1 /* 2 * MIPS Boston development board emulation. 3 * 4 * Copyright (c) 2016 Imagination Technologies 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 23 #include "elf.h" 24 #include "hw/boards.h" 25 #include "hw/char/serial.h" 26 #include "hw/ide/pci.h" 27 #include "hw/ide/ahci.h" 28 #include "hw/loader.h" 29 #include "hw/loader-fit.h" 30 #include "hw/mips/bootloader.h" 31 #include "hw/mips/cps.h" 32 #include "hw/pci-host/xilinx-pcie.h" 33 #include "hw/qdev-clock.h" 34 #include "hw/qdev-properties.h" 35 #include "qapi/error.h" 36 #include "qemu/error-report.h" 37 #include "qemu/log.h" 38 #include "chardev/char.h" 39 #include "sysemu/device_tree.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/qtest.h" 42 #include "sysemu/runstate.h" 43 44 #include <libfdt.h> 45 #include "qom/object.h" 46 47 #define TYPE_BOSTON "mips-boston" 48 typedef struct BostonState BostonState; 49 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON, 50 TYPE_BOSTON) 51 52 #define FDT_IRQ_TYPE_NONE 0 53 #define FDT_IRQ_TYPE_LEVEL_HIGH 4 54 #define FDT_GIC_SHARED 0 55 #define FDT_GIC_LOCAL 1 56 #define FDT_BOSTON_CLK_SYS 1 57 #define FDT_BOSTON_CLK_CPU 2 58 #define FDT_PCI_IRQ_MAP_PINS 4 59 #define FDT_PCI_IRQ_MAP_DESCS 6 60 61 struct BostonState { 62 SysBusDevice parent_obj; 63 64 MachineState *mach; 65 MIPSCPSState cps; 66 SerialMM *uart; 67 Clock *cpuclk; 68 69 CharBackend lcd_display; 70 char lcd_content[8]; 71 bool lcd_inited; 72 73 hwaddr kernel_entry; 74 hwaddr fdt_base; 75 }; 76 77 enum { 78 BOSTON_LOWDDR, 79 BOSTON_PCIE0, 80 BOSTON_PCIE1, 81 BOSTON_PCIE2, 82 BOSTON_PCIE2_MMIO, 83 BOSTON_CM, 84 BOSTON_GIC, 85 BOSTON_CDMM, 86 BOSTON_CPC, 87 BOSTON_PLATREG, 88 BOSTON_UART, 89 BOSTON_LCD, 90 BOSTON_FLASH, 91 BOSTON_PCIE1_MMIO, 92 BOSTON_PCIE0_MMIO, 93 BOSTON_HIGHDDR, 94 }; 95 96 static const MemMapEntry boston_memmap[] = { 97 [BOSTON_LOWDDR] = { 0x0, 0x10000000 }, 98 [BOSTON_PCIE0] = { 0x10000000, 0x2000000 }, 99 [BOSTON_PCIE1] = { 0x12000000, 0x2000000 }, 100 [BOSTON_PCIE2] = { 0x14000000, 0x2000000 }, 101 [BOSTON_PCIE2_MMIO] = { 0x16000000, 0x100000 }, 102 [BOSTON_CM] = { 0x16100000, 0x20000 }, 103 [BOSTON_GIC] = { 0x16120000, 0x20000 }, 104 [BOSTON_CDMM] = { 0x16140000, 0x8000 }, 105 [BOSTON_CPC] = { 0x16200000, 0x8000 }, 106 [BOSTON_PLATREG] = { 0x17ffd000, 0x1000 }, 107 [BOSTON_UART] = { 0x17ffe000, 0x20 }, 108 [BOSTON_LCD] = { 0x17fff000, 0x8 }, 109 [BOSTON_FLASH] = { 0x18000000, 0x8000000 }, 110 [BOSTON_PCIE1_MMIO] = { 0x20000000, 0x20000000 }, 111 [BOSTON_PCIE0_MMIO] = { 0x40000000, 0x40000000 }, 112 [BOSTON_HIGHDDR] = { 0x80000000, 0x0 }, 113 }; 114 115 enum boston_plat_reg { 116 PLAT_FPGA_BUILD = 0x00, 117 PLAT_CORE_CL = 0x04, 118 PLAT_WRAPPER_CL = 0x08, 119 PLAT_SYSCLK_STATUS = 0x0c, 120 PLAT_SOFTRST_CTL = 0x10, 121 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4) 122 PLAT_DDR3_STATUS = 0x14, 123 #define PLAT_DDR3_STATUS_LOCKED (1 << 0) 124 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2) 125 PLAT_PCIE_STATUS = 0x18, 126 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0) 127 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8) 128 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16) 129 PLAT_FLASH_CTL = 0x1c, 130 PLAT_SPARE0 = 0x20, 131 PLAT_SPARE1 = 0x24, 132 PLAT_SPARE2 = 0x28, 133 PLAT_SPARE3 = 0x2c, 134 PLAT_MMCM_DIV = 0x30, 135 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0 136 #define PLAT_MMCM_DIV_INPUT_SHIFT 8 137 #define PLAT_MMCM_DIV_MUL_SHIFT 16 138 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24 139 PLAT_BUILD_CFG = 0x34, 140 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0) 141 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1) 142 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2) 143 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3) 