1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive_regs.h" 24 #include "trace.h" 25 26 /* 27 * XIVE Thread Interrupt Management context 28 */ 29 30 /* 31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 32 * Interrupt Priority Register (PIPR), which contains the priority of 33 * the most favored pending notification. 34 */ 35 static uint8_t ipb_to_pipr(uint8_t ibp) 36 { 37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 38 } 39 40 static uint8_t exception_mask(uint8_t ring) 41 { 42 switch (ring) { 43 case TM_QW1_OS: 44 return TM_QW1_NSR_EO; 45 case TM_QW3_HV_PHYS: 46 return TM_QW3_NSR_HE; 47 default: 48 g_assert_not_reached(); 49 } 50 } 51 52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 53 { 54 switch (ring) { 55 case TM_QW0_USER: 56 return 0; /* Not supported */ 57 case TM_QW1_OS: 58 return tctx->os_output; 59 case TM_QW2_HV_POOL: 60 case TM_QW3_HV_PHYS: 61 return tctx->hv_output; 62 default: 63 return 0; 64 } 65 } 66 67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 68 { 69 uint8_t *regs = &tctx->regs[ring]; 70 uint8_t nsr = regs[TM_NSR]; 71 uint8_t mask = exception_mask(ring); 72 73 qemu_irq_lower(xive_tctx_output(tctx, ring)); 74 75 if (regs[TM_NSR] & mask) { 76 uint8_t cppr = regs[TM_PIPR]; 77 78 regs[TM_CPPR] = cppr; 79 80 /* Reset the pending buffer bit */ 81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 83 84 /* Drop Exception bit */ 85 regs[TM_NSR] &= ~mask; 86 87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 88 regs[TM_IPB], regs[TM_PIPR], 89 regs[TM_CPPR], regs[TM_NSR]); 90 } 91 92 return (nsr << 8) | regs[TM_CPPR]; 93 } 94 95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 96 { 97 uint8_t *regs = &tctx->regs[ring]; 98 99 if (regs[TM_PIPR] < regs[TM_CPPR]) { 100 switch (ring) { 101 case TM_QW1_OS: 102 regs[TM_NSR] |= TM_QW1_NSR_EO; 103 break; 104 case TM_QW3_HV_PHYS: 105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 106 break; 107 default: 108 g_assert_not_reached(); 109 } 110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 111 regs[TM_IPB], regs[TM_PIPR], 112 regs[TM_CPPR], regs[TM_NSR]); 113 qemu_irq_raise(xive_tctx_output(tctx, ring)); 114 } 115 } 116 117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 118 { 119 uint8_t *regs = &tctx->regs[ring]; 120 121 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 122 regs[TM_IPB], regs[TM_PIPR], 123 cppr, regs[TM_NSR]); 124 125 if (cppr > XIVE_PRIORITY_MAX) { 126 cppr = 0xff; 127 } 128 129 tctx->regs[ring + TM_CPPR] = cppr; 130 131 /* CPPR has changed, check if we need to raise a pending exception */ 132 xive_tctx_notify(tctx, ring); 133 } 134 135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 136 { 137 uint8_t *regs = &tctx->regs[ring]; 138 139 regs[TM_IPB] |= ipb; 140 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 141 xive_tctx_notify(tctx, ring); 142 } 143 144 /* 145 * XIVE Thread Interrupt Management Area (TIMA) 146 */ 147 148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 149 hwaddr offset, uint64_t value, unsigned size) 150 { 151 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 152 } 153 154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 155 hwaddr offset, unsigned size) 156 { 157 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 158 } 159 160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 161 hwaddr offset, unsigned size) 162 { 163 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 164 uint32_t qw2w2; 165 166 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 167 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 168 return qw2w2; 169 } 170 171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 172 uint64_t value, unsigned size) 173 { 174 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 175 } 176 177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 178 hwaddr offset, unsigned size) 179 { 180 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 181 } 182 183 /* 184 * Define an access map for each page of the TIMA that we will use in 185 * the memory region ops to filter values when doing loads and stores 186 * of raw registers values 187 * 188 * Registers accessibility bits : 189 * 190 * 0x0 - no access 191 * 0x1 - write only 192 * 0x2 - read only 193 * 0x3 - read/write 194 */ 195 196 static const uint8_t xive_tm_hw_view[] = { 197 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 198 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 199 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 200 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 201 }; 202 203 static const uint8_t xive_tm_hv_view[] = { 204 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 205 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 206 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 207 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 208 }; 209 210 static const uint8_t xive_tm_os_view[] = { 211 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 212 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 215 }; 216 217 static const uint8_t xive_tm_user_view[] = { 218 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 222 }; 223 224 /* 225 * Overall TIMA access map for the thread interrupt management context 226 * registers 227 */ 228 static const uint8_t *xive_tm_views[] = { 229 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 230 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 231 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 232 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 233 }; 234 235 /* 236 * Computes a register access mask for a given offset in the TIMA 237 */ 238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 239 { 240 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 241 uint8_t reg_offset = offset & 0x3F; 242 uint8_t reg_mask = write ? 