xref: /openbmc/qemu/hw/mips/boston.c (revision c40d4792)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23 
24 #include "exec/address-spaces.h"
25 #include "hw/boards.h"
26 #include "hw/char/serial.h"
27 #include "hw/hw.h"
28 #include "hw/ide/pci.h"
29 #include "hw/ide/ahci.h"
30 #include "hw/loader.h"
31 #include "hw/loader-fit.h"
32 #include "hw/mips/cps.h"
33 #include "hw/mips/cpudevs.h"
34 #include "hw/pci-host/xilinx-pcie.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42 
43 #include <libfdt.h>
44 
45 #define TYPE_MIPS_BOSTON "mips-boston"
46 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
47 
48 typedef struct {
49     SysBusDevice parent_obj;
50 
51     MachineState *mach;
52     MIPSCPSState *cps;
53     SerialState *uart;
54 
55     CharBackend lcd_display;
56     char lcd_content[8];
57     bool lcd_inited;
58 
59     hwaddr kernel_entry;
60     hwaddr fdt_base;
61 } BostonState;
62 
63 enum boston_plat_reg {
64     PLAT_FPGA_BUILD     = 0x00,
65     PLAT_CORE_CL        = 0x04,
66     PLAT_WRAPPER_CL     = 0x08,
67     PLAT_SYSCLK_STATUS  = 0x0c,
68     PLAT_SOFTRST_CTL    = 0x10,
69 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
70     PLAT_DDR3_STATUS    = 0x14,
71 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
72 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
73     PLAT_PCIE_STATUS    = 0x18,
74 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
75 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
76 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
77     PLAT_FLASH_CTL      = 0x1c,
78     PLAT_SPARE0         = 0x20,
79     PLAT_SPARE1         = 0x24,
80     PLAT_SPARE2         = 0x28,
81     PLAT_SPARE3         = 0x2c,
82     PLAT_MMCM_DIV       = 0x30,
83 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
84 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
85 #define PLAT_MMCM_DIV_MUL_SHIFT         16
86 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
87     PLAT_BUILD_CFG      = 0x34,
88 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
89 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
90 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
91 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
92     PLAT_DDR_CFG        = 0x38,
93 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
94 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
95     PLAT_NOC_PCIE0_ADDR = 0x3c,
96     PLAT_NOC_PCIE1_ADDR = 0x40,
97     PLAT_NOC_PCIE2_ADDR = 0x44,
98     PLAT_SYS_CTL        = 0x48,
99 };
100 
101 static void boston_lcd_event(void *opaque, int event)
102 {
103     BostonState *s = opaque;
104     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
105         qemu_chr_fe_printf(&s->lcd_display, "        ");
106         s->lcd_inited = true;
107     }
108 }
109 
110 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
111                                 unsigned size)
112 {
113     BostonState *s = opaque;
114     uint64_t val = 0;
115 
116     switch (size) {
117     case 8:
118         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
119         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
120         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
121         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
122         /* fall through */
123     case 4:
124         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
125         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
126         /* fall through */
127     case 2:
128         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
129         /* fall through */
130     case 1:
131         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
132         break;
133     }
134 
135     return val;
136 }
137 
138 static void boston_lcd_write(void *opaque, hwaddr addr,
139                              uint64_t val, unsigned size)
140 {
141     BostonState *s = opaque;
142 
143     switch (size) {
144     case 8:
145         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
146         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
147         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
148         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
149         /* fall through */
150     case 4:
151         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
152         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
153         /* fall through */
154     case 2:
155         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
156         /* fall through */
157     case 1:
158         s->lcd_content[(addr + 0) & 0x7] = val;
159         break;
160     }
161 
162     qemu_chr_fe_printf(&s->lcd_display,
163                        "\r%-8.8s", s->lcd_content);
164 }
165 
166 static const MemoryRegionOps boston_lcd_ops = {
167     .read = boston_lcd_read,
168     .write = boston_lcd_write,
169     .endianness = DEVICE_NATIVE_ENDIAN,
170 };
171 
172 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
173                                     unsigned size)
174 {
175     BostonState *s = opaque;
176     uint32_t gic_freq, val;
177 
178     if (size != 4) {
179         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
180         return 0;
181     }
182 
183     switch (addr & 0xffff) {
184     case PLAT_FPGA_BUILD:
185     case PLAT_CORE_CL:
186     case PLAT_WRAPPER_CL:
187         return 0;
188     case PLAT_DDR3_STATUS:
189         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
190     case PLAT_MMCM_DIV:
191         gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
192         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
193         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
194         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
195         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
196         return val;
197     case PLAT_BUILD_CFG:
198         val = PLAT_BUILD_CFG_PCIE0_EN;
199         val |= PLAT_BUILD_CFG_PCIE1_EN;
200         val |= PLAT_BUILD_CFG_PCIE2_EN;
201         return val;
202     case PLAT_DDR_CFG:
203         val = s->mach->ram_size / GiB;
204         assert(!(val & ~PLAT_DDR_CFG_SIZE));
205         val |= PLAT_DDR_CFG_MHZ;
206         return val;
207     default:
208         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
209                       addr & 0xffff);
210         return 0;
211     }
212 }
213 