144 PLAT_DDR_CFG = 0x38, 145 #define PLAT_DDR_CFG_SIZE (0xf << 0) 146 #define PLAT_DDR_CFG_MHZ (0xfff << 4) 147 PLAT_NOC_PCIE0_ADDR = 0x3c, 148 PLAT_NOC_PCIE1_ADDR = 0x40, 149 PLAT_NOC_PCIE2_ADDR = 0x44, 150 PLAT_SYS_CTL = 0x48, 151 }; 152 153 static void boston_lcd_event(void *opaque, QEMUChrEvent event) 154 { 155 BostonState *s = opaque; 156 if (event == CHR_EVENT_OPENED && !s->lcd_inited) { 157 qemu_chr_fe_printf(&s->lcd_display, " "); 158 s->lcd_inited = true; 159 } 160 } 161 162 static uint64_t boston_lcd_read(void *opaque, hwaddr addr, 163 unsigned size) 164 { 165 BostonState *s = opaque; 166 uint64_t val = 0; 167 168 switch (size) { 169 case 8: 170 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56; 171 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48; 172 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40; 173 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32; 174 /* fall through */ 175 case 4: 176 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24; 177 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16; 178 /* fall through */ 179 case 2: 180 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8; 181 /* fall through */ 182 case 1: 183 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7]; 184 break; 185 } 186 187 return val; 188 } 189 190 static void boston_lcd_write(void *opaque, hwaddr addr, 191 uint64_t val, unsigned size) 192 { 193 BostonState *s = opaque; 194 195 switch (size) { 196 case 8: 197 s->lcd_content[(addr + 7) & 0x7] = val >> 56; 198 s->lcd_content[(addr + 6) & 0x7] = val >> 48; 199 s->lcd_content[(addr + 5) & 0x7] = val >> 40; 200 s->lcd_content[(addr + 4) & 0x7] = val >> 32; 201 /* fall through */ 202 case 4: 203 s->lcd_content[(addr + 3) & 0x7] = val >> 24; 204 s->lcd_content[(addr + 2) & 0x7] = val >> 16; 205 /* fall through */ 206 case 2: 207 s->lcd_content[(addr + 1) & 0x7] = val >> 8; 208 /* fall through */ 209 case 1: 210 s->lcd_content[(addr + 0) & 0x7] = val; 211 break; 212 } 213 214 qemu_chr_fe_printf(&s->lcd_display, 215 "\r%-8.8s", s->lcd_content); 216 } 217 218 static const MemoryRegionOps boston_lcd_ops = { 219 .read = boston_lcd_read, 220 .write = boston_lcd_write, 221 .endianness = DEVICE_NATIVE_ENDIAN, 222 }; 223 224 static uint64_t boston_platreg_read(void *opaque, hwaddr addr, 225 unsigned size) 226 { 227 BostonState *s = opaque; 228 uint32_t gic_freq, val; 229 230 if (size != 4) { 231 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size); 232 return 0; 233 } 234 235 switch (addr & 0xffff) { 236 case PLAT_FPGA_BUILD: 237 case PLAT_CORE_CL: 238 case PLAT_WRAPPER_CL: 239 return 0; 240 case PLAT_DDR3_STATUS: 241 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED; 242 case PLAT_MMCM_DIV: 243 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000; 244 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT; 245 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT; 246 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT; 247 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT; 248 return val; 249 case PLAT_BUILD_CFG: 250 val = PLAT_BUILD_CFG_PCIE0_EN; 251 val |= PLAT_BUILD_CFG_PCIE1_EN; 252 val |= PLAT_BUILD_CFG_PCIE2_EN; 253 return val; 254 case PLAT_DDR_CFG: 255 val = s->mach->ram_size / GiB; 256 assert(!