0x1 : 0x2; 243 uint64_t mask = 0x0; 244 int i; 245 246 for (i = 0; i < size; i++) { 247 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 248 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 249 } 250 } 251 252 return mask; 253 } 254 255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 256 unsigned size) 257 { 258 uint8_t ring_offset = offset & 0x30; 259 uint8_t reg_offset = offset & 0x3F; 260 uint64_t mask = xive_tm_mask(offset, size, true); 261 int i; 262 263 /* 264 * Only 4 or 8 bytes stores are allowed and the User ring is 265 * excluded 266 */ 267 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 269 HWADDR_PRIx"\n", offset); 270 return; 271 } 272 273 /* 274 * Use the register offset for the raw values and filter out 275 * reserved values 276 */ 277 for (i = 0; i < size; i++) { 278 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 279 if (byte_mask) { 280 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 281 byte_mask; 282 } 283 } 284 } 285 286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 287 { 288 uint8_t ring_offset = offset & 0x30; 289 uint8_t reg_offset = offset & 0x3F; 290 uint64_t mask = xive_tm_mask(offset, size, false); 291 uint64_t ret; 292 int i; 293 294 /* 295 * Only 4 or 8 bytes loads are allowed and the User ring is 296 * excluded 297 */ 298 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 300 HWADDR_PRIx"\n", offset); 301 return -1; 302 } 303 304 /* Use the register offset for the raw values */ 305 ret = 0; 306 for (i = 0; i < size; i++) { 307 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 308 } 309 310 /* filter out reserved values */ 311 return ret & mask; 312 } 313 314 /* 315 * The TM context is mapped twice within each page. Stores and loads 316 * to the first mapping below 2K write and read the specified values 317 * without modification. The second mapping above 2K performs specific 318 * state changes (side effects) in addition to setting/returning the 319 * interrupt management area context of the processor thread. 320 */ 321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 322 hwaddr offset, unsigned size) 323 { 324 return xive_tctx_accept(tctx, TM_QW1_OS); 325 } 326 327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 328 hwaddr offset, uint64_t value, unsigned size) 329 { 330 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 331 } 332 333 /* 334 * Adjust the IPB to allow a CPU to process event queues of other 335 * priorities during one physical interrupt cycle. 336 */ 337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 338 hwaddr offset, uint64_t value, unsigned size) 339 { 340 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff)); 341 } 342 343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 344 uint32_t *nvt_idx, bool *vo) 345 { 346 if (nvt_blk) { 347 *nvt_blk = xive_nvt_blk(cam); 348 } 349 if (nvt_idx) { 350 *nvt_idx = xive_nvt_idx(cam); 351 } 352 if (vo) { 353 *vo = !!(cam & TM_QW1W2_VO); 354 } 355 } 356 357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 358 uint32_t *nvt_idx, bool *vo) 359 { 360 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 361 uint32_t cam = be32_to_cpu(qw1w2); 362 363 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 364 return qw1w2; 365 } 366 367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 368 { 369 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 370 } 371 372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 373 hwaddr offset, unsigned size) 374 { 375 uint32_t qw1w2; 376 uint32_t qw1w2_new; 377 uint8_t nvt_blk; 378 uint32_t nvt_idx; 379 bool vo; 380 381 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 382 383 if (!vo) { 384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 385 nvt_blk, nvt_idx); 386 } 387 388 /* Invalidate CAM line */ 389 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 390 xive_tctx_set_os_cam(tctx, qw1w2_new); 391 return qw1w2; 392 } 393 394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 395 uint8_t nvt_blk, uint32_t nvt_idx) 396 { 397 XiveNVT nvt; 398 uint8_t ipb; 399 400 /* 401 * Grab the associated NVT to pull the pending bits, and merge 402 * them with the IPB of the thread interrupt context registers 403 */ 404 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 406 nvt_blk, nvt_idx); 407 return; 408 } 409 410 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 411 412 if (ipb) { 413 /* Reset the NVT value */ 414 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 415 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 416 417 /* Merge in current context */ 418 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 419 } 420 } 421 422 /* 423 * Updating the OS CAM line can trigger a resend of interrupt 424 */ 425 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 426 hwaddr offset, uint64_t value, unsigned size) 427 { 428 uint32_t cam = value; 429 uint32_t qw1w2 = cpu_to_be32(cam); 430 uint8_t nvt_blk; 431 uint32_t nvt_idx; 432 bool vo; 433 434 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 435 436 /* First update the registers */ 437 xive_tctx_set_os_cam(tctx, qw1w2); 438 439 /* Check the interrupt pending bits */ 440 if (vo) { 441 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 442 } 443 } 444 445 /* 446 * Define a mapping of "special" operations depending on the TIMA page 447 * offset and the size of the operation. 448 */ 449 typedef struct XiveTmOp { 450 uint8_t page_offset; 451 uint32_t op_offset; 452 unsigned size; 453 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 454 hwaddr offset, 455 uint64_t value, unsigned size); 456 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 457 unsigned size); 458 } XiveTmOp; 459 460 static const XiveTmOp xive_tm_operations[] = { 461 /* 462 * MMIOs below 2K : raw values and special operations without side 463 * effects 464 */ 465 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 466 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 467 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 468 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 470 471 /* MMIOs above 2K : special operations with side effects */ 472 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 473 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 474 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 475 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 476 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 478 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 479 }; 480 481 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 482 { 483 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 484 uint32_t op_offset = offset & 0xFFF; 485 int i; 486 487 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 488 const XiveTmOp *xto = &xive_tm_operations[i]; 489 490 /* Accesses done from a more privileged TIMA page is allowed */ 491 if (xto->page_offset >= page_offset && 492 xto->op_offset == op_offset && 493 xto->size == size && 494 ((write && xto->write_handler) || (!write && xto->read_handler))) { 495 return xto; 496 } 497 } 498 return NULL; 499 } 500 501 /* 502 * TIMA MMIO handlers 503 */ 504 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 505 uint64_t value, unsigned size) 506 { 507 const XiveTmOp *xto; 508 509 trace_xive_tctx_tm_write(offset, size, value); 510 511 /* 512 * TODO: check V bit in Q[0-3]W2 513 */ 514 515 /* 516 * First, check for special operations in the 2K region 517 */ 518 if (offset & 0x800) { 519 xto = xive_tm_find_op(offset, size, true); 520 if (!xto) { 521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 522 "@%"HWADDR_PRIx"\n", offset); 523 } else { 524 xto->write_handler(xptr, tctx, offset, value, size); 525 } 526 return; 527 } 528 529 /* 530 * Then, for special operations in the region below 2K. 531 */ 532 xto = xive_tm_find_op(offset, size, true); 533 if (xto) { 534 xto->write_handler(xptr, tctx, offset, value, size); 535 return; 536 } 537 538 /* 539 * Finish with raw access to the register values 540 */ 541 xive_tm_raw_write(tctx, offset, value, size); 542 } 543 544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 545 unsigned size) 546 { 547 const XiveTmOp *xto; 548 uint64_t ret; 549 550 /* 551 * TODO: check V bit in Q[0-3]W2 552 */ 553 554 /* 555 * First, check for special operations in the 2K region 556 */ 557 if (offset & 0x800) { 558 xto = xive_tm_find_op(offset, size, false); 559 if (!xto) { 560 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 561 "@%"HWADDR_PRIx"\n", offset); 562 return -1; 563 } 564 ret = xto->read_handler(xptr, tctx, offset, size); 565 goto out; 566 } 567 568 /* 569 * Then, for special operations in the region below 2K. 570 */ 571 xto = xive_tm_find_op(offset, size, false); 572 if (xto) { 573 ret = xto->read_handler(xptr, tctx, offset, size); 574 goto out; 575 } 576 577 /* 578 * Finish with raw access to the register values 579 */ 580 ret = xive_tm_raw_read(tctx, offset, size); 581 out: 582 trace_xive_tctx_tm_read(offset, size, ret); 583 return ret; 584 } 585 586 static char *xive_tctx_ring_print(uint8_t *ring) 587 { 588 uint32_t w2 = xive_tctx_word2(ring); 589 590 return g_strdup_printf("%02x %02x %02x %02x %02x " 591 "%02x %02x %02x %08x", 592 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 593 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 594 be32_to_cpu(w2)); 595 } 596 597 static const char * const xive_tctx_ring_names[] = { 598 "USER", "OS", "POOL", "PHYS", 599 }; 600 601 /* 602 * kvm_irqchip_in_kernel() will cause the compiler to turn this 603 * info a nop if CONFIG_KVM isn't defined. 604 */ 605 #define xive_in_kernel(xptr) \ 606 (kvm_irqchip_in_kernel() && \ 607 ({ \ 608 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 609 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 610 })) 611 612 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 613 { 614 int cpu_index; 615 int i; 616 617 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 618 * are hot plugged or unplugged. 619 */ 620 if (!tctx) { 621 return; 622 } 623 624 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 625 626 if (xive_in_kernel(tctx->xptr)) { 627 Error *local_err = NULL; 628 629 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 630 if (local_err) { 631 error_report_err(local_err); 632 return; 633 } 634 } 635 636 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 637 " W2\n", cpu_index); 638 639 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 640 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 641 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 642 xive_tctx_ring_names[i], s); 643 g_free(s); 644 } 645 } 646 647 void xive_tctx_reset(XiveTCTX *tctx) 648 { 649 memset(tctx->regs, 0, sizeof(tctx->regs)); 650 651 /* Set some defaults */ 652 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 653 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 654 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 655 656 /* 657 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 658 * CPPR is first set. 659 */ 660 tctx->regs[TM_QW1_OS + TM_PIPR] = 661 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 662 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 663 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 664 } 665 666 static void xive_tctx_realize(DeviceState *dev, Error **errp) 667 { 668 XiveTCTX *tctx = XIVE_TCTX(dev); 669 PowerPCCPU *cpu; 670 CPUPPCState *env; 671 672 assert(tctx->cs); 673 assert(tctx->xptr); 674 675 cpu = POWERPC_CPU(tctx->cs); 676 env = &cpu->env; 677 switch (PPC_INPUT(env)) { 678 case PPC_FLAGS_INPUT_POWER9: 679 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT]; 680 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT]; 681 break; 682 683 default: 684 error_setg(errp, "XIVE interrupt controller does not support " 685 "this CPU bus model"); 686 return; 687 } 688 689 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 690 if (xive_in_kernel(tctx->xptr)) { 691 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 692 return; 693 } 694 } 695 } 696 697 static int vmstate_xive_tctx_pre_save(void *opaque) 698 { 699 XiveTCTX *tctx = XIVE_TCTX(opaque); 700 Error *local_err = NULL; 701 int ret; 702 703 if (xive_in_kernel(tctx->xptr)) { 704 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 705 if (ret < 0) { 706 error_report_err(local_err); 707 return ret; 708 } 709 } 710 711 return 0; 712 } 713 714 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 715 { 716 XiveTCTX *tctx = XIVE_TCTX(opaque); 717 Error *local_err = NULL; 718 int ret; 719 720 if (xive_in_kernel(tctx->xptr)) { 721 /* 722 * Required for hotplugged CPU, for which the state comes 723 * after all states of the machine. 724 */ 725 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 726 if (ret < 0) { 727 error_report_err(local_err); 728 return ret; 729 } 730 } 731 732 return 0; 733 } 734 735 static const VMStateDescription vmstate_xive_tctx = { 736 .name = TYPE_XIVE_TCTX, 737 .version_id = 1, 738 .minimum_version_id = 1, 739 .pre_save = vmstate_xive_tctx_pre_save, 740 .post_load = vmstate_xive_tctx_post_load, 741 .fields = (VMStateField[]) { 742 VMSTATE_BUFFER(regs, XiveTCTX), 743 VMSTATE_END_OF_LIST() 744 }, 745 }; 746 747 static Property xive_tctx_properties[] = { 748 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 749 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 750 XivePresenter *), 751 DEFINE_PROP_END_OF_LIST(), 752 }; 753 754 static void xive_tctx_class_init(ObjectClass *klass, void *data) 755 { 756 DeviceClass *dc = DEVICE_CLASS(klass); 757 758 dc->desc = "XIVE Interrupt Thread Context"; 759 dc->realize = xive_tctx_realize; 760 dc->vmsd = &vmstate_xive_tctx; 761 device_class_set_props(dc, xive_tctx_properties); 762 /* 763 * Reason: part of XIVE interrupt controller, needs to be wired up 764 * by xive_tctx_create(). 