1 /* 2 * A sparse memory device. Useful for fuzzing 3 * 4 * Copyright Red Hat Inc., 2021 5 * 6 * Authors: 7 * Alexander Bulekov <alxndr@bu.edu> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 15 #include "hw/qdev-properties.h" 16 #include "hw/sysbus.h" 17 #include "qapi/error.h" 18 #include "qemu/units.h" 19 #include "sysemu/qtest.h" 20 #include "hw/mem/sparse-mem.h" 21 22 #define SPARSE_MEM(obj) OBJECT_CHECK(SparseMemState, (obj), TYPE_SPARSE_MEM) 23 #define SPARSE_BLOCK_SIZE 0x1000 24 25 typedef struct SparseMemState { 26 SysBusDevice parent_obj; 27 MemoryRegion mmio; 28 uint64_t baseaddr; 29 uint64_t length; 30 uint64_t size_used; 31 uint64_t maxsize; 32 GHashTable *mapped; 33 } SparseMemState; 34 35 typedef struct sparse_mem_block { 36 uint8_t data[SPARSE_BLOCK_SIZE]; 37 } sparse_mem_block; 38 39 static uint64_t sparse_mem_read(void *opaque, hwaddr addr, unsigned int size) 40 { 41 SparseMemState *s = opaque; 42 uint64_t ret = 0; 43 size_t pfn = addr / SPARSE_BLOCK_SIZE; 44 size_t offset = addr % SPARSE_BLOCK_SIZE; 45 sparse_mem_block *block; 46 47 block = g_hash_table_lookup(s->mapped, (void *)pfn); 48 if (block) { 49 assert(offset + size <= sizeof(block->data)); 50 memcpy(&ret, block->data + offset, size); 51 } 52 return ret; 53 } 54 55 static void sparse_mem_write(void *opaque, hwaddr addr, uint64_t v, 56 unsigned int size) 57 { 58 SparseMemState *s = opaque; 59 size_t pfn = addr / SPARSE_BLOCK_SIZE; 60 size_t offset = addr % SPARSE_BLOCK_SIZE; 61 sparse_mem_block *block; 62 63 if (!g_hash_table_lookup(s->mapped, (void *)pfn) && 64 s->size_used + SPARSE_BLOCK_SIZE < s->maxsize && v) { 65 g_hash_table_insert(s->mapped, (void *)pfn, 66 g_new0(sparse_mem_block, 1)); 67 s->size_used += sizeof(block->data); 68 } 69 block = g_hash_table_lookup(s->mapped, (void *)pfn); 70 if (!block) { 71 return; 72 } 73 74 assert(offset + size <= sizeof(block->data)); 75 76 memcpy(block->data + offset, &v, size); 77 78 } 79 80 static void sparse_mem_enter_reset(Object *obj, ResetType type) 81 { 82 SparseMemState *s = SPARSE_MEM(obj); 83 g_hash_table_remove_all(s->mapped); 84 return; 85 } 86 87 static const MemoryRegionOps sparse_mem_ops = { 88 .read = sparse_mem_read, 89 .write = sparse_mem_write, 90 .endianness = DEVICE_LITTLE_ENDIAN, 91 .valid = { 92 .min_access_size = 1, 93 .max_access_size = 8, 94 .unaligned = false, 95 }, 96 }; 97 98 static Property sparse_mem_properties[] = { 99 /* The base address of the memory */ 100 DEFINE_PROP_UINT64("baseaddr", SparseMemState, baseaddr, 0x0), 101 /* The length of the sparse memory region */ 102 DEFINE_PROP_UINT64("length", SparseMemState, length, UINT64_MAX), 103 /* Max amount of actual memory that can be used to back the sparse memory */ 104 DEFINE_PROP_UINT64("maxsize", SparseMemState, maxsize, 10 * MiB), 105 DEFINE_PROP_END_OF_LIST(), 106 }; 107 108 MemoryRegion *sparse_mem_init(uint64_t addr, uint64_t length) 109 { 110 DeviceState *dev; 111 112 dev = qdev_new(TYPE_SPARSE_MEM); 113 qdev_prop_set_uint64(dev, "baseaddr", addr); 114 qdev_prop_set_uint64(dev, "length", length); 115 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 116 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(dev), 0, addr, -10000); 117 return &SPARSE_MEM(dev)->mmio; 118 } 119 120 static void sparse_mem_realize(DeviceState *dev, Error **errp) 121 { 122 SparseMemState *s = SPARSE_MEM(dev); 123 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 124 125 if (!qtest_enabled()) { 126 error_setg(errp, "sparse_mem device should only be used " 127 "for testing with QTest"); 128 return; 129 } 130 131 assert(s->baseaddr + s->length > s->baseaddr); 132 133 s->mapped = g_hash_table_new_full(NULL, NULL, NULL, 134 (GDestroyNotify)g_free); 135 memory_region_init_io(&s->mmio, OBJECT(s), &sparse_mem_ops, s, 136 "sparse-mem", s->length); 137 sysbus_init_mmio(sbd, &s->mmio); 138 } 139 140 static void sparse_mem_class_init(ObjectClass *klass, void *data) 141 { 142 ResettableClass *rc = RESETTABLE_CLASS(klass); 143 DeviceClass *dc = DEVICE_CLASS(klass); 144 145 device_class_set_props(dc, sparse_mem_properties); 146 147 dc->desc = "Sparse Memory Device"; 148 dc->realize = sparse_mem_realize; 149 150 rc->phases.enter = sparse_mem_enter_reset; 151 } 152 153 static const TypeInfo sparse_mem_types[] = { 154 { 155 .name = TYPE_SPARSE_MEM, 156 .parent = TYPE_SYS_BUS_DEVICE, 157 .instance_size = sizeof(SparseMemState), 158 .class_init = sparse_mem_class_init, 159 }, 160 }; 161 DEFINE_TYPES(sparse_mem_types); 162