(val & ~PLAT_DDR_CFG_SIZE)); 257 val |= PLAT_DDR_CFG_MHZ; 258 return val; 259 default: 260 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n", 261 addr & 0xffff); 262 return 0; 263 } 264 } 265 266 static void boston_platreg_write(void *opaque, hwaddr addr, 267 uint64_t val, unsigned size) 268 { 269 if (size != 4) { 270 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size); 271 return; 272 } 273 274 switch (addr & 0xffff) { 275 case PLAT_FPGA_BUILD: 276 case PLAT_CORE_CL: 277 case PLAT_WRAPPER_CL: 278 case PLAT_DDR3_STATUS: 279 case PLAT_PCIE_STATUS: 280 case PLAT_MMCM_DIV: 281 case PLAT_BUILD_CFG: 282 case PLAT_DDR_CFG: 283 /* read only */ 284 break; 285 case PLAT_SOFTRST_CTL: 286 if (val & PLAT_SOFTRST_CTL_SYSRESET) { 287 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 288 } 289 break; 290 default: 291 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx 292 " = 0x%" PRIx64 "\n", addr & 0xffff, val); 293 break; 294 } 295 } 296 297 static const MemoryRegionOps boston_platreg_ops = { 298 .read = boston_platreg_read, 299 .write = boston_platreg_write, 300 .endianness = DEVICE_NATIVE_ENDIAN, 301 }; 302 303 static void mips_boston_instance_init(Object *obj) 304 { 305 BostonState *s = BOSTON(obj); 306 307 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk"); 308 clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */ 309 } 310 311 static const TypeInfo boston_device = { 312 .name = TYPE_BOSTON, 313 .parent = TYPE_SYS_BUS_DEVICE, 314 .instance_size = sizeof(BostonState), 315 .instance_init = mips_boston_instance_init, 316 }; 317 318 static void boston_register_types(void) 319 { 320 type_register_static(&boston_device); 321 } 322 type_init(boston_register_types) 323 324 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr) 325 { 326 uint64_t regaddr; 327 328 /* Move CM GCRs */ 329 regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS), 330 bl_gen_write_ulong(&p, regaddr, 331 boston_memmap[BOSTON_CM].base); 332 333 /* Move & enable GIC GCRs */ 334 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base 335 + GCR_GIC_BASE_OFS), 336 bl_gen_write_ulong(&p, regaddr, 337 boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK); 338 339 /* Move & enable CPC GCRs */ 340 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base 341 + GCR_CPC_BASE_OFS), 342 bl_gen_write_ulong(&p, regaddr, 343 boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK); 344 345 /* 346 * Setup argument registers to follow the UHI boot protocol: 347 * 348 * a0/$4 = -2 349 * a1/$5 = virtual address of FDT 350 * a2/$6 = 0 351 * a3/$7 = 0 352 */ 353 bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry); 354 } 355 356 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig, 357 const void *match_data, hwaddr *load_addr) 358 { 359 BostonState *s = BOSTON(opaque); 360 MachineState *machine = s->mach; 361 const char *cmdline; 362 int err; 363 size_t ram_low_sz, ram_high_sz; 364 size_t fdt_sz = fdt_totalsize(fdt_orig) * 2; 365 g_autofree void *fdt = g_malloc0(fdt_sz); 366 367 err = fdt_open_into(fdt_orig, fdt, fdt_sz); 368 if (err) { 369 fprintf(stderr, "unable to open FDT\n"); 370 return NULL; 371 } 372 373 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0]) 374 ? machine->kernel_cmdline : " "; 375 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline); 376 if (err < 0) { 377 fprintf(stderr, "couldn't set /chosen/bootargs\n"); 378 return NULL; 379 } 380 381 ram_low_sz = MIN(256 * MiB, machine->ram_size); 382 ram_high_sz = machine->ram_size - ram_low_sz; 383 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg", 384 1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz, 385 1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz, 386 1, ram_high_sz); 387 388 fdt = g_realloc(fdt, fdt_totalsize(fdt)); 389 qemu_fdt_dumpdtb(fdt, fdt_sz); 390 391 s->fdt_base = *load_addr; 392 393 return g_steal_pointer(&fdt); 394 } 395 396 static const void *boston_kernel_filter(void *opaque, const void *kernel, 397 hwaddr *load_addr, hwaddr *entry_addr) 398 { 399 BostonState *s = BOSTON(opaque); 400 401 s->kernel_entry = *entry_addr; 402 403 return kernel; 404 } 405 406 static const struct fit_loader_match boston_matches[] = { 407 { "img,boston" }, 408 { NULL }, 409 }; 410 411 static const struct fit_loader boston_fit_loader = { 412 .matches = boston_matches, 413 .addr_to_phys = cpu_mips_kseg0_to_phys, 414 .fdt_filter = boston_fdt_filter, 415 .kernel_filter = boston_kernel_filter, 416 }; 417 418 static inline XilinxPCIEHost * 419 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr, 420 hwaddr cfg_base, uint64_t cfg_size, 421 hwaddr mmio_base, uint64_t mmio_size, 422 qemu_irq irq, bool link_up) 423 { 424 DeviceState *dev; 425 MemoryRegion *cfg, *mmio; 426 427 dev = qdev_new(TYPE_XILINX_PCIE_HOST); 428 429 qdev_prop_set_uint32(dev, "bus_nr", bus_nr); 430 qdev_prop_set_uint64(dev, "cfg_base", cfg_base); 431 qdev_prop_set_uint64(dev, "cfg_size", cfg_size); 432 qdev_prop_set_uint64(dev, "mmio_base", mmio_base); 433 qdev_prop_set_uint64(dev, "mmio_size", mmio_size); 434 qdev_prop_set_bit(dev, "link_up", link_up); 435 436 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 437 438 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); 439 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0); 440 441 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); 442 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0); 443 444 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq); 445 446 return XILINX_PCIE_HOST(dev); 447 } 448 449 450 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base, 451 hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size) 452 { 453 int i; 454 char *name, *intc_name; 455 uint32_t intc_ph; 456 uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS]; 457 458 intc_ph = qemu_fdt_alloc_phandle(fdt); 459 name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base); 460 qemu_fdt_add_subnode(fdt, name); 461 qemu_fdt_setprop_string(fdt, name, "compatible", 462 "xlnx,axi-pcie-host-1.00.a"); 463 qemu_fdt_setprop_string(fdt, name, "device_type", "pci"); 464 qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size); 465 466 qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3); 467 qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2); 468 qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1); 469 470 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph); 471 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq, 472 FDT_IRQ_TYPE_LEVEL_HIGH); 473 474 qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base, 475 mmio_base, 0, mmio_size); 476 qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff); 477 478 479 480 intc_name = g_strdup_printf("%s/interrupt-controller", name); 481 qemu_fdt_add_subnode(fdt, intc_name); 482 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0); 483 qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0); 484 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1); 485 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph); 486 487 qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7); 488 for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) { 489 uint32_t *irqmap = interrupt_map[i]; 490 491 irqmap[0] = cpu_to_be32(0); 492 irqmap[1] = cpu_to_be32(0); 493 irqmap[2] = cpu_to_be32(0); 494 irqmap[3] = cpu_to_be32(i + 1); 495 irqmap[4] = cpu_to_be32(intc_ph); 496 irqmap[5] = cpu_to_be32(i + 1); 497 } 498 qemu_fdt_setprop(fdt, name, "interrupt-map", 499 &interrupt_map, sizeof(interrupt_map)); 500 501 g_free(intc_name); 502 g_free(name); 503 } 504 505 static const void *create_fdt(BostonState *s, 506 const MemMapEntry *memmap, int *dt_size) 507 { 508 void *fdt; 509 int cpu; 510 MachineState *mc = s->mach; 511 uint32_t platreg_ph, gic_ph, clk_ph; 512 char *name, *gic_name, *platreg_name, *stdout_name; 513 static const char * const syscon_compat[2] = { 514 "img,boston-platform-regs", "syscon" 515 }; 516 517 fdt = create_device_tree(dt_size); 518 if (!fdt) { 519 error_report("create_device_tree() failed"); 520 exit(1); 521 } 522 523 platreg_ph = qemu_fdt_alloc_phandle(fdt); 