214 static void boston_platreg_write(void *opaque, hwaddr addr,
215                                  uint64_t val, unsigned size)
216 {
217     if (size != 4) {
218         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
219         return;
220     }
221 
222     switch (addr & 0xffff) {
223     case PLAT_FPGA_BUILD:
224     case PLAT_CORE_CL:
225     case PLAT_WRAPPER_CL:
226     case PLAT_DDR3_STATUS:
227     case PLAT_PCIE_STATUS:
228     case PLAT_MMCM_DIV:
229     case PLAT_BUILD_CFG:
230     case PLAT_DDR_CFG:
231         /* read only */
232         break;
233     case PLAT_SOFTRST_CTL:
234         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
235             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
236         }
237         break;
238     default:
239         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
240                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
241         break;
242     }
243 }
244 
245 static const MemoryRegionOps boston_platreg_ops = {
246     .read = boston_platreg_read,
247     .write = boston_platreg_write,
248     .endianness = DEVICE_NATIVE_ENDIAN,
249 };
250 
251 static const TypeInfo boston_device = {
252     .name          = TYPE_MIPS_BOSTON,
253     .parent        = TYPE_SYS_BUS_DEVICE,
254     .instance_size = sizeof(BostonState),
255 };
256 
257 static void boston_register_types(void)
258 {
259     type_register_static(&boston_device);
260 }
261 type_init(boston_register_types)
262 
263 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
264                          bool is_64b)
265 {
266     const uint32_t cm_base = 0x16100000;
267     const uint32_t gic_base = 0x16120000;
268     const uint32_t cpc_base = 0x16200000;
269 
270     /* Move CM GCRs */
271     if (is_64b) {
272         stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
273         stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
274     } else {
275         stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
276         stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
277     }
278     stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
279     stl_p(p++, 0x01094025);                     /* or   $8, $9 */
280     stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
281     if (is_64b) {
282         stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
283     } else {
284         stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
285     }
286     stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
287 
288     /* Move & enable GIC GCRs */
289     stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
290     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
291     if (is_64b) {
292         stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
293     } else {
294         stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
295     }
296 
297     /* Move & enable CPC GCRs */
298     stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
299     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
300     if (is_64b) {
301         stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
302     } else {
303         stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
304     }
305 
306     /*
307      * Setup argument registers to follow the UHI boot protocol:
308      *
309      * a0/$4 = -2
310      * a1/$5 = virtual address of FDT
311      * a2/$6 = 0
312      * a3/$7 = 0
313      */
314     stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
315                                                 /* lui  $5, hi(fdt_addr) */
316     stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
317     if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
318         stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
319     }
320     stl_p(p++, 0x34060000);                     /* li   $6, 0 */
321     stl_p(p++, 0x34070000);                     /* li   $7, 0 */
322 
323     /* Load kernel entry address & jump to it */
324                                                 /* lui  $25, hi(kernel_entry) */
325     stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
326                                                 /* ori  $25, lo(kernel_entry) */
327     stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
328     stl_p(p++, 0x03200009);                     /* jr   $25 */
329 }
330 
331 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
332                                      const void *match_data, hwaddr *load_addr)
333 {
334     BostonState *s = BOSTON(opaque);
335     MachineState *machine = s->mach;
336     const char *cmdline;
337     int err;
338     void *fdt;
339     size_t fdt_sz, ram_low_sz, ram_high_sz;
340 
341     fdt_sz = fdt_totalsize(fdt_orig) * 2;
342     fdt = g_malloc0(fdt_sz);
343 
344     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
345     if (err) {
346         fprintf(stderr, "unable to open FDT\n");
347         return NULL;
348     }
349 
350     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
351             ? machine->kernel_cmdline : " ";
352     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
353     if (err < 0) {
354         fprintf(stderr, "couldn't set /chosen/bootargs\n");
355         return NULL;
356     }
357 
358     ram_low_sz = MIN(256 * MiB, machine->ram_size);
359     ram_high_sz = machine->ram_size - ram_low_sz;
360     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
361                                  1, 0x00000000, 1, ram_low_sz,
362                                  1, 0x90000000, 1, ram_high_sz);
363 
364     fdt = g_realloc(fdt, fdt_totalsize(fdt));
365     qemu_fdt_dumpdtb(fdt, fdt_sz);
366 
367     s->fdt_base = *load_addr;
368 
369     return fdt;
370 }
371 
372 static const void *boston_kernel_filter(void *opaque, const void *kernel,
373                                         hwaddr *load_addr, hwaddr *entry_addr)
374 {
375     BostonState *s = BOSTON(opaque);
376 
377     s->kernel_entry = *entry_addr;
378 
379     return kernel;
380 }
381 
382 static const struct fit_loader_match boston_matches[] = {
383     { "img,boston" },
384     { NULL },
385 };
386 
387 static const struct fit_loader boston_fit_loader = {
388     .matches = boston_matches,
389     .addr_to_phys = cpu_mips_kseg0_to_phys,
390     .fdt_filter = boston_fdt_filter,
391     .kernel_filter = boston_kernel_filter,
392 };
393 
394 static inline XilinxPCIEHost *
