "chardev/char.h"
40 #include "sysemu/device_tree.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/runstate.h"
44 #include "sysemu/reset.h"
45 
46 #include <libfdt.h>
47 #include "qom/object.h"
48 
49 #define TYPE_BOSTON "mips-boston"
50 typedef struct BostonState BostonState;
51 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
52                          TYPE_BOSTON)
53 
54 #define FDT_IRQ_TYPE_NONE       0
55 #define FDT_IRQ_TYPE_LEVEL_HIGH 4
56 #define FDT_GIC_SHARED          0
57 #define FDT_GIC_LOCAL           1
58 #define FDT_BOSTON_CLK_SYS      1
59 #define FDT_BOSTON_CLK_CPU      2
60 #define FDT_PCI_IRQ_MAP_PINS    4
61 #define FDT_PCI_IRQ_MAP_DESCS   6
62 
63 struct BostonState {
64     SysBusDevice parent_obj;
65 
66     MachineState *mach;
67     MIPSCPSState cps;
68     SerialMM *uart;
69     Clock *cpuclk;
70 
71     CharBackend lcd_display;
72     char lcd_content[8];
73     bool lcd_inited;
74 
75     hwaddr kernel_entry;
76     hwaddr fdt_base;
77 };
78 
79 enum {
80     BOSTON_LOWDDR,
81     BOSTON_PCIE0,
82     BOSTON_PCIE1,
83     BOSTON_PCIE2,
84     BOSTON_PCIE2_MMIO,
85     BOSTON_CM,
86     BOSTON_GIC,
87     BOSTON_CDMM,
88     BOSTON_CPC,
89     BOSTON_PLATREG,
90     BOSTON_UART,
91     BOSTON_LCD,
92     BOSTON_FLASH,
93     BOSTON_PCIE1_MMIO,
94     BOSTON_PCIE0_MMIO,
95     BOSTON_HIGHDDR,
96 };
97 
98 static const MemMapEntry boston_memmap[] = {
99     [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
100     [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
101     [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
102     [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
103     [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
104     [BOSTON_CM] =         { 0x16100000,       0x20000 },
105     [BOSTON_GIC] =        { 0x16120000,       0x20000 },
106     [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
107     [BOSTON_CPC] =        { 0x16200000,        0x8000 },
108     [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
109     [BOSTON_UART] =       { 0x17ffe000,          0x20 },
110     [BOSTON_LCD] =        { 0x17fff000,           0x8 },
111     [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
112     [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
113     [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
114     [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
115 };
116 
117 enum boston_plat_reg {
118     PLAT_FPGA_BUILD     = 0x00,
119     PLAT_CORE_CL        = 0x04,
120     PLAT_WRAPPER_CL     = 0x08,
121     PLAT_SYSCLK_STATUS  = 0x0c,
122     PLAT_SOFTRST_CTL    = 0x10,
123 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
124     PLAT_DDR3_STATUS    = 0x14,
125 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
126 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
127     PLAT_PCIE_STATUS    = 0x18,
128 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
129 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
130 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
131     PLAT_FLASH_CTL      = 0x1c,
132     PLAT_SPARE0         = 0x20,
133     PLAT_SPARE1         = 0x24,
134     PLAT_SPARE2         = 0x28,
135     PLAT_SPARE3         = 0x2c,
136     PLAT_MMCM_DIV       = 0x30,
137 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
138 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
139 #define PLAT_MMCM_DIV_MUL_SHIFT         16
140 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
141     PLAT_BUILD_CFG      = 0x34,
142 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
143 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
144 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
145 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
146     PLAT_DDR_CFG        = 0x38,
147 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
148 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
149     PLAT_NOC_PCIE0_ADDR = 0x3c,
150     PLAT_NOC_PCIE1_ADDR = 0x40,
151     PLAT_NOC_PCIE2_ADDR = 0x44,
152     PLAT_SYS_CTL        = 0x48,
153 };
154 
155 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
156 {
157     BostonState *s = opaque;
158     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
159         qemu_chr_fe_printf(&s->lcd_display, "        ");
160         s->lcd_inited = true;
161     }
162 }
163 
164 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
165                                 unsigned size)
166 {
167     BostonState *s = opaque;
168     uint64_t val = 0;
169 
170     switch (size) {
171     case 8:
172         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
173         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
174         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
175         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
176         /* fall through */
177     case 4:
178         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
179         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
180         /* fall through */
181     case 2:
182         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
183         /* fall through */
184     case 1:
185         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
186         break;
