1 /* 2 * MIPS Boston development board emulation. 3 * 4 * Copyright (c) 2016 Imagination Technologies 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 23 #include "elf.h" 24 #include "hw/boards.h" 25 #include "hw/char/serial.h" 26 #include "hw/ide/pci.h" 27 #include "hw/ide/ahci.h" 28 #include "hw/loader.h" 29 #include "hw/loader-fit.h" 30 #include "hw/mips/bootloader.h" 31 #include "hw/mips/cps.h" 32 #include "hw/pci-host/xilinx-pcie.h" 33 #include "hw/qdev-clock.h" 34 #include "hw/qdev-properties.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/guest-random.h" 38 #include "qemu/log.h" 39 #include "chardev/char.h" 40 #include "sysemu/device_tree.h" 41 #include "sysemu/sysemu.h" 42 #include "sysemu/qtest.h" 43 #include "sysemu/runstate.h" 44 #include "sysemu/reset.h" 45 46 #include <libfdt.h> 47 #include "qom/object.h" 48 49 #define TYPE_BOSTON "mips-boston" 50 typedef struct BostonState BostonState; 51 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON, 52 TYPE_BOSTON) 53 54 #define FDT_IRQ_TYPE_NONE 0 55 #define FDT_IRQ_TYPE_LEVEL_HIGH 4 56 #define FDT_GIC_SHARED 0 57 #define FDT_GIC_LOCAL 1 58 #define FDT_BOSTON_CLK_SYS 1 59 #define FDT_BOSTON_CLK_CPU 2 60 #define FDT_PCI_IRQ_MAP_PINS 4 61 #define FDT_PCI_IRQ_MAP_DESCS 6 62 63 struct BostonState { 64 SysBusDevice parent_obj; 65 66 MachineState *mach; 67 MIPSCPSState cps; 68 SerialMM *uart; 69 Clock *cpuclk; 70 71 CharBackend lcd_display; 72 char lcd_content[8]; 73 bool lcd_inited; 74 75 hwaddr kernel_entry; 76 hwaddr fdt_base; 77 }; 78 79 enum { 80 BOSTON_LOWDDR, 81 BOSTON_PCIE0, 82 BOSTON_PCIE1, 83 BOSTON_PCIE2, 84 BOSTON_PCIE2_MMIO, 85 BOSTON_CM, 86 BOSTON_GIC, 87 BOSTON_CDMM, 88 BOSTON_CPC, 89 BOSTON_PLATREG, 90 BOSTON_UART, 91 BOSTON_LCD, 92 BOSTON_FLASH, 93 BOSTON_PCIE1_MMIO, 94 BOSTON_PCIE0_MMIO, 95 BOSTON_HIGHDDR, 96 }; 97 98 static const MemMapEntry boston_memmap[] = { 99 [BOSTON_LOWDDR] = { 0x0, 0x10000000 }, 100 [BOSTON_PCIE0] = { 0x10000000, 0x2000000 }, 101 [BOSTON_PCIE1] = { 0x12000000, 0x2000000 }, 102 [BOSTON_PCIE2] = { 0x14000000, 0x2000000 }, 103 [BOSTON_PCIE2_MMIO] = { 0x16000000, 0x100000 }, 104 [BOSTON_CM] = { 0x16100000, 0x20000 }, 105 [BOSTON_GIC] = { 0x16120000, 0x20000 }, 106 [BOSTON_CDMM] = { 0x16140000, 0x8000 }, 107 [BOSTON_CPC] = { 0x16200000, 0x8000 }, 108 [BOSTON_PLATREG] = { 0x17ffd000, 0x1000 }, 109 [BOSTON_UART] = { 0x17ffe000, 0x20 }, 110 [BOSTON_LCD] = { 0x17fff000, 0x8 }, 111 [BOSTON_FLASH] = { 0x18000000, 0x8000000 }, 112 [BOSTON_PCIE1_MMIO] = { 0x20000000, 0x20000000 }, 113 [BOSTON_PCIE0_MMIO] = { 0x40000000, 0x40000000 }, 114 [BOSTON_HIGHDDR] = { 0x80000000, 0x0 }, 115 }; 116 117 enum boston_plat_reg { 118 PLAT_FPGA_BUILD = 0x00, 119 PLAT_CORE_CL = 0x04, 120 PLAT_WRAPPER_CL = 0x08, 121 PLAT_SYSCLK_STATUS = 0x0c, 122 PLAT_SOFTRST_CTL = 0x10, 123 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4) 124 PLAT_DDR3_STATUS = 0x14, 125 #define PLAT_DDR3_STATUS_LOCKED (1 << 0) 126 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2) 127 PLAT_PCIE_STATUS = 0x18, 128 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0) 129 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8) 130 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16) 131 PLAT_FLASH_CTL = 0x1c, 132 PLAT_SPARE0 = 0x20, 133 PLAT_SPARE1 = 0x24, 134 PLAT_SPARE2 = 0x28, 135 PLAT_SPARE3 = 0x2c, 136 PLAT_MMCM_DIV = 0x30, 137 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0 138 #define PLAT_MMCM_DIV_INPUT_SHIFT 8 139 #define PLAT_MMCM_DIV_MUL_SHIFT 16 140 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24 141 PLAT_BUILD_CFG = 0x34, 142 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0) 143 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1) 144 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2) 145 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3) 