1 /* 2 * Memory Device Interface 3 * 4 * Copyright ProfitBricks GmbH 2012 5 * Copyright (C) 2014 Red Hat Inc 6 * Copyright (c) 2018 Red Hat Inc 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2 or later. 9 * See the COPYING file in the top-level directory. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "hw/mem/memory-device.h" 14 #include "qapi/error.h" 15 #include "hw/boards.h" 16 #include "qemu/range.h" 17 #include "hw/virtio/vhost.h" 18 #include "sysemu/kvm.h" 19 #include "trace.h" 20 21 static gint memory_device_addr_sort(gconstpointer a, gconstpointer b) 22 { 23 const MemoryDeviceState *md_a = MEMORY_DEVICE(a); 24 const MemoryDeviceState *md_b = MEMORY_DEVICE(b); 25 const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a); 26 const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b); 27 const uint64_t addr_a = mdc_a->get_addr(md_a); 28 const uint64_t addr_b = mdc_b->get_addr(md_b); 29 30 if (addr_a > addr_b) { 31 return 1; 32 } else if (addr_a < addr_b) { 33 return -1; 34 } 35 return 0; 36 } 37 38 static int memory_device_build_list(Object *obj, void *opaque) 39 { 40 GSList **list = opaque; 41 42 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { 43 DeviceState *dev = DEVICE(obj); 44 if (dev->realized) { /* only realized memory devices matter */ 45 *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort); 46 } 47 } 48 49 object_child_foreach(obj, memory_device_build_list, opaque); 50 return 0; 51 } 52 53 static int memory_device_used_region_size(Object *obj, void *opaque) 54 { 55 uint64_t *size = opaque; 56 57 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { 58 const DeviceState *dev = DEVICE(obj); 59 const MemoryDeviceState *md = MEMORY_DEVICE(obj); 60 61 if (dev->realized) { 62 *size += memory_device_get_region_size(md, &error_abort); 63 } 64 } 65 66 object_child_foreach(obj, memory_device_used_region_size, opaque); 67 return 0; 68 } 69 70 static void memory_device_check_addable(MachineState *ms, uint64_t size, 71 Error **errp) 72 { 73 uint64_t used_region_size = 0; 74 75 /* we will need a new memory slot for kvm and vhost */ 76 if (kvm_enabled() && !kvm_has_free_slot(ms)) { 77 error_setg(errp, "hypervisor has no free memory slots left"); 78 return; 79 } 80 if (!vhost_has_free_slot()) { 81 error_setg(errp, "a used vhost backend has no free memory slots left"); 82 return; 83 } 84 85 /* will we exceed the total amount of memory specified */ 86 memory_device_used_region_size(OBJECT(ms), &used_region_size); 87 if (used_region_size + size < used_region_size || 88 used_region_size + size > ms->maxram_size - ms->ram_size) { 89 error_setg(errp, "not enough space, currently 0x%" PRIx64 90 " in use of total space for memory devices 0x" RAM_ADDR_FMT, 91 used_region_size, ms->maxram_size - ms->ram_size); 92 return; 93 } 94 95 } 96 97 static uint64_t memory_device_get_free_addr(MachineState *ms, 98 const uint64_t *hint, 99 uint64_t align, uint64_t size, 100 Error **errp) 101 { 102 GSList *list = NULL, *item; 103 Range as, new = range_empty; 104 105 if (!ms->device_memory) { 106 error_setg(errp, "memory devices (e.g. for memory hotplug) are not " 107 "supported by the machine"); 108 return 0; 109 } 110 111 if (!memory_region_size(&ms->device_memory->mr)) { 112 error_setg(errp, "memory devices (e.g. for memory hotplug) are not " 113 "enabled, please specify the maxmem option"); 114 return 0; 115 } 116 range_init_nofail(&as, ms->device_memory->base, 117 memory_region_size(&ms->device_memory->mr)); 118 119 /* start of address space indicates the maximum alignment we expect */ 120 if (!QEMU_IS_ALIGNED(range_lob(&as), align)) { 121 error_setg(errp, "the alignment (0x%" PRIx64 ") is not supported", 122 align); 123 return 0; 124 } 125 126 memory_device_check_addable(ms, size, errp); 127 if (*errp) { 128 return 0; 129 } 130 131 if (hint && !QEMU_IS_ALIGNED(*hint, align)) { 132 error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes", 133 align); 134 return 0; 135 } 136 137 if (!QEMU_IS_ALIGNED(size, align)) { 138 error_setg(errp, "backend memory size must be multiple of 0x%" 139 PRIx64, align); 140 return 0; 141 } 142 143 if (hint) { 144 if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) { 145 error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64 146 "], usable range for memory devices [0x%" PRIx64 ":0x%" 147 PRIx64 "]", *hint, size, range_lob(&as), 148 range_size(&as)); 149 return 0; 150 } 151 } else { 152 if (range_init(&new, range_lob(&as), size)) { 153 error_setg(errp, "can't add memory device, device too big"); 154 return 0; 155 } 156 } 157 158 /* find address range that will fit new memory device */ 159 object_child_foreach(OBJECT(ms), memory_device_build_list, &list); 160 for (item = list; item; item = g_slist_next(item)) { 161 const MemoryDeviceState *md = item->data; 162 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md)); 163 uint64_t next_addr; 164 Range tmp; 165 166 range_init_nofail(&tmp, mdc->get_addr(md), 167 