765 */ 766 dc->user_creatable = false; 767 } 768 769 static const TypeInfo xive_tctx_info = { 770 .name = TYPE_XIVE_TCTX, 771 .parent = TYPE_DEVICE, 772 .instance_size = sizeof(XiveTCTX), 773 .class_init = xive_tctx_class_init, 774 }; 775 776 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 777 { 778 Object *obj; 779 780 obj = object_new(TYPE_XIVE_TCTX); 781 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 782 object_unref(obj); 783 object_property_set_link(obj, "cpu", cpu, &error_abort); 784 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 785 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 786 object_unparent(obj); 787 return NULL; 788 } 789 return obj; 790 } 791 792 void xive_tctx_destroy(XiveTCTX *tctx) 793 { 794 Object *obj = OBJECT(tctx); 795 796 object_unparent(obj); 797 } 798 799 /* 800 * XIVE ESB helpers 801 */ 802 803 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 804 { 805 uint8_t old_pq = *pq & 0x3; 806 807 *pq &= ~0x3; 808 *pq |= value & 0x3; 809 810 return old_pq; 811 } 812 813 bool xive_esb_trigger(uint8_t *pq) 814 { 815 uint8_t old_pq = *pq & 0x3; 816 817 switch (old_pq) { 818 case XIVE_ESB_RESET: 819 xive_esb_set(pq, XIVE_ESB_PENDING); 820 return true; 821 case XIVE_ESB_PENDING: 822 case XIVE_ESB_QUEUED: 823 xive_esb_set(pq, XIVE_ESB_QUEUED); 824 return false; 825 case XIVE_ESB_OFF: 826 xive_esb_set(pq, XIVE_ESB_OFF); 827 return false; 828 default: 829 g_assert_not_reached(); 830 } 831 } 832 833 bool xive_esb_eoi(uint8_t *pq) 834 { 835 uint8_t old_pq = *pq & 0x3; 836 837 switch (old_pq) { 838 case XIVE_ESB_RESET: 839 case XIVE_ESB_PENDING: 840 xive_esb_set(pq, XIVE_ESB_RESET); 841 return false; 842 case XIVE_ESB_QUEUED: 843 xive_esb_set(pq, XIVE_ESB_PENDING); 844 return true; 845 case XIVE_ESB_OFF: 846 xive_esb_set(pq, XIVE_ESB_OFF); 847 return false; 848 default: 849 g_assert_not_reached(); 850 } 851 } 852 853 /* 854 * XIVE Interrupt Source (or IVSE) 855 */ 856 857 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 858 { 859 assert(srcno < xsrc->nr_irqs); 860 861 return xsrc->status[srcno] & 0x3; 862 } 863 864 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 865 { 866 assert(srcno < xsrc->nr_irqs); 867 868 return xive_esb_set(&xsrc->status[srcno], pq); 869 } 870 871 /* 872 * Returns whether the event notification should be forwarded. 873 */ 874 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 875 { 876 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 877 878 xive_source_set_asserted(xsrc, srcno, true); 879 880 switch (old_pq) { 881 case XIVE_ESB_RESET: 882 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 883 return true; 884 default: 885 return false; 886 } 887 } 888 889 /* 890 * Returns whether the event notification should be forwarded. 891 */ 892 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 893 { 894 bool ret; 895 896 assert(srcno < xsrc->nr_irqs); 897 898 ret = xive_esb_trigger(&xsrc->status[srcno]); 899 900 if (xive_source_irq_is_lsi(xsrc, srcno) && 901 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 902 qemu_log_mask(LOG_GUEST_ERROR, 903 "XIVE: queued an event on LSI IRQ %d\n", srcno); 904 } 905 906 return ret; 907 } 908 909 /* 910 * Returns whether the event notification should be forwarded. 911 */ 912 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 913 { 914 bool ret; 915 916 assert(srcno < xsrc->nr_irqs); 917 918 ret = xive_esb_eoi(&xsrc->status[srcno]); 919 920 /* 921 * LSI sources do not set the Q bit but they can still be 922 * asserted, in which case we should forward a new event 923 * notification 924 */ 925 if (xive_source_irq_is_lsi(xsrc, srcno) && 926 xive_source_is_asserted(xsrc, srcno)) { 927 ret = xive_source_lsi_trigger(xsrc, srcno); 928 } 929 930 return ret; 931 } 932 933 /* 934 * Forward the source event notification to the Router 935 */ 936 static void xive_source_notify(XiveSource *xsrc, int srcno) 937 { 938 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 939 940 if (xnc->notify) { 941 xnc->notify(xsrc->xive, srcno); 942 } 943 } 944 945 /* 946 * In a two pages ESB MMIO setting, even page is the trigger page, odd 947 * page is for management 948 */ 949 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 950 { 951 return !((addr >> shift) & 1); 952 } 953 954 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 955 { 956 return xive_source_esb_has_2page(xsrc) && 957 addr_is_even(addr, xsrc->esb_shift - 1); 958 } 959 960 /* 961 * ESB MMIO loads 962 * Trigger page Management/EOI page 963 * 964 * ESB MMIO setting 2 pages 1 or 2 pages 965 * 966 * 0x000 .. 0x3FF -1 EOI and return 0|1 967 * 0x400 .. 0x7FF -1 EOI and return 0|1 968 * 0x800 .. 0xBFF -1 return PQ 969 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 970 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 971 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 972 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 973 */ 974 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 975 { 976 XiveSource *xsrc = XIVE_SOURCE(opaque); 977 uint32_t offset = addr & 0xFFF; 978 uint32_t srcno = addr >> xsrc->esb_shift; 979 uint64_t ret = -1; 980 981 /* In a two pages ESB MMIO setting, trigger page should not be read */ 982 if (xive_source_is_trigger_page(xsrc, addr)) { 983 qemu_log_mask(LOG_GUEST_ERROR, 984 "XIVE: invalid load on IRQ %d trigger page at " 985 "0x%"HWADDR_PRIx"\n", srcno, addr); 986 return -1; 987 } 988 989 switch (offset) { 990 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 991 ret = xive_source_esb_eoi(xsrc, srcno); 992 993 /* Forward the source event notification for routing */ 994 if (ret) { 995 xive_source_notify(xsrc, srcno); 996 } 997 break; 998 999 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1000 ret = xive_source_esb_get(xsrc, srcno); 1001 break; 1002 1003 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1004 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1005 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1006 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1007 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1008 break; 1009 default: 1010 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1011 offset); 1012 } 1013 1014 trace_xive_source_esb_read(addr, srcno, ret); 1015 1016 return ret; 1017 } 1018 1019 /* 1020 * ESB MMIO stores 1021 * Trigger page Management/EOI page 1022 * 1023 * ESB MMIO setting 2 pages 1 or 2 pages 1024 * 1025 * 0x000 .. 