146 PLAT_DDR_CFG = 0x38, 147 #define PLAT_DDR_CFG_SIZE (0xf << 0) 148 #define PLAT_DDR_CFG_MHZ (0xfff << 4) 149 PLAT_NOC_PCIE0_ADDR = 0x3c, 150 PLAT_NOC_PCIE1_ADDR = 0x40, 151 PLAT_NOC_PCIE2_ADDR = 0x44, 152 PLAT_SYS_CTL = 0x48, 153 }; 154 155 static void boston_lcd_event(void *opaque, QEMUChrEvent event) 156 { 157 BostonState *s = opaque; 158 if (event == CHR_EVENT_OPENED && !s->lcd_inited) { 159 qemu_chr_fe_printf(&s->lcd_display, " "); 160 s->lcd_inited = true; 161 } 162 } 163 164 static uint64_t boston_lcd_read(void *opaque, hwaddr addr, 165 unsigned size) 166 { 167 BostonState *s = opaque; 168 uint64_t val = 0; 169 170 switch (size) { 171 case 8: 172 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56; 173 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48; 174 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40; 175 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32; 176 /* fall through */ 177 case 4: 178 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24; 179 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16; 180 /* fall through */ 181 case 2: 182 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8; 183 /* fall through */ 184 case 1: 185 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7]; 186 break; 187 } 188 189 return val; 190 } 191 192 static void boston_lcd_write(void *opaque, hwaddr addr, 193 uint64_t val, unsigned size) 194 { 195 BostonState *s = opaque; 196 197 switch (size) { 198 case 8: 199 s->lcd_content[(addr + 7) & 0x7] = val >> 56; 200 s->lcd_content[(addr + 6) & 0x7] = val >> 48; 201 s->lcd_content[(addr + 5) & 0x7] = val >> 40; 202 s->lcd_content[(addr + 4) & 0x7] = val >> 32; 203 /* fall through */ 204 case 4: 205 s->lcd_content[(addr + 3) & 0x7] = val >> 24; 206 s->lcd_content[(addr + 2) & 0x7] = val >> 16; 207 /* fall through */ 208 case 2: 209 s->lcd_content[(addr + 1) & 0x7] = val >> 8; 210 /* fall through */ 211 case 1: 212 s->lcd_content[(addr + 0) & 0x7] = val; 213 break; 214 } 215 216 qemu_chr_fe_printf(&s->lcd_display, 217 "\r%-8.8s", s->lcd_content); 218 } 219 220 static const MemoryRegionOps boston_lcd_ops = { 221 .read = boston_lcd_read, 222 .write = boston_lcd_write, 223 .endianness = DEVICE_NATIVE_ENDIAN, 224 }; 225 226 static uint64_t boston_platreg_read(void *opaque, hwaddr addr, 227 unsigned size) 228 { 229 BostonState *s = opaque; 230 uint32_t gic_freq, val; 231 232 if (size != 4) { 233 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size); 234 return 0; 235 } 236 237 switch (addr & 0xffff) { 238 case PLAT_FPGA_BUILD: 239 case PLAT_CORE_CL: 240 case PLAT_WRAPPER_CL: 241 return 0; 242 case PLAT_DDR3_STATUS: 243 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED; 244 case PLAT_MMCM_DIV: 245 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000; 246 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT; 247 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT; 248 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT; 249 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT; 250 return val; 251 case PLAT_BUILD_CFG: 252 val = PLAT_BUILD_CFG_PCIE0_EN; 253 val |= PLAT_BUILD_CFG_PCIE1_EN; 254 val |= PLAT_BUILD_CFG_PCIE2_EN; 255 return val; 256 case PLAT_DDR_CFG: 257 val = s->mach->ram_size / GiB; 258 assert(!