187     }
188 
189     return val;
190 }
191 
192 static void boston_lcd_write(void *opaque, hwaddr addr,
193                              uint64_t val, unsigned size)
194 {
195     BostonState *s = opaque;
196 
197     switch (size) {
198     case 8:
199         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
200         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
201         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
202         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
203         /* fall through */
204     case 4:
205         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
206         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
207         /* fall through */
208     case 2:
209         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
210         /* fall through */
211     case 1:
212         s->lcd_content[(addr + 0) & 0x7] = val;
213         break;
214     }
215 
216     qemu_chr_fe_printf(&s->lcd_display,
217                        "\r%-8.8s", s->lcd_content);
218 }
219 
220 static const MemoryRegionOps boston_lcd_ops = {
221     .read = boston_lcd_read,
222     .write = boston_lcd_write,
223     .endianness = DEVICE_NATIVE_ENDIAN,
224 };
225 
226 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
227                                     unsigned size)
228 {
229     BostonState *s = opaque;
230     uint32_t gic_freq, val;
231 
232     if (size != 4) {
233         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
234         return 0;
235     }
236 
237     switch (addr & 0xffff) {
238     case PLAT_FPGA_BUILD:
239     case PLAT_CORE_CL:
240     case PLAT_WRAPPER_CL:
241         return 0;
242     case PLAT_DDR3_STATUS:
243         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
244     case PLAT_MMCM_DIV:
245         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
246         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
247         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
248         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
249         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
250         return val;
251     case PLAT_BUILD_CFG:
252         val = PLAT_BUILD_CFG_PCIE0_EN;
253         val |= PLAT_BUILD_CFG_PCIE1_EN;
254         val |= PLAT_BUILD_CFG_PCIE2_EN;
255         return val;
256     case PLAT_DDR_CFG:
257         val = s->mach->ram_size / GiB;
258         assert(!(val & ~PLAT_DDR_CFG_SIZE));
259         val |= PLAT_DDR_CFG_MHZ;
260         return val;
261     default:
262         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
263                       addr & 0xffff);
264         return 0;
265     }
266 }
267 
268 static void boston_platreg_write(void *opaque, hwaddr addr,
269                                  uint64_t val, unsigned size)
270 {
271     if (size != 4) {
272         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
273         return;
274     }
275 
276     switch (addr & 0xffff) {
277     case PLAT_FPGA_BUILD:
278     case PLAT_CORE_CL:
279     case PLAT_WRAPPER_CL:
280     case PLAT_DDR3_STATUS:
281     case PLAT_PCIE_STATUS:
282     case PLAT_MMCM_DIV:
283     case PLAT_BUILD_CFG:
284     case PLAT_DDR_CFG:
285         /* read only */
286         break;
287     case PLAT_SOFTRST_CTL:
288         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
289             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
290         }
291         break;
292     default:
293         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
294                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
295         break;
296     }
297 }
298 
299 static const MemoryRegionOps boston_platreg_ops = {
300     .read = boston_platreg_read,
301     .write = boston_platreg_write,
302     .endianness = DEVICE_NATIVE_ENDIAN,
303 };
304 
305 static void mips_boston_instance_init(Object *obj)
306 {
307     BostonState *s = BOSTON(obj);
308 
309     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
310     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
311 }
312 
313 static const TypeInfo boston_device = {
314     .name          = TYPE_BOSTON,
315     .parent        = TYPE_SYS_BUS_DEVICE,
316     .instance_size = sizeof(BostonState),
317     .instance_init = mips_boston_instance_init,
318 };
319 
320 static void boston_register_types(void)
321 {
322     type_register_static(&boston_device);
323 }
324 type_init(boston_register_types)
325 
326 static void gen_firmware(void *p, hwaddr kernel_entry, hwaddr fdt_addr)
327 {
328     uint64_t regaddr;
329 
330     /* Move CM GCRs */
331     regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
332     bl_gen_write_ulong(&p, regaddr,
333                        boston_memmap[BOSTON_CM].base);
334 
335     /* Move & enable GIC GCRs */
336     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
337                                            + GCR_GIC_BASE_OFS),
338     bl_gen_write_ulong(&p, regaddr,
339                        boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
340 
341     /* Move & enable CPC GCRs */
342     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
343                                            + GCR_CPC_BASE_OFS),