0x3FF Trigger Trigger 1026 * 0x400 .. 0x7FF Trigger EOI 1027 * 0x800 .. 0xBFF Trigger undefined 1028 * 0xC00 .. 0xCFF Trigger PQ=00 1029 * 0xD00 .. 0xDFF Trigger PQ=01 1030 * 0xE00 .. 0xDFF Trigger PQ=10 1031 * 0xF00 .. 0xDFF Trigger PQ=11 1032 */ 1033 static void xive_source_esb_write(void *opaque, hwaddr addr, 1034 uint64_t value, unsigned size) 1035 { 1036 XiveSource *xsrc = XIVE_SOURCE(opaque); 1037 uint32_t offset = addr & 0xFFF; 1038 uint32_t srcno = addr >> xsrc->esb_shift; 1039 bool notify = false; 1040 1041 trace_xive_source_esb_write(addr, srcno, value); 1042 1043 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1044 if (xive_source_is_trigger_page(xsrc, addr)) { 1045 notify = xive_source_esb_trigger(xsrc, srcno); 1046 goto out; 1047 } 1048 1049 switch (offset) { 1050 case 0 ... 0x3FF: 1051 notify = xive_source_esb_trigger(xsrc, srcno); 1052 break; 1053 1054 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1055 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1056 qemu_log_mask(LOG_GUEST_ERROR, 1057 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1058 return; 1059 } 1060 1061 notify = xive_source_esb_eoi(xsrc, srcno); 1062 break; 1063 1064 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1065 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1066 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1067 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1068 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1069 break; 1070 1071 default: 1072 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1073 offset); 1074 return; 1075 } 1076 1077 out: 1078 /* Forward the source event notification for routing */ 1079 if (notify) { 1080 xive_source_notify(xsrc, srcno); 1081 } 1082 } 1083 1084 static const MemoryRegionOps xive_source_esb_ops = { 1085 .read = xive_source_esb_read, 1086 .write = xive_source_esb_write, 1087 .endianness = DEVICE_BIG_ENDIAN, 1088 .valid = { 1089 .min_access_size = 8, 1090 .max_access_size = 8, 1091 }, 1092 .impl = { 1093 .min_access_size = 8, 1094 .max_access_size = 8, 1095 }, 1096 }; 1097 1098 void xive_source_set_irq(void *opaque, int srcno, int val) 1099 { 1100 XiveSource *xsrc = XIVE_SOURCE(opaque); 1101 bool notify = false; 1102 1103 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1104 if (val) { 1105 notify = xive_source_lsi_trigger(xsrc, srcno); 1106 } else { 1107 xive_source_set_asserted(xsrc, srcno, false); 1108 } 1109 } else { 1110 if (val) { 1111 notify = xive_source_esb_trigger(xsrc, srcno); 1112 } 1113 } 1114 1115 /* Forward the source event notification for routing */ 1116 if (notify) { 1117 xive_source_notify(xsrc, srcno); 1118 } 1119 } 1120 1121 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1122 { 1123 int i; 1124 1125 for (i = 0; i < xsrc->nr_irqs; i++) { 1126 uint8_t pq = xive_source_esb_get(xsrc, i); 1127 1128 if (pq == XIVE_ESB_OFF) { 1129 continue; 1130 } 1131 1132 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1133 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1134 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1135 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1136 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1137 } 1138 } 1139 1140 static void xive_source_reset(void *dev) 1141 { 1142 XiveSource *xsrc = XIVE_SOURCE(dev); 1143 1144 /* Do not clear the LSI bitmap */ 1145 1146 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 1147 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 1148 } 1149 1150 static void xive_source_realize(DeviceState *dev, Error **errp) 1151 { 1152 XiveSource *xsrc = XIVE_SOURCE(dev); 1153 size_t esb_len = xive_source_esb_len(xsrc); 1154 1155 assert(xsrc->xive); 1156 1157 if (!xsrc->nr_irqs) { 1158 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1159 return; 1160 } 1161 1162 if (xsrc->esb_shift != XIVE_ESB_4K && 1163 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1164 xsrc->esb_shift != XIVE_ESB_64K && 1165 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1166 error_setg(errp, "Invalid ESB shift setting"); 1167 return; 1168 } 1169 1170 xsrc->status = g_malloc0(xsrc->nr_irqs); 1171 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1172 1173 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1174 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1175 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1176 esb_len); 1177 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1178 1179 qemu_register_reset(xive_source_reset, dev); 1180 } 1181 1182 static const VMStateDescription vmstate_xive_source = { 1183 .name = TYPE_XIVE_SOURCE, 1184 .version_id = 1, 1185 .minimum_version_id = 1, 1186 .fields = (VMStateField[]) { 1187 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1188 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1189 VMSTATE_END_OF_LIST() 1190 }, 1191 }; 1192 1193 /* 1194 * The default XIVE interrupt source setting for the ESB MMIOs is two 1195 * 64k pages without Store EOI, to be in sync with KVM. 1196 */ 1197 static Property xive_source_properties[] = { 1198 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1199 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1200 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1201 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1202 XiveNotifier *), 1203 DEFINE_PROP_END_OF_LIST(), 1204 }; 1205 1206 static void xive_source_class_init(ObjectClass *klass, void *data) 1207 { 1208 DeviceClass *dc = DEVICE_CLASS(klass); 1209 1210 dc->desc = "XIVE Interrupt Source"; 1211 device_class_set_props(dc, xive_source_properties); 1212 dc->realize = xive_source_realize; 1213 dc->vmsd = &vmstate_xive_source; 1214 /* 1215 * Reason: part of XIVE interrupt controller, needs to be wired up, 1216 * e.g. by spapr_xive_instance_init(). 