xref: /openbmc/qemu/hw/mips/boston.c (revision 64552b6b)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "exec/address-spaces.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/hw.h"
27 #include "hw/ide/pci.h"
28 #include "hw/ide/ahci.h"
29 #include "hw/loader.h"
30 #include "hw/loader-fit.h"
31 #include "hw/mips/cps.h"
32 #include "hw/mips/cpudevs.h"
33 #include "hw/pci-host/xilinx-pcie.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/log.h"
37 #include "chardev/char.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/qtest.h"
41 
42 #include <libfdt.h>
43 
44 #define TYPE_MIPS_BOSTON "mips-boston"
45 #define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
46 
47 typedef struct {
48     SysBusDevice parent_obj;
49 
50     MachineState *mach;
51     MIPSCPSState cps;
52     SerialState *uart;
53 
54     CharBackend lcd_display;
55     char lcd_content[8];
56     bool lcd_inited;
57 
58     hwaddr kernel_entry;
59     hwaddr fdt_base;
60 } BostonState;
61 
62 enum boston_plat_reg {
63     PLAT_FPGA_BUILD     = 0x00,
64     PLAT_CORE_CL        = 0x04,
65     PLAT_WRAPPER_CL     = 0x08,
66     PLAT_SYSCLK_STATUS  = 0x0c,
67     PLAT_SOFTRST_CTL    = 0x10,
68 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
69     PLAT_DDR3_STATUS    = 0x14,
70 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
71 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
72     PLAT_PCIE_STATUS    = 0x18,
73 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
74 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
75 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
76     PLAT_FLASH_CTL      = 0x1c,
77     PLAT_SPARE0         = 0x20,
78     PLAT_SPARE1         = 0x24,
79     PLAT_SPARE2         = 0x28,
80     PLAT_SPARE3         = 0x2c,
81     PLAT_MMCM_DIV       = 0x30,
82 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
83 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
84 #define PLAT_MMCM_DIV_MUL_SHIFT         16
85 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
86     PLAT_BUILD_CFG      = 0x34,
87 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
88 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
89 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
90 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
91     PLAT_DDR_CFG        = 0x38,
92 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
93 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
94     PLAT_NOC_PCIE0_ADDR = 0x3c,
95     PLAT_NOC_PCIE1_ADDR = 0x40,
96     PLAT_NOC_PCIE2_ADDR = 0x44,
97     PLAT_SYS_CTL        = 0x48,
98 };
99 
100 static void boston_lcd_event(void *opaque, int event)
101 {
102     BostonState *s = opaque;
103     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
104         qemu_chr_fe_printf(&s->lcd_display, "        ");
105         s->lcd_inited = true;
106     }
107 }
108 
109 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
110                                 unsigned size)
111 {
112     BostonState *s = opaque;
113     uint64_t val = 0;
114 
115     switch (size) {
116     case 8:
117         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
118         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
119         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
120         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
121         /* fall through */
122     case 4:
123         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
124         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
125         /* fall through */
126     case 2:
127         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
128         /* fall through */
129     case 1:
130         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
131         break;
132     }
133 
134     return val;
135 }
136 
137 static void boston_lcd_write(void *opaque, hwaddr addr,
138                              uint64_t val, unsigned size)
139 {
140     BostonState *s = opaque;
141 
142     switch (size) {
143     case 8:
144         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
145         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
146         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
147         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
148         /* fall through */
149     case 4:
150         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
151         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
152         /* fall through */
153     case 2:
154         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
155         /* fall through */
156     case 1:
157         s->lcd_content[(addr + 0) & 0x7] = val;
158         break;
159     }
160 
161     qemu_chr_fe_printf(&s->lcd_display,
162                        "\r%-8.8s", s->lcd_content);
163 }
164 
165 static const MemoryRegionOps boston_lcd_ops = {
166     .read = boston_lcd_read,