344     bl_gen_write_ulong(&p, regaddr,
345                        boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
346 
347     /*
348      * Setup argument registers to follow the UHI boot protocol:
349      *
350      * a0/$4 = -2
351      * a1/$5 = virtual address of FDT
352      * a2/$6 = 0
353      * a3/$7 = 0
354      */
355     bl_gen_jump_kernel(&p,
356                        true, 0, true, (int32_t)-2,
357                        true, fdt_addr, true, 0, true, 0,
358                        kernel_entry);
359 }
360 
361 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
362                                      const void *match_data, hwaddr *load_addr)
363 {
364     BostonState *s = BOSTON(opaque);
365     MachineState *machine = s->mach;
366     const char *cmdline;
367     int err;
368     size_t ram_low_sz, ram_high_sz;
369     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
370     g_autofree void *fdt = g_malloc0(fdt_sz);
371     uint8_t rng_seed[32];
372 
373     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
374     if (err) {
375         fprintf(stderr, "unable to open FDT\n");
376         return NULL;
377     }
378 
379     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
380     qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
381 
382     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
383             ? machine->kernel_cmdline : " ";
384     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
385     if (err < 0) {
386         fprintf(stderr, "couldn't set /chosen/bootargs\n");
387         return NULL;
388     }
389 
390     ram_low_sz = MIN(256 * MiB, machine->ram_size);
391     ram_high_sz = machine->ram_size - ram_low_sz;
392     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
393                         1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
394                         1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
395                         1, ram_high_sz);
396 
397     fdt = g_realloc(fdt, fdt_totalsize(fdt));
398     qemu_fdt_dumpdtb(fdt, fdt_sz);
399 
400     s->fdt_base = *load_addr;
401 
402     return g_steal_pointer(&fdt);
403 }
404 
405 static const void *boston_kernel_filter(void *opaque, const void *kernel,
406                                         hwaddr *load_addr, hwaddr *entry_addr)
407 {
408     BostonState *s = BOSTON(opaque);
409 
410     s->kernel_entry = *entry_addr;
411 
412     return kernel;
413 }
414 
415 static const struct fit_loader_match boston_matches[] = {
416     { "img,boston" },
417     { NULL },
418 };
419 
420 static const struct fit_loader boston_fit_loader = {
421     .matches = boston_matches,
422     .addr_to_phys = cpu_mips_kseg0_to_phys,
423     .fdt_filter = boston_fdt_filter,
424     .kernel_filter = boston_kernel_filter,
425 };
426 
427 static inline XilinxPCIEHost *
428 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
429                  hwaddr cfg_base, uint64_t cfg_size,
430                  hwaddr mmio_base, uint64_t mmio_size,
431                  qemu_irq irq)
432 {
433     DeviceState *dev;
434     MemoryRegion *cfg, *mmio;
435 
436     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
437 
438     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
439     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
440     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
441     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
442     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
443 
444     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
445 
446     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
447     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
448 
449     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
450     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
451 
452     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
453 
454     return XILINX_PCIE_HOST(dev);
455 }
456 
457 
458 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
459                             hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
460 {
461     int i;
462     char *name, *intc_name;
463     uint32_t intc_ph;
464     uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
465 
466     intc_ph = qemu_fdt_alloc_phandle(fdt);
467     name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
468     qemu_fdt_add_subnode(fdt, name);
469     qemu_fdt_setprop_string(fdt, name, "compatible",
470                             "xlnx,axi-pcie-host-1.00.a");
471     qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
472     qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
473 
474     qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
475     qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
476     qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
477 
478     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
479     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
480                             FDT_IRQ_TYPE_LEVEL_HIGH);
481 
482     qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
483                             mmio_base, 0, mmio_size);
484     qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