1217 */ 1218 dc->user_creatable = false; 1219 } 1220 1221 static const TypeInfo xive_source_info = { 1222 .name = TYPE_XIVE_SOURCE, 1223 .parent = TYPE_DEVICE, 1224 .instance_size = sizeof(XiveSource), 1225 .class_init = xive_source_class_init, 1226 }; 1227 1228 /* 1229 * XiveEND helpers 1230 */ 1231 1232 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1233 { 1234 uint64_t qaddr_base = xive_end_qaddr(end); 1235 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1236 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1237 uint32_t qentries = 1 << (qsize + 10); 1238 int i; 1239 1240 /* 1241 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1242 */ 1243 monitor_printf(mon, " [ "); 1244 qindex = (qindex - (width - 1)) & (qentries - 1); 1245 for (i = 0; i < width; i++) { 1246 uint64_t qaddr = qaddr_base + (qindex << 2); 1247 uint32_t qdata = -1; 1248 1249 if (dma_memory_read(&address_space_memory, qaddr, &qdata, 1250 sizeof(qdata))) { 1251 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1252 HWADDR_PRIx "\n", qaddr); 1253 return; 1254 } 1255 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1256 be32_to_cpu(qdata)); 1257 qindex = (qindex + 1) & (qentries - 1); 1258 } 1259 monitor_printf(mon, "]"); 1260 } 1261 1262 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1263 { 1264 uint64_t qaddr_base = xive_end_qaddr(end); 1265 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1266 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1267 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1268 uint32_t qentries = 1 << (qsize + 10); 1269 1270 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1271 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1272 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1273 uint8_t pq; 1274 1275 if (!xive_end_is_valid(end)) { 1276 return; 1277 } 1278 1279 pq = xive_get_field32(END_W1_ESn, end->w1); 1280 1281 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1282 end_idx, 1283 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1284 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1285 xive_end_is_valid(end) ? 'v' : '-', 1286 xive_end_is_enqueue(end) ? 'q' : '-', 1287 xive_end_is_notify(end) ? 'n' : '-', 1288 xive_end_is_backlog(end) ? 'b' : '-', 1289 xive_end_is_escalate(end) ? 'e' : '-', 1290 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1291 xive_end_is_silent_escalation(end) ? 's' : '-', 1292 xive_end_is_firmware(end) ? 'f' : '-', 1293 priority, nvt_blk, nvt_idx); 1294 1295 if (qaddr_base) { 1296 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1297 qaddr_base, qindex, qentries, qgen); 1298 xive_end_queue_pic_print_info(end, 6, mon); 1299 } 1300 monitor_printf(mon, "\n"); 1301 } 1302 1303 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1304 { 1305 uint64_t qaddr_base = xive_end_qaddr(end); 1306 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1307 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1308 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1309 1310 uint64_t qaddr = qaddr_base + (qindex << 2); 1311 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1312 uint32_t qentries = 1 << (qsize + 10); 1313 1314 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { 1315 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1316 HWADDR_PRIx "\n", qaddr); 1317 return; 1318 } 1319 1320 qindex = (qindex + 1) & (qentries - 1); 1321 if (qindex == 0) { 1322 qgen ^= 1; 1323 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1324 } 1325 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1326 } 1327 1328 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1329 Monitor *mon) 1330 { 1331 XiveEAS *eas = (XiveEAS *) &end->w4; 1332 uint8_t pq; 1333 1334 if (!xive_end_is_escalate(end)) { 1335 return; 1336 } 1337 1338 pq = xive_get_field32(END_W1_ESe, end->w1); 1339 1340 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1341 end_idx, 1342 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1343 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1344 xive_eas_is_valid(eas) ? 'V' : ' ', 1345 xive_eas_is_masked(eas) ? 'M' : ' ', 1346 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1347 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1348 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1349 } 1350 1351 /* 1352 * XIVE Router (aka. Virtualization Controller or IVRE) 1353 */ 1354 1355 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1356 XiveEAS *eas) 1357 { 1358 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1359 1360 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1361 } 1362 1363 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1364 XiveEND *end) 1365 { 1366 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1367 1368 return xrc->get_end(xrtr, end_blk, end_idx, end); 1369 } 1370 1371 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1372 XiveEND *end, uint8_t word_number) 1373 { 1374 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1375 1376 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1377 } 1378 1379 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1380 XiveNVT *nvt) 1381 { 1382 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1383 1384 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1385 } 1386 1387 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1388 XiveNVT *nvt, uint8_t word_number) 1389 { 1390 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1391 1392 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1393 } 1394 1395 static int xive_router_get_block_id(XiveRouter *xrtr) 1396 { 1397 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1398 1399 return xrc->get_block_id(xrtr); 1400 } 1401 1402 static void xive_router_realize(DeviceState *dev, Error **errp) 1403 { 1404 XiveRouter *xrtr = XIVE_ROUTER(dev); 1405 1406 assert(xrtr->xfb); 1407 } 1408 1409 /* 1410 * Encode the HW CAM line in the block group mode format : 1411 * 1412 * chip << 19 | 0000000 0 0001 thread (7Bit) 1413 */ 1414 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1415 { 1416 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1417 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1418 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1419 1420 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1421 } 1422 1423 /* 1424 * The thread context register words are in big-endian format. 