395 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
396                  hwaddr cfg_base, uint64_t cfg_size,
397                  hwaddr mmio_base, uint64_t mmio_size,
398                  qemu_irq irq, bool link_up)
399 {
400     DeviceState *dev;
401     MemoryRegion *cfg, *mmio;
402 
403     dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
404 
405     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
406     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
407     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
408     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
409     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
410     qdev_prop_set_bit(dev, "link_up", link_up);
411 
412     qdev_init_nofail(dev);
413 
414     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
415     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
416 
417     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
418     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
419 
420     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
421 
422     return XILINX_PCIE_HOST(dev);
423 }
424 
425 static void boston_mach_init(MachineState *machine)
426 {
427     DeviceState *dev;
428     BostonState *s;
429     Error *err = NULL;
430     MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
431     MemoryRegion *sys_mem = get_system_memory();
432     XilinxPCIEHost *pcie2;
433     PCIDevice *ahci;
434     DriveInfo *hd[6];
435     Chardev *chr;
436     int fw_size, fit_err;
437     bool is_64b;
438 
439     if ((machine->ram_size % GiB) ||
440         (machine->ram_size > (2 * GiB))) {
441         error_report("Memory size must be 1GB or 2GB");
442         exit(1);
443     }
444 
445     dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
446     qdev_init_nofail(dev);
447 
448     s = BOSTON(dev);
449     s->mach = machine;
450 
451     if (!cpu_supports_cps_smp(machine->cpu_type)) {
452         error_report("Boston requires CPUs which support CPS");
453         exit(1);
454     }
455 
456     is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
457 
458     s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
459     qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
460 
461     object_property_set_str(OBJECT(s->cps), machine->cpu_type, "cpu-type",
462                             &err);
463     object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
464     object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
465 
466     if (err != NULL) {
467         error_report("%s", error_get_pretty(err));
468         exit(1);
469     }
470 
471     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
472 
473     flash =  g_new(MemoryRegion, 1);
474     memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
475     memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
476 
477     ddr = g_new(MemoryRegion, 1);
478     memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
479                                          machine->ram_size);
480     memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
481 
482     ddr_low_alias = g_new(MemoryRegion, 1);
483     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
484                              ddr, 0, MIN(machine->ram_size, (256 * MiB)));
485     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
486 
487     xilinx_pcie_init(sys_mem, 0,
488                      0x10000000, 32 * MiB,
489                      0x40000000, 1 * GiB,
490                      get_cps_irq(s->cps, 2), false);
491 
492     xilinx_pcie_init(sys_mem, 1,
493                      0x12000000, 32 * MiB,
494                      0x20000000, 512 * MiB,
495                      get_cps_irq(s->cps, 1), false);
496 
497     pcie2 = xilinx_pcie_init(sys_mem, 2,
498                              0x14000000, 32 * MiB,
499                              0x16000000, 1 * MiB,
500                              get_cps_irq(s->cps, 0), true);
501 
502     platreg = g_new(MemoryRegion, 1);
503     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
504                           "boston-platregs", 0x1000);
505     memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
506 
507     s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
508                              get_cps_irq(s->cps, 3), 10000000,
509                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
510 
511     lcd = g_new(MemoryRegion, 1);
512     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
513     memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
514 
515     chr = qemu_chr_new("lcd", "vc:320x240");
516     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
517     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
518                              boston_lcd_event, NULL, s, NULL, true);
519 
520     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
521                                            PCI_DEVFN(0, 0),
522                                            true, TYPE_ICH9_AHCI);
523     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
524     ide_drive_get(hd, ahci_get_num_ports(ahci));
525     ahci_ide_create_devs(ahci, hd);
526 
527     if (machine->firmware) {
528         fw_size = load_image_targphys(machine->firmware,
529                                       0x1fc00000, 4 * MiB);
530         if (fw_size == -1) {
531             error_printf("unable to load firmware image '%s'\n",
532                           machine->firmware);
533             exit(1);
534         }
535     } else if (machine->kernel_filename) {
536         fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
537         if (fit_err) {
538             error_printf("unable to load FIT image\n");
539             exit(1);
540         }
541 
542         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
543                      s->kernel_entry, s->fdt_base, is_64b);
544     } else if (!qtest_enabled()) {
545         error_printf("Please provide either a -kernel or -bios argument\n");
546         exit(1);
547     }
548 }
549 
550 static void boston_mach_class_init(MachineClass *mc)
551 {
552     mc->desc = "MIPS Boston";
553     mc->init = boston_mach_init;
554     mc->block_default_type = IF_IDE;
555     mc->default_ram_size = 1 * GiB;
556     mc->max_cpus = 16;
557     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
558 }
559 
560 DEFINE_MACHINE("boston", boston_mach_class_init)
561