524 gic_ph = qemu_fdt_alloc_phandle(fdt); 525 clk_ph = qemu_fdt_alloc_phandle(fdt); 526 527 qemu_fdt_setprop_string(fdt, "/", "model", "img,boston"); 528 qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston"); 529 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1); 530 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1); 531 532 533 qemu_fdt_add_subnode(fdt, "/cpus"); 534 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0); 535 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1); 536 537 for (cpu = 0; cpu < mc->smp.cpus; cpu++) { 538 name = g_strdup_printf("/cpus/cpu@%d", cpu); 539 qemu_fdt_add_subnode(fdt, name); 540 qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips"); 541 qemu_fdt_setprop_string(fdt, name, "status", "okay"); 542 qemu_fdt_setprop_cell(fdt, name, "reg", cpu); 543 qemu_fdt_setprop_string(fdt, name, "device_type", "cpu"); 544 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU); 545 g_free(name); 546 } 547 548 qemu_fdt_add_subnode(fdt, "/soc"); 549 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0); 550 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus"); 551 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1); 552 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1); 553 554 fdt_create_pcie(fdt, gic_ph, 2, 555 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size, 556 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size); 557 558 fdt_create_pcie(fdt, gic_ph, 1, 559 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size, 560 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size); 561 562 fdt_create_pcie(fdt, gic_ph, 0, 563 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size, 564 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size); 565 566 /* GIC with it's timer node */ 567 gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx, 568 memmap[BOSTON_GIC].base); 569 qemu_fdt_add_subnode(fdt, gic_name); 570 qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic"); 571 qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base, 572 memmap[BOSTON_GIC].size); 573 qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0); 574 qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3); 575 qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph); 576 577 name = g_strdup_printf("%s/timer", gic_name); 578 qemu_fdt_add_subnode(fdt, name); 579 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer"); 580 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1, 581 FDT_IRQ_TYPE_NONE); 582 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU); 583 g_free(name); 584 g_free(gic_name); 585 586 /* CDMM node */ 587 name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base); 588 qemu_fdt_add_subnode(fdt, name); 589 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm"); 590 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base, 591 memmap[BOSTON_CDMM].size); 592 g_free(name); 593 594 /* CPC node */ 595 name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base); 596 qemu_fdt_add_subnode(fdt, name); 597 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc"); 598 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base, 599 memmap[BOSTON_CPC].size); 600 g_free(name); 601 602 /* platreg and it's clk node */ 603 platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx, 604 memmap[BOSTON_PLATREG].base); 605 qemu_fdt_add_subnode(fdt, platreg_name); 606 qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible", 607 (char **)&syscon_compat, 608 ARRAY_SIZE(syscon_compat)); 609 qemu_fdt_setprop_cells(fdt, platreg_name, "reg", 610 memmap[BOSTON_PLATREG].base, 611 memmap[BOSTON_PLATREG].size); 612 qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph); 613 614 name = g_strdup_printf("%s/clock", platreg_name); 615 