167     .write = boston_lcd_write,
168     .endianness = DEVICE_NATIVE_ENDIAN,
169 };
170 
171 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
172                                     unsigned size)
173 {
174     BostonState *s = opaque;
175     uint32_t gic_freq, val;
176 
177     if (size != 4) {
178         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
179         return 0;
180     }
181 
182     switch (addr & 0xffff) {
183     case PLAT_FPGA_BUILD:
184     case PLAT_CORE_CL:
185     case PLAT_WRAPPER_CL:
186         return 0;
187     case PLAT_DDR3_STATUS:
188         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
189     case PLAT_MMCM_DIV:
190         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
191         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
192         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
193         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
194         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
195         return val;
196     case PLAT_BUILD_CFG:
197         val = PLAT_BUILD_CFG_PCIE0_EN;
198         val |= PLAT_BUILD_CFG_PCIE1_EN;
199         val |= PLAT_BUILD_CFG_PCIE2_EN;
200         return val;
201     case PLAT_DDR_CFG:
202         val = s->mach->ram_size / GiB;
203         assert(!(val & ~PLAT_DDR_CFG_SIZE));
204         val |= PLAT_DDR_CFG_MHZ;
205         return val;
206     default:
207         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
208                       addr & 0xffff);
209         return 0;
210     }
211 }
212 
213 static void boston_platreg_write(void *opaque, hwaddr addr,
214                                  uint64_t val, unsigned size)
215 {
216     if (size != 4) {
217         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
218         return;
219     }
220 
221     switch (addr & 0xffff) {
222     case PLAT_FPGA_BUILD:
223     case PLAT_CORE_CL:
224     case PLAT_WRAPPER_CL:
225     case PLAT_DDR3_STATUS:
226     case PLAT_PCIE_STATUS:
227     case PLAT_MMCM_DIV:
228     case PLAT_BUILD_CFG:
229     case PLAT_DDR_CFG:
230         /* read only */
231         break;
232     case PLAT_SOFTRST_CTL:
233         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
234             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
235         }
236         break;
237     default:
238         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
239                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
240         break;
241     }
242 }
243 
244 static const MemoryRegionOps boston_platreg_ops = {
245     .read = boston_platreg_read,
246     .write = boston_platreg_write,
247     .endianness = DEVICE_NATIVE_ENDIAN,
248 };
249 
250 static const TypeInfo boston_device = {
251     .name          = TYPE_MIPS_BOSTON,
252     .parent        = TYPE_SYS_BUS_DEVICE,
253     .instance_size = sizeof(BostonState),
254 };
255 
256 static void boston_register_types(void)
257 {
258     type_register_static(&boston_device);
259 }
260 type_init(boston_register_types)
261 
262 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
263                          bool is_64b)
264 {
265     const uint32_t cm_base = 0x16100000;
266     const uint32_t gic_base = 0x16120000;
267     const uint32_t cpc_base = 0x16200000;
268 
269     /* Move CM GCRs */
270     if (is_64b) {
271         stl_p(p++, 0x40287803);                 /* dmfc0 $8, CMGCRBase */
272         stl_p(p++, 0x00084138);                 /* dsll $8, $8, 4 */
273     } else {
274         stl_p(p++, 0x40087803);                 /* mfc0 $8, CMGCRBase */
275         stl_p(p++, 0x00084100);                 /* sll  $8, $8, 4 */
276     }
277     stl_p(p++, 0x3c09a000);                     /* lui  $9, 0xa000 */
278     stl_p(p++, 0x01094025);                     /* or   $8, $9 */
279     stl_p(p++, 0x3c0a0000 | (cm_base >> 16));   /* lui  $10, cm_base >> 16 */
280     if (is_64b) {
281         stl_p(p++, 0xfd0a0008);                 /* sd   $10, 0x8($8) */
282     } else {
283         stl_p(p++, 0xad0a0008);                 /* sw   $10, 0x8($8) */
284     }
285     stl_p(p++, 0x012a4025);                     /* or   $8, $10 */
286 
287     /* Move & enable GIC GCRs */
288     stl_p(p++, 0x3c090000 | (gic_base >> 16));  /* lui  $9, gic_base >> 16 */
289     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
290     if (is_64b) {
291         stl_p(p++, 0xfd090080);                 /* sd   $9, 0x80($8) */
292     } else {
293         stl_p(p++, 0xad090080);                 /* sw   $9, 0x80($8) */
294     }
295 
296     /* Move & enable CPC GCRs */
297     stl_p(p++, 0x3c090000 | (cpc_base >> 16));  /* lui  $9, cpc_base >> 16 */
298     stl_p(p++, 0x35290001);                     /* ori  $9, 0x1 */
299     if (is_64b) {
300         stl_p(p++, 0xfd090088);                 /* sd   $9, 0x88($8) */
301     } else {