(val & ~PLAT_DDR_CFG_SIZE)); 259 val |= PLAT_DDR_CFG_MHZ; 260 return val; 261 default: 262 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n", 263 addr & 0xffff); 264 return 0; 265 } 266 } 267 268 static void boston_platreg_write(void *opaque, hwaddr addr, 269 uint64_t val, unsigned size) 270 { 271 if (size != 4) { 272 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size); 273 return; 274 } 275 276 switch (addr & 0xffff) { 277 case PLAT_FPGA_BUILD: 278 case PLAT_CORE_CL: 279 case PLAT_WRAPPER_CL: 280 case PLAT_DDR3_STATUS: 281 case PLAT_PCIE_STATUS: 282 case PLAT_MMCM_DIV: 283 case PLAT_BUILD_CFG: 284 case PLAT_DDR_CFG: 285 /* read only */ 286 break; 287 case PLAT_SOFTRST_CTL: 288 if (val & PLAT_SOFTRST_CTL_SYSRESET) { 289 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 290 } 291 break; 292 default: 293 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx 294 " = 0x%" PRIx64 "\n", addr & 0xffff, val); 295 break; 296 } 297 } 298 299 static const MemoryRegionOps boston_platreg_ops = { 300 .read = boston_platreg_read, 301 .write = boston_platreg_write, 302 .endianness = DEVICE_NATIVE_ENDIAN, 303 }; 304 305 static void mips_boston_instance_init(Object *obj) 306 { 307 BostonState *s = BOSTON(obj); 308 309 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); 310 clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */ 311 } 312 313 static const TypeInfo boston_device = { 314 .name = TYPE_BOSTON, 315 .parent = TYPE_SYS_BUS_DEVICE, 316 .instance_size = sizeof(BostonState), 317 .instance_init = mips_boston_instance_init, 318 }; 319 320 static void boston_register_types(void) 321 { 322 type_register_static(&boston_device); 323 } 324 type_init(boston_register_types) 325 326 static void gen_firmware(void *p, hwaddr kernel_entry, hwaddr fdt_addr) 327 { 328 uint64_t regaddr; 329 330 /* Move CM GCRs */ 331 regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS), 332 bl_gen_write_ulong(&p, regaddr, 333 boston_memmap[BOSTON_CM].base); 334 335 /* Move & enable GIC GCRs */ 336 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base 337 + GCR_GIC_BASE_OFS), 338 bl_gen_write_ulong(&p, regaddr, 339 boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK); 340 341 /* Move & enable CPC GCRs */ 342 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base 343 + GCR_CPC_BASE_OFS), 344 bl_gen_write_ulong(&p, regaddr, 345 boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK); 346 347 /* 348 * Setup argument registers to follow the UHI boot protocol: 349 * 350 * a0/$4 = -2 351 * a1/$5 = virtual address of FDT 352 * a2/$6 = 0 353 * a3/$7 = 0 354 */ 355 bl_gen_jump_kernel(&p, 356 true, 0, true, (int32_t)-2, 357 true, fdt_addr, true, 0, true, 0, 358 kernel_entry); 359 } 360 361 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig, 362 const void *match_data, hwaddr *load_addr) 363 { 364 BostonState *s = BOSTON(opaque); 365 MachineState *machine = s->mach; 366 const char *cmdline; 367 int err; 368 size_t ram_low_sz, ram_high_sz; 369 size_t fdt_sz = fdt_totalsize(fdt_orig) * 2; 370 g_autofree void *fdt = g_malloc0(fdt_sz); 371 uint8_t rng_seed[32]; 372 373 err = fdt_open_into(fdt_orig, fdt, fdt_sz); 374 if (err) { 375 fprintf(stderr, "unable to open FDT\n"); 376 return NULL; 377 } 378 379 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 380 qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed)); 381 382 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0]) 383 ? machine->kernel_cmdline : " "; 384 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 385 if (err < 0) { 386 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 387 return NULL; 388 } 389 390 ram_low_sz = MIN(256 * MiB, machine->ram_size); 391 ram_high_sz = machine->ram_size - ram_low_sz; 392 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg", 393 1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz, 394 1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz, 395 1, ram_high_sz); 396 397 fdt = g_realloc(fdt, fdt_totalsize(fdt)); 398 qemu_fdt_dumpdtb(fdt, fdt_sz); 399 400 s->fdt_base = *load_addr; 401 402 return g_steal_pointer(&fdt); 403 } 404 405 static const void *boston_kernel_filter(void *opaque, const void *kernel, 406 hwaddr *load_addr, hwaddr *entry_addr) 407 { 408 BostonState *s = BOSTON(opaque); 409 410 s->kernel_entry = *entry_addr; 411 412 return kernel; 413 } 414 415 static const struct