qemu_fdt_add_subnode(fdt, name); 616 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock"); 617 qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1); 618 qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph); 619 g_free(name); 620 g_free(platreg_name); 621 622 /* reboot node */ 623 name = g_strdup_printf("/soc/reboot"); 624 qemu_fdt_add_subnode(fdt, name); 625 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot"); 626 qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph); 627 qemu_fdt_setprop_cell(fdt, name, "offset", 0x10); 628 qemu_fdt_setprop_cell(fdt, name, "mask", 0x10); 629 g_free(name); 630 631 /* uart node */ 632 name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base); 633 qemu_fdt_add_subnode(fdt, name); 634 qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a"); 635 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base, 636 memmap[BOSTON_UART].size); 637 qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2); 638 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph); 639 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3, 640 FDT_IRQ_TYPE_LEVEL_HIGH); 641 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS); 642 643 qemu_fdt_add_subnode(fdt, "/chosen"); 644 stdout_name = g_strdup_printf("%s:115200", name); 645 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name); 646 g_free(stdout_name); 647 g_free(name); 648 649 /* lcd node */ 650 name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base); 651 qemu_fdt_add_subnode(fdt, name); 652 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd"); 653 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base, 654 memmap[BOSTON_LCD].size); 655 g_free(name); 656 657 name = g_strdup_printf("/memory@0"); 658 qemu_fdt_add_subnode(fdt, name); 659 qemu_fdt_setprop_string(fdt, name, "device_type", "memory"); 660 g_free(name); 661 662 return fdt; 663 } 664 665 static void boston_mach_init(MachineState *machine) 666 { 667 DeviceState *dev; 668 BostonState *s; 669 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg; 670 MemoryRegion *sys_mem = get_system_memory(); 671 XilinxPCIEHost *pcie2; 672 PCIDevice *ahci; 673 DriveInfo *hd[6]; 674 Chardev *chr; 675 int fw_size, fit_err; 676 677 if ((machine->ram_size % GiB) || 678 (machine->ram_size > (2 * GiB))) { 679 error_report("Memory size must be 1GB or 2GB"); 680 exit(1); 681 } 682 683 dev = qdev_new(TYPE_BOSTON); 684 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 685 686 s = BOSTON(dev); 687 s->mach = machine; 688 689 if (!cpu_type_supports_cps_smp(machine->cpu_type)) { 690 error_report("Boston requires CPUs which support CPS"); 691 exit(1); 692 } 693 694 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS); 695 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type, 696 &error_fatal); 697 object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus, 698 &error_fatal); 699 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", 700 qdev_get_clock_out(dev, "cpu-refclk")); 701 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal); 702 703 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); 704 705 flash = g_new(MemoryRegion, 1); 706 memory_region_init_rom(flash, NULL, "boston.flash", 707 boston_memmap[BOSTON_FLASH].size, &error_fatal); 708 memory_region_add_subregion_overlap(sys_mem, 709 boston_memmap[BOSTON_FLASH].base, 710 flash, 0); 711 712 memory_region_add_subregion_overlap(sys_mem, 713 boston_memmap[BOSTON_HIGHDDR].base, 714 machine->ram, 0); 715 716 ddr_low_alias = g_new(MemoryRegion, 1); 717 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr", 718 machine->ram, 0, 719 MIN(machine->ram_size, (256 * MiB))); 720 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0); 721 722 xilinx_pcie_init(sys_mem, 0, 723 boston_memmap[BOSTON_PCIE0].base, 