xref: /openbmc/qemu/hw/mips/boston.c (revision c8cbc952)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "elf.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42 #include "sysemu/runstate.h"
43 
44 #include <libfdt.h>
45 #include "qom/object.h"
46 
47 #define TYPE_BOSTON "mips-boston"
48 typedef struct BostonState BostonState;
49 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
50                          TYPE_BOSTON)
51 
52 #define FDT_IRQ_TYPE_NONE       0
53 #define FDT_IRQ_TYPE_LEVEL_HIGH 4
54 #define FDT_GIC_SHARED          0
55 #define FDT_GIC_LOCAL           1
56 #define FDT_BOSTON_CLK_SYS      1
57 #define FDT_BOSTON_CLK_CPU      2
58 #define FDT_PCI_IRQ_MAP_PINS    4
59 #define FDT_PCI_IRQ_MAP_DESCS   6
60 
61 struct BostonState {
62     SysBusDevice parent_obj;
63 
64     MachineState *mach;
65     MIPSCPSState cps;
66     SerialMM *uart;
67     Clock *cpuclk;
68 
69     CharBackend lcd_display;
70     char lcd_content[8];
71     bool lcd_inited;
72 
73     hwaddr kernel_entry;
74     hwaddr fdt_base;
75 };
76 
77 enum {
78     BOSTON_LOWDDR,
79     BOSTON_PCIE0,
80     BOSTON_PCIE1,
81     BOSTON_PCIE2,
82     BOSTON_PCIE2_MMIO,
83     BOSTON_CM,
84     BOSTON_GIC,
85     BOSTON_CDMM,
86     BOSTON_CPC,
87     BOSTON_PLATREG,
88     BOSTON_UART,
89     BOSTON_LCD,
90     BOSTON_FLASH,
91     BOSTON_PCIE1_MMIO,
92     BOSTON_PCIE0_MMIO,
93     BOSTON_HIGHDDR,
94 };
95 
96 static const MemMapEntry boston_memmap[] = {
97     [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
98     [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
99     [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
100     [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
101     [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
102     [BOSTON_CM] =         { 0x16100000,       0x20000 },
103     [BOSTON_GIC] =        { 0x16120000,       0x20000 },
104     [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
105     [BOSTON_CPC] =        { 0x16200000,        0x8000 },
106     [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
107     [BOSTON_UART] =       { 0x17ffe000,          0x20 },
108     [BOSTON_LCD] =        { 0x17fff000,           0x8 },
109     [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
110     [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
111     [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
112     [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
113 };
114 
115 enum boston_plat_reg {
116     PLAT_FPGA_BUILD     = 0x00,
117     PLAT_CORE_CL        = 0x04,
118     PLAT_WRAPPER_CL     = 0x08,
119     PLAT_SYSCLK_STATUS  = 0x0c,
120     PLAT_SOFTRST_CTL    = 0x10,
121 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
122     PLAT_DDR3_STATUS    = 0x14,
123 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
124 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
125     PLAT_PCIE_STATUS    = 0x18,
126 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
127 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
128 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
129     PLAT_FLASH_CTL      = 0x1c,
130     PLAT_SPARE0         = 0x20,
131     PLAT_SPARE1         = 0x24,
132     PLAT_SPARE2         = 0x28,
133     PLAT_SPARE3         = 0x2c,
134     PLAT_MMCM_DIV       = 0x30,
135 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
136 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
137 #define PLAT_MMCM_DIV_MUL_SHIFT         16
138 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
139     PLAT_BUILD_CFG      = 0x34,
140 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
141 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
142 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
143 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
144     PLAT_DDR_CFG        = 0x38,
145 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
146 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
147     PLAT_NOC_PCIE0_ADDR = 0x3c,
148     PLAT_NOC_PCIE1_ADDR = 0x40,
149     PLAT_NOC_PCIE2_ADDR = 0x44,
150     PLAT_SYS_CTL        = 0x48,
151 };
152 
153 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
154 {
155     BostonState *s = opaque;
156     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
157         qemu_chr_fe_printf(&s->lcd_display, "        ");
158         s->lcd_inited = true;
159     }
160 }
161 
162 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
163                                 unsigned size)
164 {
165     BostonState *s = opaque;
166     uint64_t val = 0;
167 
168     switch (size) {
169     case 8:
170         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
171         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
172         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
173         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
174         /* fall through */
175     case 4:
176         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
177         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
178         /* fall through */
179     case 2:
180         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