302         stl_p(p++, 0xad090088);                 /* sw   $9, 0x88($8) */
303     }
304 
305     /*
306      * Setup argument registers to follow the UHI boot protocol:
307      *
308      * a0/$4 = -2
309      * a1/$5 = virtual address of FDT
310      * a2/$6 = 0
311      * a3/$7 = 0
312      */
313     stl_p(p++, 0x2404fffe);                     /* li   $4, -2 */
314                                                 /* lui  $5, hi(fdt_addr) */
315     stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
316     if (fdt_addr & 0xffff) {                    /* ori  $5, lo(fdt_addr) */
317         stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
318     }
319     stl_p(p++, 0x34060000);                     /* li   $6, 0 */
320     stl_p(p++, 0x34070000);                     /* li   $7, 0 */
321 
322     /* Load kernel entry address & jump to it */
323                                                 /* lui  $25, hi(kernel_entry) */
324     stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
325                                                 /* ori  $25, lo(kernel_entry) */
326     stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
327     stl_p(p++, 0x03200009);                     /* jr   $25 */
328 }
329 
330 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
331                                      const void *match_data, hwaddr *load_addr)
332 {
333     BostonState *s = BOSTON(opaque);
334     MachineState *machine = s->mach;
335     const char *cmdline;
336     int err;
337     void *fdt;
338     size_t fdt_sz, ram_low_sz, ram_high_sz;
339 
340     fdt_sz = fdt_totalsize(fdt_orig) * 2;
341     fdt = g_malloc0(fdt_sz);
342 
343     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
344     if (err) {
345         fprintf(stderr, "unable to open FDT\n");
346         return NULL;
347     }
348 
349     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
350             ? machine->kernel_cmdline : " ";
351     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
352     if (err < 0) {
353         fprintf(stderr, "couldn't set /chosen/bootargs\n");
354         return NULL;
355     }
356 
357     ram_low_sz = MIN(256 * MiB, machine->ram_size);
358     ram_high_sz = machine->ram_size - ram_low_sz;
359     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
360                                  1, 0x00000000, 1, ram_low_sz,
361                                  1, 0x90000000, 1, ram_high_sz);
362 
363     fdt = g_realloc(fdt, fdt_totalsize(fdt));
364     qemu_fdt_dumpdtb(fdt, fdt_sz);
365 
366     s->fdt_base = *load_addr;
367 
368     return fdt;
369 }
370 
371 static const void *boston_kernel_filter(void *opaque, const void *kernel,
372                                         hwaddr *load_addr, hwaddr *entry_addr)
373 {
374     BostonState *s = BOSTON(opaque);
375 
376     s->kernel_entry = *entry_addr;
377 
378     return kernel;
379 }
380 
381 static const struct fit_loader_match boston_matches[] = {
382     { "img,boston" },
383     { NULL },
384 };
385 
386 static const struct fit_loader boston_fit_loader = {
387     .matches = boston_matches,
388     .addr_to_phys = cpu_mips_kseg0_to_phys,
389     .fdt_filter = boston_fdt_filter,
390     .kernel_filter = boston_kernel_filter,
391 };
392 
393 static inline XilinxPCIEHost *
394 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
395                  hwaddr cfg_base, uint64_t cfg_size,
396                  hwaddr mmio_base, uint64_t mmio_size,
397                  qemu_irq irq, bool link_up)
398 {
399     DeviceState *dev;
400     MemoryRegion *cfg, *mmio;
401 
402     dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
403 
404     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
405     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
406     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
407     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
408     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
409     qdev_prop_set_bit(dev, "link_up", link_up);
410 
411     qdev_init_nofail(dev);
412 
413     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
414     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
415 
416     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
417     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
418 
419     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
420 
421     return XILINX_PCIE_HOST(dev);
422 }
423 
424 static void boston_mach_init(MachineState *machine)
425 {
426     DeviceState *dev;
427     BostonState *s;
428     Error *err = NULL;
429     MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
430     MemoryRegion *sys_mem = get_system_memory();
431     XilinxPCIEHost *pcie2;
432     PCIDevice *ahci;
433     DriveInfo *hd[6];
434     Chardev *chr;
435     int fw_size, fit_err;
436     bool is_64b;
437 
438     if ((machine->ram_size % GiB) ||