fit_loader_match boston_matches[] = { 416 { "img,boston" }, 417 { NULL }, 418 }; 419 420 static const struct fit_loader boston_fit_loader = { 421 .matches = boston_matches, 422 .addr_to_phys = cpu_mips_kseg0_to_phys, 423 .fdt_filter = boston_fdt_filter, 424 .kernel_filter = boston_kernel_filter, 425 }; 426 427 static inline XilinxPCIEHost * 428 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr, 429 hwaddr cfg_base, uint64_t cfg_size, 430 hwaddr mmio_base, uint64_t mmio_size, 431 qemu_irq irq) 432 { 433 DeviceState *dev; 434 MemoryRegion *cfg, *mmio; 435 436 dev = qdev_new(TYPE_XILINX_PCIE_HOST); 437 438 qdev_prop_set_uint32(dev, "bus_nr", bus_nr); 439 qdev_prop_set_uint64(dev, "cfg_base", cfg_base); 440 qdev_prop_set_uint64(dev, "cfg_size", cfg_size); 441 qdev_prop_set_uint64(dev, "mmio_base", mmio_base); 442 qdev_prop_set_uint64(dev, "mmio_size", mmio_size); 443 444 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 445 446 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 447 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0); 448 449 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 450 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0); 451 452 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq); 453 454 return XILINX_PCIE_HOST(dev); 455 } 456 457 458 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base, 459 hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size) 460 { 461 int i; 462 char *name, *intc_name; 463 uint32_t intc_ph; 464 uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS]; 465 466 intc_ph = qemu_fdt_alloc_phandle(fdt); 467 name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base); 468 qemu_fdt_add_subnode(fdt, name); 469 qemu_fdt_setprop_string(fdt, name, "compatible", 470 "xlnx,axi-pcie-host-1.00.a"); 471 qemu_fdt_setprop_string(fdt, name, "device_type", "pci"); 472 qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size); 473 474 qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3); 475 qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2); 476 qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1); 477 478 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph); 479 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq, 480 FDT_IRQ_TYPE_LEVEL_HIGH); 481 482 qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base, 483 mmio_base, 0, mmio_size); 484 qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff); 485 486 487 488 intc_name = g_strdup_printf("%s/interrupt-controller", name); 489 qemu_fdt_add_subnode(fdt, intc_name); 490 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0); 491 qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0); 492 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1); 493 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph); 494 495 qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7); 496 for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) { 497 uint32_t *irqmap = interrupt_map[i]; 498 499 irqmap[0] = cpu_to_be32(0); 500 irqmap[1] = cpu_to_be32(0); 501 irqmap[2] = cpu_to_be32(0); 502 irqmap[3] = cpu_to_be32(i + 1); 503 irqmap[4] = cpu_to_be32(intc_ph); 504 irqmap[5] = cpu_to_be32(i + 1); 505 } 506 qemu_fdt_setprop(fdt, name, "interrupt-map", 507 &interrupt_map, sizeof(interrupt_map)); 508 509 g_free(intc_name); 510 g_free(name); 511 } 512 513 static const void *create_fdt(BostonState *s, 514 const MemMapEntry *memmap, int *dt_size) 515 { 516 void *fdt; 517 int cpu; 518 MachineState *ms = s->mach; 519 uint32_t platreg_ph, gic_ph, clk_ph; 520 char *name, *gic_name, *platreg_name, *stdout_name; 521 static const char * const syscon_compat[2] = { 522 "img,boston-platform-regs", "syscon" 523 }; 524 525 fdt = create_device_tree(dt_size); 526 if (!fdt) { 527 error_report("create_device_tree() failed"); 528 exit(1); 529 } 530 531 platreg_ph = qemu_fdt_alloc_phandle(fdt); 532 gic_ph = qemu_fdt_alloc_phandle(fdt); 533 clk_ph = qemu_fdt_alloc_phandle(fdt); 534 535 qemu_fdt_setprop_string(fdt, "/", "model", "img,boston"); 536 qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston"); 537 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1); 538 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1); 539 540 541 qemu_fdt_add_subnode(fdt, "/cpus"); 542 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 543 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 544 545 for (cpu = 0; cpu < ms->smp.cpus; cpu++) { 546 name = g_strdup_printf("/cpus/cpu@%d", cpu); 547 qemu_fdt_add_subnode(fdt, name); 548 qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips"); 549 qemu_fdt_setprop_string(fdt, name, "status", "okay"); 550 qemu_fdt_setprop_cell(fdt, name, "reg", cpu); 551 qemu_fdt_setprop_string(fdt, name, "device_type", "cpu"); 552 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU); 553 g_free(name); 554 } 555 556 qemu_fdt_add_subnode(fdt, "/soc"); 557 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 558 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 559 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1); 560 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1); 561 562 fdt_create_pcie(fdt, gic_ph, 2, 563 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size, 564 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size); 565 566 fdt_create_pcie(fdt, gic_ph, 1, 567 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size, 568 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size); 569 570 fdt_create_pcie(fdt, gic_ph, 0, 571 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size, 572 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size); 573 574 /* GIC with it's timer node */ 575 gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx, 576 memmap[BOSTON_GIC].base); 577 qemu_fdt_add_subnode(fdt, gic_name); 578 qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic"); 579 qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base, 580 memmap[BOSTON_GIC].size); 581 qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0); 582 qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3); 583 qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph); 584 585 name = g_strdup_printf("%s/timer", gic_name); 586 qemu_fdt_add_subnode(fdt, name); 587 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer"); 588 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1, 589 FDT_IRQ_TYPE_NONE); 590 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU); 591 g_free(name); 592 g_free(gic_name); 593 594 /* CDMM node */ 595 name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base); 596 qemu_fdt_add_subnode(fdt, name); 597 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm"); 598 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base, 599 memmap[BOSTON_CDMM].size); 600 g_free(name); 601 602 /* CPC node */ 603 name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base); 604 qemu_fdt_add_subnode(fdt, name); 605 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc"); 606 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base, 607 memmap[BOSTON_CPC].size); 608 g_free(name); 609 610 /* platreg and it's clk node */ 611 platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx, 612 memmap[BOSTON_PLATREG].base); 613 qemu_fdt_add_subnode(fdt, platreg_name); 614 qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible", 615 (char **)&syscon_compat, 616 ARRAY_SIZE(syscon_compat)); 617 qemu_fdt_setprop_cells(fdt, platreg_name, "reg", 618 memmap[BOSTON_PLATREG].base, 619 memmap[BOSTON_PLATREG].size); 620 qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph); 621 622 name = g_strdup_printf("%s/clock", platreg_name); 623 