181         /* fall through */
182     case 1:
183         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
184         break;
185     }
186 
187     return val;
188 }
189 
190 static void boston_lcd_write(void *opaque, hwaddr addr,
191                              uint64_t val, unsigned size)
192 {
193     BostonState *s = opaque;
194 
195     switch (size) {
196     case 8:
197         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
198         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
199         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
200         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
201         /* fall through */
202     case 4:
203         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
204         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
205         /* fall through */
206     case 2:
207         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
208         /* fall through */
209     case 1:
210         s->lcd_content[(addr + 0) & 0x7] = val;
211         break;
212     }
213 
214     qemu_chr_fe_printf(&s->lcd_display,
215                        "\r%-8.8s", s->lcd_content);
216 }
217 
218 static const MemoryRegionOps boston_lcd_ops = {
219     .read = boston_lcd_read,
220     .write = boston_lcd_write,
221     .endianness = DEVICE_NATIVE_ENDIAN,
222 };
223 
224 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
225                                     unsigned size)
226 {
227     BostonState *s = opaque;
228     uint32_t gic_freq, val;
229 
230     if (size != 4) {
231         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
232         return 0;
233     }
234 
235     switch (addr & 0xffff) {
236     case PLAT_FPGA_BUILD:
237     case PLAT_CORE_CL:
238     case PLAT_WRAPPER_CL:
239         return 0;
240     case PLAT_DDR3_STATUS:
241         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
242     case PLAT_MMCM_DIV:
243         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
244         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
245         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
246         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
247         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
248         return val;
249     case PLAT_BUILD_CFG:
250         val = PLAT_BUILD_CFG_PCIE0_EN;
251         val |= PLAT_BUILD_CFG_PCIE1_EN;
252         val |= PLAT_BUILD_CFG_PCIE2_EN;
253         return val;
254     case PLAT_DDR_CFG:
255         val = s->mach->ram_size / GiB;
256         assert(!(val & ~PLAT_DDR_CFG_SIZE));
257         val |= PLAT_DDR_CFG_MHZ;
258         return val;
259     default:
260         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
261                       addr & 0xffff);
262         return 0;
263     }
264 }
265 
266 static void boston_platreg_write(void *opaque, hwaddr addr,
267                                  uint64_t val, unsigned size)
268 {
269     if (size != 4) {
270         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
271         return;
272     }
273 
274     switch (addr & 0xffff) {
275     case PLAT_FPGA_BUILD:
276     case PLAT_CORE_CL:
277     case PLAT_WRAPPER_CL:
278     case PLAT_DDR3_STATUS:
279     case PLAT_PCIE_STATUS:
280     case PLAT_MMCM_DIV:
281     case PLAT_BUILD_CFG:
282     case PLAT_DDR_CFG:
283         /* read only */
284         break;
285     case PLAT_SOFTRST_CTL:
286         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
287             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
288         }
289         break;
290     default:
291         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
292                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
293         break;
294     }
295 }
296 
297 static const MemoryRegionOps boston_platreg_ops = {
298     .read = boston_platreg_read,
299     .write = boston_platreg_write,
300     .endianness = DEVICE_NATIVE_ENDIAN,
301 };
302 
303 static void mips_boston_instance_init(Object *obj)
304 {
305     BostonState *s = BOSTON(obj);
306 
307     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
308     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
309 }
310 
311 static const TypeInfo boston_device = {
312     .name          = TYPE_BOSTON,
313     .parent        = TYPE_SYS_BUS_DEVICE,
314     .instance_size = sizeof(BostonState),
315     .instance_init = mips_boston_instance_init,
316 };
317 
318 static void boston_register_types(void)
319 {
320     type_register_static(&boston_device);
321 }
322 type_init(boston_register_types)
323 
324 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
325 {
326     uint64_t regaddr;
327 
328     /* Move CM GCRs */
329     regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
330     bl_gen_write_ulong(&p, regaddr,
331                        boston_memmap[BOSTON_CM].base);
332 
333     /* Move & enable GIC GCRs */
334     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
335                                            + GCR_GIC_BASE_OFS),
336     bl_gen_write_ulong(&p, regaddr,
337                        boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