1425 */ 1426 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1427 uint8_t format, 1428 uint8_t nvt_blk, uint32_t nvt_idx, 1429 bool cam_ignore, uint32_t logic_serv) 1430 { 1431 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1432 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1433 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1434 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1435 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1436 1437 /* 1438 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1439 * identifier are ignored in the "CAM" match. 1440 */ 1441 1442 if (format == 0) { 1443 if (cam_ignore == true) { 1444 /* 1445 * F=0 & i=1: Logical server notification (bits ignored at 1446 * the end of the NVT identifier) 1447 */ 1448 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1449 nvt_blk, nvt_idx); 1450 return -1; 1451 } 1452 1453 /* F=0 & i=0: Specific NVT notification */ 1454 1455 /* PHYS ring */ 1456 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1457 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1458 return TM_QW3_HV_PHYS; 1459 } 1460 1461 /* HV POOL ring */ 1462 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1463 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1464 return TM_QW2_HV_POOL; 1465 } 1466 1467 /* OS ring */ 1468 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1469 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1470 return TM_QW1_OS; 1471 } 1472 } else { 1473 /* F=1 : User level Event-Based Branch (EBB) notification */ 1474 1475 /* USER ring */ 1476 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1477 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1478 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1479 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1480 return TM_QW0_USER; 1481 } 1482 } 1483 return -1; 1484 } 1485 1486 /* 1487 * This is our simple Xive Presenter Engine model. It is merged in the 1488 * Router as it does not require an extra object. 1489 * 1490 * It receives notification requests sent by the IVRE to find one 1491 * matching NVT (or more) dispatched on the processor threads. In case 1492 * of a single NVT notification, the process is abreviated and the 1493 * thread is signaled if a match is found. In case of a logical server 1494 * notification (bits ignored at the end of the NVT identifier), the 1495 * IVPE and IVRE select a winning thread using different filters. This 1496 * involves 2 or 3 exchanges on the PowerBus that the model does not 1497 * support. 1498 * 1499 * The parameters represent what is sent on the PowerBus 1500 */ 1501 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1502 uint8_t nvt_blk, uint32_t nvt_idx, 1503 bool cam_ignore, uint8_t priority, 1504 uint32_t logic_serv) 1505 { 1506 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1507 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1508 int count; 1509 1510 /* 1511 * Ask the machine to scan the interrupt controllers for a match 1512 */ 1513 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1514 priority, logic_serv, &match); 1515 if (count < 0) { 1516 return false; 1517 } 1518 1519 /* handle CPU exception delivery */ 1520 if (count) { 1521 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1522 xive_tctx_ipb_update(match.tctx, match.ring, 1523 xive_priority_to_ipb(priority)); 1524 } 1525 1526 return !!count; 1527 } 1528 1529 /* 1530 * Notification using the END ESe/ESn bit (Event State Buffer for 1531 * escalation and notification). Provide further coalescing in the 1532 * Router. 1533 */ 1534 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1535 uint32_t end_idx, XiveEND *end, 1536 uint32_t end_esmask) 1537 { 1538 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1539 bool notify = xive_esb_trigger(&pq); 1540 1541 if (pq != xive_get_field32(end_esmask, end->w1)) { 1542 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1543 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1544 } 1545 1546 /* ESe/n[Q]=1 : end of notification */ 1547 return notify; 1548 } 1549 1550 /* 1551 * An END trigger can come from an event trigger (IPI or HW) or from 1552 * another chip. We don't model the PowerBus but the END trigger 1553 * message has the same parameters than in the function below. 1554 */ 1555 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1556 uint32_t end_idx, uint32_t end_data) 1557 { 1558 XiveEND end; 1559 uint8_t priority; 1560 uint8_t format; 1561 uint8_t nvt_blk; 1562 uint32_t nvt_idx; 1563 XiveNVT nvt; 1564 bool found; 1565 1566 /* END cache lookup */ 1567 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1568 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1569 end_idx); 1570 return; 1571 } 1572 1573 if (!xive_end_is_valid(&end)) { 1574 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1575 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1576 end_blk, end_idx); 1577 return; 1578 } 1579 1580 if (xive_end_is_enqueue(&end)) { 1581 xive_end_enqueue(&end, end_data); 1582 /* Enqueuing event data modifies the EQ toggle and index */ 1583 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1584 } 1585 1586 /* 1587 * When the END is silent, we skip the notification part. 1588 */ 1589 if (xive_end_is_silent_escalation(&end)) { 1590 goto do_escalation; 1591 } 1592 1593 /* 1594 * The W7 format depends on the F bit in W6. It defines the type 1595 * of the notification : 1596 * 1597 * F=0 : single or multiple NVT notification 1598 * F=1 : User level Event-Based Branch (EBB) notification, no 1599 * priority 1600 */ 1601 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1602 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1603 1604 /* The END is masked */ 1605 if (format == 0 && priority == 0xff) { 1606 return; 1607 } 1608 1609 /* 1610 * Check the END ESn (Event State Buffer for notification) for 1611 * even further coalescing in the Router 1612 */ 1613 if (!xive_end_is_notify(&end)) { 1614 /* ESn[Q]=1 : end of notification */ 1615 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1616 &end, END_W1_ESn)) { 1617 return; 1618 } 1619 } 1620 1621 /* 1622 * Follows IVPE notification 1623 */ 1624 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1625 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1626 1627 /* NVT cache lookup */ 1628 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1629 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1630 nvt_blk, nvt_idx); 1631 return; 1632 } 1633 1634 if (!xive_nvt_is_valid(&nvt)) { 1635 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1636 nvt_blk, nvt_idx); 1637 return; 1638 } 1639 1640 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1641 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1642 priority, 1643 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1644 1645 /* TODO: Auto EOI. */ 1646 1647 if (found) { 1648 return; 1649 } 1650 1651 /* 1652 * If no matching NVT is dispatched on a HW thread : 1653 * - specific VP: update the NVT structure if backlog is activated 1654 * - logical server : forward request to IVPE (not supported) 1655 */ 1656 if (xive_end_is_backlog(&end)) { 1657 uint8_t ipb; 1658 1659 if (format == 1) { 1660 qemu_log_mask(LOG_GUEST_ERROR, 1661 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1662 end_blk, end_idx); 1663 return; 1664 } 1665 /* 1666 * Record the IPB in the associated NVT structure for later 1667 * use. The presenter will resend the interrupt when the vCPU 1668 * is dispatched again on a HW thread. 