qemu_fdt_add_subnode(fdt, name); 624 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock"); 625 qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1); 626 qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph); 627 g_free(name); 628 g_free(platreg_name); 629 630 /* reboot node */ 631 name = g_strdup_printf("/soc/reboot"); 632 qemu_fdt_add_subnode(fdt, name); 633 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot"); 634 qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph); 635 qemu_fdt_setprop_cell(fdt, name, "offset", 0x10); 636 qemu_fdt_setprop_cell(fdt, name, "mask", 0x10); 637 g_free(name); 638 639 /* uart node */ 640 name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base); 641 qemu_fdt_add_subnode(fdt, name); 642 qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a"); 643 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base, 644 memmap[BOSTON_UART].size); 645 qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2); 646 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph); 647 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3, 648 FDT_IRQ_TYPE_LEVEL_HIGH); 649 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS); 650 651 qemu_fdt_add_subnode(fdt, "/chosen"); 652 stdout_name = g_strdup_printf("%s:115200", name); 653 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name); 654 g_free(stdout_name); 655 g_free(name); 656 657 /* lcd node */ 658 name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base); 659 qemu_fdt_add_subnode(fdt, name); 660 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd"); 661 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base, 662 memmap[BOSTON_LCD].size); 663 g_free(name); 664 665 name = g_strdup_printf("/memory@0"); 666 qemu_fdt_add_subnode(fdt, name); 667 qemu_fdt_setprop_string(fdt, name, "device_type", "memory"); 668 g_free(name); 669 670 return fdt; 671 } 672 673 static void boston_mach_init(MachineState *machine) 674 { 675 DeviceState *dev; 676 BostonState *s; 677 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg; 678 MemoryRegion *sys_mem = get_system_memory(); 679 XilinxPCIEHost *pcie2; 680 PCIDevice *ahci; 681 DriveInfo *hd[6]; 682 Chardev *chr; 683 int fw_size, fit_err; 684 685 if ((machine->ram_size % GiB) || 686 (machine->ram_size > (2 * GiB))) { 687 error_report("Memory size must be 1GB or 2GB"); 688 exit(1); 689 } 690 691 dev = qdev_new(TYPE_BOSTON); 692 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 693 694 s = BOSTON(dev); 695 s->mach = machine; 696 697 if (!cpu_type_supports_cps_smp(machine->cpu_type)) { 698 error_report("Boston requires CPUs which support CPS"); 699 exit(1); 700 } 701 702 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS); 703 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type, 704 &error_fatal); 705 object_property_set_uint(OBJECT(&s->cps), "num-vp", machine->smp.cpus, 706 &error_fatal); 707 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", 708 qdev_get_clock_out(dev, "cpu-refclk")); 709 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 710 711 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 712 713 flash = g_new(MemoryRegion, 1); 714 memory_region_init_rom(flash, NULL, "boston.flash", 715 boston_memmap[BOSTON_FLASH].size, &error_fatal); 716 memory_region_add_subregion_overlap(sys_mem, 717 boston_memmap[BOSTON_FLASH].base, 718 flash, 0); 719 720 memory_region_add_subregion_overlap(sys_mem, 721 boston_memmap[BOSTON_HIGHDDR].base, 722 machine->ram, 0); 723 724 ddr_low_alias = g_new(MemoryRegion, 1); 725 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr", 726 machine->ram, 0, 727 MIN(machine->ram_size, (256 * MiB))); 728 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0); 729 730 xilinx_pcie_init(sys_mem, 0, 731 boston_memmap[BOSTON_PCIE0].base, 732 boston_memmap[BOSTON_PCIE0].size, 