338 
339     /* Move & enable CPC GCRs */
340     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
341                                            + GCR_CPC_BASE_OFS),
342     bl_gen_write_ulong(&p, regaddr,
343                        boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
344 
345     /*
346      * Setup argument registers to follow the UHI boot protocol:
347      *
348      * a0/$4 = -2
349      * a1/$5 = virtual address of FDT
350      * a2/$6 = 0
351      * a3/$7 = 0
352      */
353     bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
354 }
355 
356 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
357                                      const void *match_data, hwaddr *load_addr)
358 {
359     BostonState *s = BOSTON(opaque);
360     MachineState *machine = s->mach;
361     const char *cmdline;
362     int err;
363     size_t ram_low_sz, ram_high_sz;
364     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
365     g_autofree void *fdt = g_malloc0(fdt_sz);
366 
367     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
368     if (err) {
369         fprintf(stderr, "unable to open FDT\n");
370         return NULL;
371     }
372 
373     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
374             ? machine->kernel_cmdline : " ";
375     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
376     if (err < 0) {
377         fprintf(stderr, "couldn't set /chosen/bootargs\n");
378         return NULL;
379     }
380 
381     ram_low_sz = MIN(256 * MiB, machine->ram_size);
382     ram_high_sz = machine->ram_size - ram_low_sz;
383     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
384                         1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
385                         1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
386                         1, ram_high_sz);
387 
388     fdt = g_realloc(fdt, fdt_totalsize(fdt));
389     qemu_fdt_dumpdtb(fdt, fdt_sz);
390 
391     s->fdt_base = *load_addr;
392 
393     return g_steal_pointer(&fdt);
394 }
395 
396 static const void *boston_kernel_filter(void *opaque, const void *kernel,
397                                         hwaddr *load_addr, hwaddr *entry_addr)
398 {
399     BostonState *s = BOSTON(opaque);
400 
401     s->kernel_entry = *entry_addr;
402 
403     return kernel;
404 }
405 
406 static const struct fit_loader_match boston_matches[] = {
407     { "img,boston" },
408     { NULL },
409 };
410 
411 static const struct fit_loader boston_fit_loader = {
412     .matches = boston_matches,
413     .addr_to_phys = cpu_mips_kseg0_to_phys,
414     .fdt_filter = boston_fdt_filter,
415     .kernel_filter = boston_kernel_filter,
416 };
417 
418 static inline XilinxPCIEHost *
419 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
420                  hwaddr cfg_base, uint64_t cfg_size,
421                  hwaddr mmio_base, uint64_t mmio_size,
422                  qemu_irq irq, bool link_up)
423 {
424     DeviceState *dev;
425     MemoryRegion *cfg, *mmio;
426 
427     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
428 
429     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
430     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
431     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
432     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
433     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
434     qdev_prop_set_bit(dev, "link_up", link_up);
435 
436     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
437 
438     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
439     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
440 
441     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
442     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
443 
444     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
445 
446     return XILINX_PCIE_HOST(dev);
447 }
448 
449 
450 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
451                             hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
452 {
453     int i;
454     char *name, *intc_name;
455     uint32_t intc_ph;
456     uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
457 
458     intc_ph = qemu_fdt_alloc_phandle(fdt);
459     name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
460     qemu_fdt_add_subnode(fdt, name);
461     qemu_fdt_setprop_string(fdt, name, "compatible",
462                             "xlnx,axi-pcie-host-1.00.a");
463     qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
464     qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
465 
466     qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
467     qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
468     qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
469 
470     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
471     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
472                             FDT_IRQ_TYPE_LEVEL_HIGH);
473 
474     qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
475                             mmio_base, 0, mmio_size);
476     qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