memory_device_get_region_size(md, &error_abort)); 168 169 if (range_overlaps_range(&tmp, &new)) { 170 if (hint) { 171 const DeviceState *d = DEVICE(md); 172 error_setg(errp, "address range conflicts with memory device" 173 " id='%s'", d->id ? d->id : "(unnamed)"); 174 goto out; 175 } 176 177 next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align); 178 if (!next_addr || range_init(&new, next_addr, range_size(&new))) { 179 range_make_empty(&new); 180 break; 181 } 182 } else if (range_lob(&tmp) > range_upb(&new)) { 183 break; 184 } 185 } 186 187 if (!range_contains_range(&as, &new)) { 188 error_setg(errp, "could not find position in guest address space for " 189 "memory device - memory fragmented due to alignments"); 190 } 191 out: 192 g_slist_free(list); 193 return range_lob(&new); 194 } 195 196 MemoryDeviceInfoList *qmp_memory_device_list(void) 197 { 198 GSList *devices = NULL, *item; 199 MemoryDeviceInfoList *list = NULL, *prev = NULL; 200 201 object_child_foreach(qdev_get_machine(), memory_device_build_list, 202 &devices); 203 204 for (item = devices; item; item = g_slist_next(item)) { 205 const MemoryDeviceState *md = MEMORY_DEVICE(item->data); 206 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data); 207 MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1); 208 MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1); 209 210 mdc->fill_device_info(md, info); 211 212 elem->value = info; 213 elem->next = NULL; 214 if (prev) { 215 prev->next = elem; 216 } else { 217 list = elem; 218 } 219 prev = elem; 220 } 221 222 g_slist_free(devices); 223 224 return list; 225 } 226 227 static int memory_device_plugged_size(Object *obj, void *opaque) 228 { 229 uint64_t *size = opaque; 230 231 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { 232 const DeviceState *dev = DEVICE(obj); 233 const MemoryDeviceState *md = MEMORY_DEVICE(obj); 234 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj); 235 236 if (dev->realized) { 237 *size += mdc->get_plugged_size(md, &error_abort); 238 } 239 } 240 241 object_child_foreach(obj, memory_device_plugged_size, opaque); 242 return 0; 243 } 244 245 uint64_t get_plugged_memory_size(void) 246 { 247 uint64_t size = 0; 248 249 memory_device_plugged_size(qdev_get_machine(), &size); 250 251 return size; 252 } 253 254 void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms, 255 const uint64_t *legacy_align, Error **errp) 256 { 257 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); 258 Error *local_err = NULL; 259 uint64_t addr, align; 260 MemoryRegion *mr; 261 262 mr = mdc->get_memory_region(md, &local_err); 263 if (local_err) { 264 goto out; 265 } 266 267 align = legacy_align ? *legacy_align : memory_region_get_alignment(mr); 268 addr = mdc->get_addr(md); 269 addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align, 270 memory_region_size(mr), &local_err); 271 if (local_err) { 272 goto out; 273 } 274 mdc->set_addr(md, addr, &local_err); 275 if (!local_err) { 276 trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "", 277 addr); 278 } 279 out: 280 error_propagate(errp, local_err); 281 } 282 283 void memory_device_plug(MemoryDeviceState *md, MachineState *ms) 284 { 285 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); 286 const uint64_t addr = mdc->get_addr(md); 287 MemoryRegion *mr; 288 289 /* 290 * We expect that a previous call to memory_device_pre_plug() succeeded, so 291 * it can't fail at this point. 292 */ 293 mr = mdc->get_memory_region(md, &error_abort); 294 g_assert(ms->device_memory); 295 296 memory_region_add_subregion(&ms->device_memory->mr, 297 addr - ms->device_memory->base, mr); 298 trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); 299 } 300 301 void memory_device_unplug(MemoryDeviceState *md, MachineState *ms) 302 { 303 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); 304 MemoryRegion *mr; 305 306 /* 307 * We expect that a previous call to memory_device_pre_plug() succeeded, so 308 * it can't fail at this point. 309 */ 310 mr = mdc->get_memory_region(md, &error_abort); 311 g_assert(ms->device_memory); 312 313 memory_region_del_subregion(&ms->device_memory->mr, mr); 314 trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "", 315 mdc->get_addr(md)); 316 } 317 318 uint64_t memory_device_get_region_size(const MemoryDeviceState *md, 319 Error **errp) 320 { 321 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); 322 MemoryRegion *mr; 323 324 /* dropping const here is fine as we don't touch the memory region */ 325 mr = mdc->get_memory_region((MemoryDeviceState *)md, errp); 326 if (!mr) { 327 return 0; 328 } 329 330 return memory_region_size(mr); 331 } 332 333 static const TypeInfo memory_device_info = { 334 .name = TYPE_MEMORY_DEVICE, 335 .parent = TYPE_INTERFACE, 336 .class_size = sizeof(MemoryDeviceClass), 337 }; 338 339 static void memory_device_register_types(void) 340 { 341 type_register_static(&memory_device_info); 342 } 343 344 type_init(memory_device_register_types) 345