733 boston_memmap[BOSTON_PCIE0_MMIO].base, 734 boston_memmap[BOSTON_PCIE0_MMIO].size, 735 get_cps_irq(&s->cps, 2)); 736 737 xilinx_pcie_init(sys_mem, 1, 738 boston_memmap[BOSTON_PCIE1].base, 739 boston_memmap[BOSTON_PCIE1].size, 740 boston_memmap[BOSTON_PCIE1_MMIO].base, 741 boston_memmap[BOSTON_PCIE1_MMIO].size, 742 get_cps_irq(&s->cps, 1)); 743 744 pcie2 = xilinx_pcie_init(sys_mem, 2, 745 boston_memmap[BOSTON_PCIE2].base, 746 boston_memmap[BOSTON_PCIE2].size, 747 boston_memmap[BOSTON_PCIE2_MMIO].base, 748 boston_memmap[BOSTON_PCIE2_MMIO].size, 749 get_cps_irq(&s->cps, 0)); 750 751 platreg = g_new(MemoryRegion, 1); 752 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s, 753 "boston-platregs", 754 boston_memmap[BOSTON_PLATREG].size); 755 memory_region_add_subregion_overlap(sys_mem, 756 boston_memmap[BOSTON_PLATREG].base, platreg, 0); 757 758 s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2, 759 get_cps_irq(&s->cps, 3), 10000000, 760 serial_hd(0), DEVICE_NATIVE_ENDIAN); 761 762 lcd = g_new(MemoryRegion, 1); 763 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8); 764 memory_region_add_subregion_overlap(sys_mem, 765 boston_memmap[BOSTON_LCD].base, lcd, 0); 766 767 chr = qemu_chr_new("lcd", "vc:320x240", NULL); 768 qemu_chr_fe_init(&s->lcd_display, chr, NULL); 769 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL, 770 boston_lcd_event, NULL, s, NULL, true); 771 772 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus, 773 PCI_DEVFN(0, 0), 774 true, TYPE_ICH9_AHCI); 775 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci)); 776 ide_drive_get(hd, ahci_get_num_ports(ahci)); 777 ahci_ide_create_devs(ahci, hd); 778 779 if (machine->firmware) { 780 fw_size = load_image_targphys(machine->firmware, 781 0x1fc00000, 4 * MiB); 782 if (fw_size == -1) { 783 error_report("unable to load firmware image '%s'", 784 machine->firmware); 785 exit(1); 786 } 787 } else if (machine->kernel_filename) { 788 uint64_t kernel_entry, kernel_high; 789 ssize_t kernel_size; 790 791 kernel_size = load_elf(machine->kernel_filename, NULL, 792 cpu_mips_kseg0_to_phys, NULL, 793 &kernel_entry, NULL, &kernel_high, 794 NULL, 0, EM_MIPS, 1, 0); 795 796 if (kernel_size > 0) { 797 int dt_size; 798 g_autofree const void *dtb_file_data = NULL; 799 g_autofree const void *dtb_load_data = NULL; 800 hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB); 801 hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr); 802 803 s->kernel_entry = kernel_entry; 804 if (machine->dtb) { 805 dtb_file_data = load_device_tree(machine->dtb, &dt_size); 806 } else { 807 dtb_file_data = create_fdt(s, boston_memmap, &dt_size); 808 } 809 810 dtb_load_data = boston_fdt_filter(s, dtb_file_data, 811 NULL, &dtb_vaddr); 812 813 /* Calculate real fdt size after filter */ 814 dt_size = fdt_totalsize(dtb_load_data); 815 rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr); 816 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds, 817 rom_ptr(dtb_paddr, dt_size)); 818 } else { 819 /* Try to load file as FIT */ 820 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s); 821 if (fit_err) { 822 error_report("unable to load kernel image"); 823 exit(1); 824 } 825 } 826 827 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000, 828 s->kernel_entry, s->fdt_base); 829 } else if (!qtest_enabled()) { 830 error_report("Please provide either a -kernel or -bios argument"); 831 exit(1); 832 } 833 } 834 835 static void boston_mach_class_init(MachineClass *mc) 836 { 837 mc->desc = "MIPS Boston"; 838 mc->init = boston_mach_init; 839 mc->block_default_type = IF_IDE; 840 mc->default_ram_size = 1 * GiB; 841 mc->default_ram_id = "boston.ddr"; 842 mc->max_cpus = 16; 843 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400"); 844 } 845 846 DEFINE_MACHINE("boston", boston_mach_class_init) 847