477 
478 
479 
480     intc_name = g_strdup_printf("%s/interrupt-controller", name);
481     qemu_fdt_add_subnode(fdt, intc_name);
482     qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
483     qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
484     qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
485     qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
486 
487     qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
488     for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
489         uint32_t *irqmap = interrupt_map[i];
490 
491         irqmap[0] = cpu_to_be32(0);
492         irqmap[1] = cpu_to_be32(0);
493         irqmap[2] = cpu_to_be32(0);
494         irqmap[3] = cpu_to_be32(i + 1);
495         irqmap[4] = cpu_to_be32(intc_ph);
496         irqmap[5] = cpu_to_be32(i + 1);
497     }
498     qemu_fdt_setprop(fdt, name, "interrupt-map",
499                      &interrupt_map, sizeof(interrupt_map));
500 
501     g_free(intc_name);
502     g_free(name);
503 }
504 
505 static const void *create_fdt(BostonState *s,
506                               const MemMapEntry *memmap, int *dt_size)
507 {
508     void *fdt;
509     int cpu;
510     MachineState *mc = s->mach;
511     uint32_t platreg_ph, gic_ph, clk_ph;
512     char *name, *gic_name, *platreg_name, *stdout_name;
513     static const char * const syscon_compat[2] = {
514         "img,boston-platform-regs", "syscon"
515     };
516 
517     fdt = create_device_tree(dt_size);
518     if (!fdt) {
519         error_report("create_device_tree() failed");
520         exit(1);
521     }
522 
523     platreg_ph = qemu_fdt_alloc_phandle(fdt);
524     gic_ph = qemu_fdt_alloc_phandle(fdt);
525     clk_ph = qemu_fdt_alloc_phandle(fdt);
526 
527     qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
528     qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
529     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
530     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
531 
532 
533     qemu_fdt_add_subnode(fdt, "/cpus");
534     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
535     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
536 
537     for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
538         name = g_strdup_printf("/cpus/cpu@%d", cpu);
539         qemu_fdt_add_subnode(fdt, name);
540         qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
541         qemu_fdt_setprop_string(fdt, name, "status", "okay");
542         qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
543         qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
544         qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
545         g_free(name);
546     }
547 
548     qemu_fdt_add_subnode(fdt, "/soc");
549     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
550     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
551     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
552     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
553 
554     fdt_create_pcie(fdt, gic_ph, 2,
555                 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
556                 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
557 
558     fdt_create_pcie(fdt, gic_ph, 1,
559                 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
560                 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
561 
562     fdt_create_pcie(fdt, gic_ph, 0,
563                 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
564                 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
565 
566     /* GIC with it's timer node */
567     gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
568                                 memmap[BOSTON_GIC].base);
569     qemu_fdt_add_subnode(fdt, gic_name);
570     qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
571     qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
572                             memmap[BOSTON_GIC].size);
573     qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
574     qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
575     qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
576 
577     name = g_strdup_printf("%s/timer", gic_name);
578     qemu_fdt_add_subnode(fdt, name);
579     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
580     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
581                             FDT_IRQ_TYPE_NONE);
582     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
583     g_free(name);
584     g_free(gic_name);
585 
586     /* CDMM node */
587     name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
588     qemu_fdt_add_subnode(fdt, name);
589     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
590     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
591                             memmap[BOSTON_CDMM].size);
592     g_free(name);
593 
594     /* CPC node */
595     name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
596     qemu_fdt_add_subnode(fdt, name);
597     qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
598     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