724 boston_memmap[BOSTON_PCIE0].size, 725 boston_memmap[BOSTON_PCIE0_MMIO].base, 726 boston_memmap[BOSTON_PCIE0_MMIO].size, 727 get_cps_irq(&s->cps, 2), false); 728 729 xilinx_pcie_init(sys_mem, 1, 730 boston_memmap[BOSTON_PCIE1].base, 731 boston_memmap[BOSTON_PCIE1].size, 732 boston_memmap[BOSTON_PCIE1_MMIO].base, 733 boston_memmap[BOSTON_PCIE1_MMIO].size, 734 get_cps_irq(&s->cps, 1), false); 735 736 pcie2 = xilinx_pcie_init(sys_mem, 2, 737 boston_memmap[BOSTON_PCIE2].base, 738 boston_memmap[BOSTON_PCIE2].size, 739 boston_memmap[BOSTON_PCIE2_MMIO].base, 740 boston_memmap[BOSTON_PCIE2_MMIO].size, 741 get_cps_irq(&s->cps, 0), true); 742 743 platreg = g_new(MemoryRegion, 1); 744 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s, 745 "boston-platregs", 746 boston_memmap[BOSTON_PLATREG].size); 747 memory_region_add_subregion_overlap(sys_mem, 748 boston_memmap[BOSTON_PLATREG].base, platreg, 0); 749 750 s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2, 751 get_cps_irq(&s->cps, 3), 10000000, 752 serial_hd(0), DEVICE_NATIVE_ENDIAN); 753 754 lcd = g_new(MemoryRegion, 1); 755 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8); 756 memory_region_add_subregion_overlap(sys_mem, 757 boston_memmap[BOSTON_LCD].base, lcd, 0); 758 759 chr = qemu_chr_new("lcd", "vc:320x240", NULL); 760 qemu_chr_fe_init(&s->lcd_display, chr, NULL); 761 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL, 762 boston_lcd_event, NULL, s, NULL, true); 763 764 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus, 765 PCI_DEVFN(0, 0), 766 true, TYPE_ICH9_AHCI); 767 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci)); 768 ide_drive_get(hd, ahci_get_num_ports(ahci)); 769 ahci_ide_create_devs(ahci, hd); 770 771 if (machine->firmware) { 772 fw_size = load_image_targphys(machine->firmware, 773 0x1fc00000, 4 * MiB); 774 if (fw_size == -1) { 775 error_report("unable to load firmware image '%s'", 776 machine->firmware); 777 exit(1); 778 } 779 } else if (machine->kernel_filename) { 780 uint64_t kernel_entry, kernel_high; 781 ssize_t kernel_size; 782 783 kernel_size = load_elf(machine->kernel_filename, NULL, 784 cpu_mips_kseg0_to_phys, NULL, 785 &kernel_entry, NULL, &kernel_high, 786 NULL, 0, EM_MIPS, 1, 0); 787 788 if (kernel_size > 0) { 789 int dt_size; 790 g_autofree const void *dtb_file_data = NULL; 791 g_autofree const void *dtb_load_data = NULL; 792 hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB); 793 hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr); 794 795 s->kernel_entry = kernel_entry; 796 if (machine->dtb) { 797 dtb_file_data = load_device_tree(machine->dtb, &dt_size); 798 } else { 799 dtb_file_data = create_fdt(s, boston_memmap, &dt_size); 800 } 801 802 dtb_load_data = boston_fdt_filter(s, dtb_file_data, 803 NULL, &dtb_vaddr); 804 805 /* Calculate real fdt size after filter */ 806 dt_size = fdt_totalsize(dtb_load_data); 807 rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr); 808 } else { 809 /* Try to load file as FIT */ 810 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s); 811 if (fit_err) { 812 error_report("unable to load kernel image"); 813 exit(1); 814 } 815 } 816 817 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000, 818 s->kernel_entry, s->fdt_base); 819 } else if (!qtest_enabled()) { 820 error_report("Please provide either a -kernel or -bios argument"); 821 exit(1); 822 } 823 } 824 825 static void boston_mach_class_init(MachineClass *mc) 826 { 827 mc->desc = "MIPS Boston"; 828 mc->init = boston_mach_init; 829 mc->block_default_type = IF_IDE; 830 mc->default_ram_size = 1 * GiB; 831 mc->default_ram_id = "boston.ddr"; 832 mc->max_cpus = 16; 833 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400"); 834 } 835 836 DEFINE_MACHINE("boston", boston_mach_class_init) 837