485 
486 
487 
488     intc_name = g_strdup_printf("%s/interrupt-controller", name);
489     qemu_fdt_add_subnode(fdt, intc_name);
490     qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
491     qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
492     qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
493     qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
494 
495     qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
496     for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
497         uint32_t *irqmap = interrupt_map[i];
498 
499         irqmap[0] = cpu_to_be32(0);
500         irqmap[1] = cpu_to_be32(0);
501         irqmap[2] = cpu_to_be32(0);
502         irqmap[3] = cpu_to_be32(i + 1);
503         irqmap[4] = cpu_to_be32(intc_ph);
504         irqmap[5] = cpu_to_be32(i + 1);
505     }
506     qemu_fdt_setprop(fdt, name, "interrupt-map",
507                      &interrupt_map, sizeof(interrupt_map));
508 
509     g_free(intc_name);
510     g_free(name);
511 }
512 
513 static const void *create_fdt(BostonState *s,
514                               const MemMapEntry *memmap, int *dt_size)
515 {
516     void *fdt;
517     int cpu;
518     MachineState *ms = s->mach;
519     uint32_t platreg_ph, gic_ph, clk_ph;
520     char *name, *gic_name, *platreg_name, *stdout_name;
521     static const char * const syscon_compat[2] = {
522         "img,boston-platform-regs", "syscon"
523     };
524 
525     fdt = create_device_tree(dt_size);
526     if (!fdt) {
527         error_report("create_device_tree() failed");
528         exit(1);
529     }
530 
531     platreg_ph = qemu_fdt_alloc_phandle(fdt);
532     gic_ph = qemu_fdt_alloc_phandle(fdt);
533     clk_ph = qemu_fdt_alloc_phandle(fdt);
534 
535     qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
536     qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
537     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
538     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
539 
540 
541     qemu_fdt_add_subnode(fdt, "/cpus");
542     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
543     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
544 
545     for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
546         name = g_strdup_printf("/cpus/cpu@%d", cpu);
547         qemu_fdt_add_subnode(fdt, name);
548         qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
549         qemu_fdt_setprop_string(fdt, name, "status", "okay");
550         qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
551         qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
552         qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
553         g_free(name);
554     }
555 
556     qemu_fdt_add_subnode(fdt, "/soc");
557     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
558     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
559     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
560     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
561 
562     fdt_create_pcie(fdt, gic_ph, 2,
563                 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
564                 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
565 
566     fdt_create_pcie(fdt, gic_ph, 1,
567                 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
568                 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
569 
570     fdt_create_pcie(fdt, gic_ph, 0,
571                 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
572                 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
573 
574     /* GIC with it's timer node */
575     gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
576                                 memmap[BOSTON_GIC].base);
577     qemu_fdt_add_subnode(fdt, gic_name);
578     qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
579     qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
580                             memmap[BOSTON_GIC].size);
581     qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
582     qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
583     qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
584 
585     name = g_strdup_printf("%s/timer", gic_name);
586     qemu_fdt_add_subnode(fdt, name);
587     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
588     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
589                             FDT_IRQ_TYPE_NONE);
590     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
591     g_free(name);
592     g_free(gic_name);
593 
594     /* CDMM node */
595     name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
596     qemu_fdt_add_subnode(fdt, name);
597     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
598     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
599                             memmap[BOSTON_CDMM].size);
600     g_free(name);
601 
602     /* CPC node */
603     name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
604     qemu_fdt_add_subnode(fdt, name);
605     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
606     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
607                             memmap[BOSTON_CPC].size);