599                             memmap[BOSTON_CPC].size);
600     g_free(name);
601 
602     /* platreg and it's clk node */
603     platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
604                                    memmap[BOSTON_PLATREG].base);
605     qemu_fdt_add_subnode(fdt, platreg_name);
606     qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
607                                  (char **)&syscon_compat,
608                                  ARRAY_SIZE(syscon_compat));
609     qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
610                            memmap[BOSTON_PLATREG].base,
611                            memmap[BOSTON_PLATREG].size);
612     qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
613 
614     name = g_strdup_printf("%s/clock", platreg_name);
615     qemu_fdt_add_subnode(fdt, name);
616     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
617     qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
618     qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
619     g_free(name);
620     g_free(platreg_name);
621 
622     /* reboot node */
623     name = g_strdup_printf("/soc/reboot");
624     qemu_fdt_add_subnode(fdt, name);
625     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
626     qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
627     qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
628     qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
629     g_free(name);
630 
631     /* uart node */
632     name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
633     qemu_fdt_add_subnode(fdt, name);
634     qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
635     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
636                             memmap[BOSTON_UART].size);
637     qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
638     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
639     qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
640                             FDT_IRQ_TYPE_LEVEL_HIGH);
641     qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
642 
643     qemu_fdt_add_subnode(fdt, "/chosen");
644     stdout_name = g_strdup_printf("%s:115200", name);
645     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
646     g_free(stdout_name);
647     g_free(name);
648 
649     /* lcd node */
650     name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
651     qemu_fdt_add_subnode(fdt, name);
652     qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
653     qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
654                             memmap[BOSTON_LCD].size);
655     g_free(name);
656 
657     name = g_strdup_printf("/memory@0");
658     qemu_fdt_add_subnode(fdt, name);
659     qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
660     g_free(name);
661 
662     return fdt;
663 }
664 
665 static void boston_mach_init(MachineState *machine)
666 {
667     DeviceState *dev;
668     BostonState *s;
669     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
670     MemoryRegion *sys_mem = get_system_memory();
671     XilinxPCIEHost *pcie2;
672     PCIDevice *ahci;
673     DriveInfo *hd[6];
674     Chardev *chr;
675     int fw_size, fit_err;
676 
677     if ((machine->ram_size % GiB) ||
678         (machine->ram_size > (2 * GiB))) {
679         error_report("Memory size must be 1GB or 2GB");
680         exit(1);
681     }
682 
683     dev = qdev_new(TYPE_BOSTON);
684     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
685 
686     s = BOSTON(dev);
687     s->mach = machine;
688 
689     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
690         error_report("Boston requires CPUs which support CPS");
691         exit(1);
692     }
693 
694     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
695     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
696                             &error_fatal);
697     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
698                             &error_fatal);
699     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
700                           qdev_get_clock_out(dev, "cpu-refclk"));
701     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
702 
703     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
704 
705     flash =  g_new(MemoryRegion, 1);
706     memory_region_init_rom(flash, NULL, "boston.flash",
707                            boston_memmap[BOSTON_FLASH].size, &error_fatal);
708     memory_region_add_subregion_overlap(sys_mem,
709                                         boston_memmap[BOSTON_FLASH].base,
710                                         flash, 0);
711 
712     memory_region_add_subregion_overlap(sys_mem,
713                                         boston_memmap[BOSTON_HIGHDDR].base,
714                                         machine->ram, 0);
715 
716     ddr_low_alias = g_new(MemoryRegion, 1);
717     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
718                              machine->ram, 0,
719                              MIN(machine->ram_size, (256 * MiB)));
720     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