439         (machine->ram_size > (2 * GiB))) {
440         error_report("Memory size must be 1GB or 2GB");
441         exit(1);
442     }
443 
444     dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
445     qdev_init_nofail(dev);
446 
447     s = BOSTON(dev);
448     s->mach = machine;
449 
450     if (!cpu_supports_cps_smp(machine->cpu_type)) {
451         error_report("Boston requires CPUs which support CPS");
452         exit(1);
453     }
454 
455     is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
456 
457     sysbus_init_child_obj(OBJECT(machine), "cps", OBJECT(&s->cps),
458                           sizeof(s->cps), TYPE_MIPS_CPS);
459     object_property_set_str(OBJECT(&s->cps), machine->cpu_type, "cpu-type",
460                             &err);
461     object_property_set_int(OBJECT(&s->cps), machine->smp.cpus, "num-vp", &err);
462     object_property_set_bool(OBJECT(&s->cps), true, "realized", &err);
463 
464     if (err != NULL) {
465         error_report("%s", error_get_pretty(err));
466         exit(1);
467     }
468 
469     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
470 
471     flash =  g_new(MemoryRegion, 1);
472     memory_region_init_rom(flash, NULL, "boston.flash", 128 * MiB, &err);
473     memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
474 
475     ddr = g_new(MemoryRegion, 1);
476     memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
477                                          machine->ram_size);
478     memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
479 
480     ddr_low_alias = g_new(MemoryRegion, 1);
481     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
482                              ddr, 0, MIN(machine->ram_size, (256 * MiB)));
483     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
484 
485     xilinx_pcie_init(sys_mem, 0,
486                      0x10000000, 32 * MiB,
487                      0x40000000, 1 * GiB,
488                      get_cps_irq(&s->cps, 2), false);
489 
490     xilinx_pcie_init(sys_mem, 1,
491                      0x12000000, 32 * MiB,
492                      0x20000000, 512 * MiB,
493                      get_cps_irq(&s->cps, 1), false);
494 
495     pcie2 = xilinx_pcie_init(sys_mem, 2,
496                              0x14000000, 32 * MiB,
497                              0x16000000, 1 * MiB,
498                              get_cps_irq(&s->cps, 0), true);
499 
500     platreg = g_new(MemoryRegion, 1);
501     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
502                           "boston-platregs", 0x1000);
503     memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
504 
505     s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
506                              get_cps_irq(&s->cps, 3), 10000000,
507                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
508 
509     lcd = g_new(MemoryRegion, 1);
510     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
511     memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
512 
513     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
514     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
515     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
516                              boston_lcd_event, NULL, s, NULL, true);
517 
518     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
519                                            PCI_DEVFN(0, 0),
520                                            true, TYPE_ICH9_AHCI);
521     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
522     ide_drive_get(hd, ahci_get_num_ports(ahci));
523     ahci_ide_create_devs(ahci, hd);
524 
525     if (machine->firmware) {
526         fw_size = load_image_targphys(machine->firmware,
527                                       0x1fc00000, 4 * MiB);
528         if (fw_size == -1) {
529             error_report("unable to load firmware image '%s'",
530                           machine->firmware);
531             exit(1);
532         }
533     } else if (machine->kernel_filename) {
534         fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
535         if (fit_err) {
536             error_report("unable to load FIT image");
537             exit(1);
538         }
539 
540         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
541                      s->kernel_entry, s->fdt_base, is_64b);
542     } else if (!qtest_enabled()) {
543         error_report("Please provide either a -kernel or -bios argument");
544         exit(1);
545     }
546 }
547 
548 static void boston_mach_class_init(MachineClass *mc)
549 {
550     mc->desc = "MIPS Boston";
551     mc->init = boston_mach_init;
552     mc->block_default_type = IF_IDE;
553     mc->default_ram_size = 1 * GiB;
554     mc->max_cpus = 16;
555     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
556 }
557 
558 DEFINE_MACHINE("boston", boston_mach_class_init)
559