608     g_free(name);
609 
610     /* platreg and it's clk node */
611     platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
612                                    memmap[BOSTON_PLATREG].base);
613     qemu_fdt_add_subnode(fdt, platreg_name);
614     qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
615                                  (char **)&syscon_compat,
616                                  ARRAY_SIZE(syscon_compat));
617     qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
618                            memmap[BOSTON_PLATREG].base,
619                            memmap[BOSTON_PLATREG].size);
620     qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
621 
622     name = g_strdup_printf("%s/clock", platreg_name);
623     qemu_fdt_add_subnode(fdt, name);
624     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
625     qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
626     qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
627     g_free(name);
628     g_free(platreg_name);
629 
630     /* reboot node */
631     name = g_strdup_printf("/soc/reboot");
632     qemu_fdt_add_subnode(fdt, name);
633     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
634     qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
635     qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
636     qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
637     g_free(name);
638 
639     /* uart node */
640     name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
641     qemu_fdt_add_subnode(fdt, name);
642     qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
643     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
644                             memmap[BOSTON_UART].size);
645     qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
646     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
647     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
648                             FDT_IRQ_TYPE_LEVEL_HIGH);
649     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
650 
651     qemu_fdt_add_subnode(fdt, "/chosen");
652     stdout_name = g_strdup_printf("%s:115200", name);
653     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
654     g_free(stdout_name);
655     g_free(name);
656 
657     /* lcd node */
658     name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
659     qemu_fdt_add_subnode(fdt, name);
660     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
661     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
662                             memmap[BOSTON_LCD].size);
663     g_free(name);
664 
665     name = g_strdup_printf("/memory@0");
666     qemu_fdt_add_subnode(fdt, name);
667     qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
668     g_free(name);
669 
670     return fdt;
671 }
672 
673 static void boston_mach_init(MachineState *machine)
674 {
675     DeviceState *dev;
676     BostonState *s;
677     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
678     MemoryRegion *sys_mem = get_system_memory();
679     XilinxPCIEHost *pcie2;
680     PCIDevice *pdev;
681     AHCIPCIState *ich9;
682     DriveInfo *hd[6];
683     Chardev *chr;
684     int fw_size, fit_err;
685 
686     if ((machine->ram_size % GiB) ||
687         (machine->ram_size > (2 * GiB))) {
688         error_report("Memory size must be 1GB or 2GB");
689         exit(1);
690     }
691 
692     dev = qdev_new(TYPE_BOSTON);
693     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
694 
695     s = BOSTON(dev);
696     s->mach = machine;
697 
698     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
699         error_report("Boston requires CPUs which support CPS");
700         exit(1);
701     }
702 
703     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
704     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
705                             &error_fatal);
706     object_property_set_uint(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
707                             &error_fatal);
708     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
709                           qdev_get_clock_out(dev, "cpu-refclk"));
710     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
711 
712     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
713 
714     flash =  g_new(MemoryRegion, 1);
715     memory_region_init_rom(flash, NULL, "boston.flash",
716                            boston_memmap[BOSTON_FLASH].size, &error_fatal);
717     memory_region_add_subregion_overlap(sys_mem,
718                                         boston_memmap[BOSTON_FLASH].base,
719                                         flash, 0);
720 
721     memory_region_add_subregion_overlap(sys_mem,
722                                         boston_memmap[BOSTON_HIGHDDR].base,
723                                         machine->ram, 0);
724 
725     ddr_low_alias = g_new(MemoryRegion, 1);
726     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
727                              machine->ram, 0,
728                              MIN(machine->ram_size, (256 * MiB)));
729     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
730 
731     xilinx_pcie_init(sys_mem, 0,