721 
722     xilinx_pcie_init(sys_mem, 0,
723                      boston_memmap[BOSTON_PCIE0].base,
724                      boston_memmap[BOSTON_PCIE0].size,
725                      boston_memmap[BOSTON_PCIE0_MMIO].base,
726                      boston_memmap[BOSTON_PCIE0_MMIO].size,
727                      get_cps_irq(&s->cps, 2), false);
728 
729     xilinx_pcie_init(sys_mem, 1,
730                      boston_memmap[BOSTON_PCIE1].base,
731                      boston_memmap[BOSTON_PCIE1].size,
732                      boston_memmap[BOSTON_PCIE1_MMIO].base,
733                      boston_memmap[BOSTON_PCIE1_MMIO].size,
734                      get_cps_irq(&s->cps, 1), false);
735 
736     pcie2 = xilinx_pcie_init(sys_mem, 2,
737                              boston_memmap[BOSTON_PCIE2].base,
738                              boston_memmap[BOSTON_PCIE2].size,
739                              boston_memmap[BOSTON_PCIE2_MMIO].base,
740                              boston_memmap[BOSTON_PCIE2_MMIO].size,
741                              get_cps_irq(&s->cps, 0), true);
742 
743     platreg = g_new(MemoryRegion, 1);
744     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
745                           "boston-platregs",
746                           boston_memmap[BOSTON_PLATREG].size);
747     memory_region_add_subregion_overlap(sys_mem,
748                           boston_memmap[BOSTON_PLATREG].base, platreg, 0);
749 
750     s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
751                              get_cps_irq(&s->cps, 3), 10000000,
752                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
753 
754     lcd = g_new(MemoryRegion, 1);
755     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
756     memory_region_add_subregion_overlap(sys_mem,
757                                         boston_memmap[BOSTON_LCD].base, lcd, 0);
758 
759     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
760     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
761     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
762                              boston_lcd_event, NULL, s, NULL, true);
763 
764     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
765                                            PCI_DEVFN(0, 0),
766                                            true, TYPE_ICH9_AHCI);
767     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
768     ide_drive_get(hd, ahci_get_num_ports(ahci));
769     ahci_ide_create_devs(ahci, hd);
770 
771     if (machine->firmware) {
772         fw_size = load_image_targphys(machine->firmware,
773                                       0x1fc00000, 4 * MiB);
774         if (fw_size == -1) {
775             error_report("unable to load firmware image '%s'",
776                           machine->firmware);
777             exit(1);
778         }
779     } else if (machine->kernel_filename) {
780         uint64_t kernel_entry, kernel_high;
781         ssize_t kernel_size;
782 
783         kernel_size = load_elf(machine->kernel_filename, NULL,
784                            cpu_mips_kseg0_to_phys, NULL,
785                            &kernel_entry, NULL, &kernel_high,
786                            NULL, 0, EM_MIPS, 1, 0);
787 
788         if (kernel_size > 0) {
789             int dt_size;
790             g_autofree const void *dtb_file_data, *dtb_load_data;
791             hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
792             hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
793 
794             s->kernel_entry = kernel_entry;
795             if (machine->dtb) {
796                 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
797             } else {
798                 dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
799             }
800 
801             dtb_load_data = boston_fdt_filter(s, dtb_file_data,
802                                               NULL, &dtb_vaddr);
803 
804             /* Calculate real fdt size after filter */
805             dt_size = fdt_totalsize(dtb_load_data);
806             rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
807         } else {
808             /* Try to load file as FIT */
809             fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
810             if (fit_err) {
811                 error_report("unable to load kernel image");
812                 exit(1);
813             }
814         }
815 
816         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
817                      s->kernel_entry, s->fdt_base);
818     } else if (!qtest_enabled()) {
819         error_report("Please provide either a -kernel or -bios argument");
820         exit(1);
821     }
822 }
823 
824 static void boston_mach_class_init(MachineClass *mc)
825 {
826     mc->desc = "MIPS Boston";
827     mc->init = boston_mach_init;
828     mc->block_default_type = IF_IDE;
829     mc->default_ram_size = 1 * GiB;
830     mc->default_ram_id = "boston.ddr";
831     mc->max_cpus = 16;
832     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
833 }
834 
835 DEFINE_MACHINE("boston", boston_mach_class_init)
836