xref: /openbmc/qemu/hw/mem/sparse-mem.c (revision 36ebc7db)
1 /*
2  * A sparse memory device. Useful for fuzzing
3  *
4  * Copyright Red Hat Inc., 2021
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include "hw/qdev-properties.h"
16 #include "hw/sysbus.h"
17 #include "qapi/error.h"
18 #include "qemu/units.h"
19 #include "sysemu/qtest.h"
20 #include "hw/mem/sparse-mem.h"
21 
22 #define SPARSE_MEM(obj) OBJECT_CHECK(SparseMemState, (obj), TYPE_SPARSE_MEM)
23 #define SPARSE_BLOCK_SIZE 0x1000
24 
25 typedef struct SparseMemState {
26     SysBusDevice parent_obj;
27     MemoryRegion mmio;
28     uint64_t baseaddr;
29     uint64_t length;
30     uint64_t size_used;
31     uint64_t maxsize;
32     GHashTable *mapped;
33 } SparseMemState;
34 
35 typedef struct sparse_mem_block {
36     uint8_t data[SPARSE_BLOCK_SIZE];
37 } sparse_mem_block;
38 
39 static uint64_t sparse_mem_read(void *opaque, hwaddr addr, unsigned int size)
40 {
41     SparseMemState *s = opaque;
42     uint64_t ret = 0;
43     size_t pfn = addr / SPARSE_BLOCK_SIZE;
44     size_t offset = addr % SPARSE_BLOCK_SIZE;
45     sparse_mem_block *block;
46 
47     block = g_hash_table_lookup(s->mapped, (void *)pfn);
48     if (block) {
49         assert(offset + size <= sizeof(block->data));
50         memcpy(&ret, block->data + offset, size);
51     }
52     return ret;
53 }
54 
55 static void sparse_mem_write(void *opaque, hwaddr addr, uint64_t v,
56                              unsigned int size)
57 {
58     SparseMemState *s = opaque;
59     size_t pfn = addr / SPARSE_BLOCK_SIZE;
60     size_t offset = addr % SPARSE_BLOCK_SIZE;
61     sparse_mem_block *block;
62 
63     if (!g_hash_table_lookup(s->mapped, (void *)pfn) &&
64         s->size_used + SPARSE_BLOCK_SIZE < s->maxsize && v) {
65         g_hash_table_insert(s->mapped, (void *)pfn,
66                             g_new0(sparse_mem_block, 1));
67         s->size_used += sizeof(block->data);
68     }
69     block = g_hash_table_lookup(s->mapped, (void *)pfn);
70     if (!block) {
71         return;
72     }
73 
74     assert(offset + size <= sizeof(block->data));
75 
76     memcpy(block->data + offset, &v, size);
77 
78 }
79 
80 static void sparse_mem_enter_reset(Object *obj, ResetType type)
81 {
82     SparseMemState *s = SPARSE_MEM(obj);
83     g_hash_table_remove_all(s->mapped);
84     return;
85 }
86 
87 static const MemoryRegionOps sparse_mem_ops = {
88     .read = sparse_mem_read,
89     .write = sparse_mem_write,
90     .endianness = DEVICE_LITTLE_ENDIAN,
91     .valid = {
92             .min_access_size = 1,
93             .max_access_size = 8,
94             .unaligned = false,
95         },
96 };
97 
98 static Property sparse_mem_properties[] = {
99     /* The base address of the memory */
100     DEFINE_PROP_UINT64("baseaddr", SparseMemState, baseaddr, 0x0),
101     /* The length of the sparse memory region */
102     DEFINE_PROP_UINT64("length", SparseMemState, length, UINT64_MAX),
103     /* Max amount of actual memory that can be used to back the sparse memory */
104     DEFINE_PROP_UINT64("maxsize", SparseMemState, maxsize, 10 * MiB),
105     DEFINE_PROP_END_OF_LIST(),
106 };
107 
108 MemoryRegion *sparse_mem_init(uint64_t addr, uint64_t length)
109 {
110     DeviceState *dev;
111 
112     dev = qdev_new(TYPE_SPARSE_MEM);
113     qdev_prop_set_uint64(dev, "baseaddr", addr);
114     qdev_prop_set_uint64(dev, "length", length);
115     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
116     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(dev), 0, addr, -10000);
117     return &SPARSE_MEM(dev)->mmio;
118 }
119 
120 static void sparse_mem_realize(DeviceState *dev, Error **errp)
121 {
122     SparseMemState *s = SPARSE_MEM(dev);
123     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
124 
125     if (!qtest_enabled()) {
126         error_setg(errp, "sparse_mem device should only be used "
127                          "for testing with QTest");
128         return;
129     }
130 
131     assert(s->baseaddr + s->length > s->baseaddr);
132 
133     s->mapped = g_hash_table_new_full(NULL, NULL, NULL,
134                                       (GDestroyNotify)g_free);
135     memory_region_init_io(&s->mmio, OBJECT(s), &sparse_mem_ops, s,
136                           "sparse-mem", s->length);
137     sysbus_init_mmio(sbd, &s->mmio);
138 }
139 
140 static void sparse_mem_class_init(ObjectClass *klass, void *data)
141 {
142     ResettableClass *rc = RESETTABLE_CLASS(klass);
143     DeviceClass *dc = DEVICE_CLASS(klass);
144 
145     device_class_set_props(dc, sparse_mem_properties);
146 
147     dc->desc = "Sparse Memory Device";
148     dc->realize = sparse_mem_realize;
149 
150     rc->phases.enter = sparse_mem_enter_reset;
151 }
152 
153 static const TypeInfo sparse_mem_types[] = {
154     {
155         .name = TYPE_SPARSE_MEM,
156         .parent = TYPE_SYS_BUS_DEVICE,
157         .instance_size = sizeof(SparseMemState),
158         .class_init = sparse_mem_class_init,
159     },
160 };
161 DEFINE_TYPES(sparse_mem_types);
162