732                      boston_memmap[BOSTON_PCIE0].base,
733                      boston_memmap[BOSTON_PCIE0].size,
734                      boston_memmap[BOSTON_PCIE0_MMIO].base,
735                      boston_memmap[BOSTON_PCIE0_MMIO].size,
736                      get_cps_irq(&s->cps, 2));
737 
738     xilinx_pcie_init(sys_mem, 1,
739                      boston_memmap[BOSTON_PCIE1].base,
740                      boston_memmap[BOSTON_PCIE1].size,
741                      boston_memmap[BOSTON_PCIE1_MMIO].base,
742                      boston_memmap[BOSTON_PCIE1_MMIO].size,
743                      get_cps_irq(&s->cps, 1));
744 
745     pcie2 = xilinx_pcie_init(sys_mem, 2,
746                              boston_memmap[BOSTON_PCIE2].base,
747                              boston_memmap[BOSTON_PCIE2].size,
748                              boston_memmap[BOSTON_PCIE2_MMIO].base,
749                              boston_memmap[BOSTON_PCIE2_MMIO].size,
750                              get_cps_irq(&s->cps, 0));
751 
752     platreg = g_new(MemoryRegion, 1);
753     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
754                           "boston-platregs",
755                           boston_memmap[BOSTON_PLATREG].size);
756     memory_region_add_subregion_overlap(sys_mem,
757                           boston_memmap[BOSTON_PLATREG].base, platreg, 0);
758 
759     s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
760                              get_cps_irq(&s->cps, 3), 10000000,
761                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
762 
763     lcd = g_new(MemoryRegion, 1);
764     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
765     memory_region_add_subregion_overlap(sys_mem,
766                                         boston_memmap[BOSTON_LCD].base, lcd, 0);
767 
768     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
769     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
770     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
771                              boston_lcd_event, NULL, s, NULL, true);
772 
773     pdev = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
774                                            PCI_DEVFN(0, 0), TYPE_ICH9_AHCI);
775     ich9 = ICH9_AHCI(pdev);
776     g_assert(ARRAY_SIZE(hd) == ich9->ahci.ports);
777     ide_drive_get(hd, ich9->ahci.ports);
778     ahci_ide_create_devs(&ich9->ahci, hd);
779 
780     if (machine->firmware) {
781         fw_size = load_image_targphys(machine->firmware,
782                                       0x1fc00000, 4 * MiB);
783         if (fw_size == -1) {
784             error_report("unable to load firmware image '%s'",
785                           machine->firmware);
786             exit(1);
787         }
788     } else if (machine->kernel_filename) {
789         uint64_t kernel_entry, kernel_high;
790         ssize_t kernel_size;
791 
792         kernel_size = load_elf(machine->kernel_filename, NULL,
793                            cpu_mips_kseg0_to_phys, NULL,
794                            &kernel_entry, NULL, &kernel_high,
795                            NULL, 0, EM_MIPS, 1, 0);
796 
797         if (kernel_size > 0) {
798             int dt_size;
799             g_autofree const void *dtb_file_data = NULL;
800             g_autofree const void *dtb_load_data = NULL;
801             hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
802             hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
803 
804             s->kernel_entry = kernel_entry;
805             if (machine->dtb) {
806                 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
807             } else {
808                 dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
809             }
810 
811             dtb_load_data = boston_fdt_filter(s, dtb_file_data,
812                                               NULL, &dtb_vaddr);
813 
814             /* Calculate real fdt size after filter */
815             dt_size = fdt_totalsize(dtb_load_data);
816             rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
817             qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
818                                 rom_ptr(dtb_paddr, dt_size));
819         } else {
820             /* Try to load file as FIT */
821             fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
822             if (fit_err) {
823                 error_report("unable to load kernel image");
824                 exit(1);
825             }
826         }
827 
828         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
829                      s->kernel_entry, s->fdt_base);
830     } else if (!qtest_enabled()) {
831         error_report("Please provide either a -kernel or -bios argument");
832         exit(1);
833     }
834 }
835 
836 static void boston_mach_class_init(MachineClass *mc)
837 {
838     mc->desc = "MIPS Boston";
839     mc->init = boston_mach_init;
840     mc->block_default_type = IF_IDE;
841     mc->default_ram_size = 1 * GiB;
842     mc->default_ram_id = "boston.ddr";
843     mc->max_cpus = 16;
844     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
845 }
846 
847 DEFINE_MACHINE("boston", boston_mach_class_init)
848