1669 */ 1670 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1671 xive_priority_to_ipb(priority); 1672 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1673 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1674 1675 /* 1676 * On HW, follows a "Broadcast Backlog" to IVPEs 1677 */ 1678 } 1679 1680 do_escalation: 1681 /* 1682 * If activated, escalate notification using the ESe PQ bits and 1683 * the EAS in w4-5 1684 */ 1685 if (!xive_end_is_escalate(&end)) { 1686 return; 1687 } 1688 1689 /* 1690 * Check the END ESe (Event State Buffer for escalation) for even 1691 * further coalescing in the Router 1692 */ 1693 if (!xive_end_is_uncond_escalation(&end)) { 1694 /* ESe[Q]=1 : end of notification */ 1695 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1696 &end, END_W1_ESe)) { 1697 return; 1698 } 1699 } 1700 1701 trace_xive_router_end_escalate(end_blk, end_idx, 1702 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1703 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1704 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1705 /* 1706 * The END trigger becomes an Escalation trigger 1707 */ 1708 xive_router_end_notify(xrtr, 1709 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1710 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1711 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1712 } 1713 1714 void xive_router_notify(XiveNotifier *xn, uint32_t lisn) 1715 { 1716 XiveRouter *xrtr = XIVE_ROUTER(xn); 1717 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1718 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1719 XiveEAS eas; 1720 1721 /* EAS cache lookup */ 1722 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1723 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1724 return; 1725 } 1726 1727 /* 1728 * The IVRE checks the State Bit Cache at this point. We skip the 1729 * SBC lookup because the state bits of the sources are modeled 1730 * internally in QEMU. 1731 */ 1732 1733 if (!xive_eas_is_valid(&eas)) { 1734 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1735 return; 1736 } 1737 1738 if (xive_eas_is_masked(&eas)) { 1739 /* Notification completed */ 1740 return; 1741 } 1742 1743 /* 1744 * The event trigger becomes an END trigger 1745 */ 1746 xive_router_end_notify(xrtr, 1747 xive_get_field64(EAS_END_BLOCK, eas.w), 1748 xive_get_field64(EAS_END_INDEX, eas.w), 1749 xive_get_field64(EAS_END_DATA, eas.w)); 1750 } 1751 1752 static Property xive_router_properties[] = { 1753 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1754 TYPE_XIVE_FABRIC, XiveFabric *), 1755 DEFINE_PROP_END_OF_LIST(), 1756 }; 1757 1758 static void xive_router_class_init(ObjectClass *klass, void *data) 1759 { 1760 DeviceClass *dc = DEVICE_CLASS(klass); 1761 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1762 1763 dc->desc = "XIVE Router Engine"; 1764 device_class_set_props(dc, xive_router_properties); 1765 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1766 dc->realize = xive_router_realize; 1767 xnc->notify = xive_router_notify; 1768 } 1769 1770 static const TypeInfo xive_router_info = { 1771 .name = TYPE_XIVE_ROUTER, 1772 .parent = TYPE_SYS_BUS_DEVICE, 1773 .abstract = true, 1774 .instance_size = sizeof(XiveRouter), 1775 .class_size = sizeof(XiveRouterClass), 1776 .class_init = xive_router_class_init, 1777 .interfaces = (InterfaceInfo[]) { 1778 { TYPE_XIVE_NOTIFIER }, 1779 { TYPE_XIVE_PRESENTER }, 1780 { } 1781 } 1782 }; 1783 1784 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1785 { 1786 if (!xive_eas_is_valid(eas)) { 1787 return; 1788 } 1789 1790 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1791 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1792 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1793 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1794 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1795 } 1796 1797 /* 1798 * END ESB MMIO loads 1799 */ 1800 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1801 { 1802 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1803 uint32_t offset = addr & 0xFFF; 1804 uint8_t end_blk; 1805 uint32_t end_idx; 1806 XiveEND end; 1807 uint32_t end_esmask; 1808 uint8_t pq; 1809 uint64_t ret = -1; 1810 1811 /* 1812 * The block id should be deduced from the load address on the END 1813 * ESB MMIO but our model only supports a single block per XIVE chip. 1814 */ 1815 end_blk = xive_router_get_block_id(xsrc->xrtr); 1816 end_idx = addr >> (xsrc->esb_shift + 1); 1817 1818 trace_xive_end_source_read(end_blk, end_idx, addr); 1819 1820 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1821 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1822 end_idx); 1823 return -1; 1824 } 1825 1826 if (!xive_end_is_valid(&end)) { 1827 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1828 end_blk, end_idx); 1829 return -1; 1830 } 1831 1832 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1833 pq = xive_get_field32(end_esmask, end.w1); 1834 1835 switch (offset) { 1836 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1837 ret = xive_esb_eoi(&pq); 1838 1839 /* Forward the source event notification for routing ?? */ 1840 break; 1841 1842 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1843 ret = pq; 1844 break; 1845 1846 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1847 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1848 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1849 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1850 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1851 break; 1852 default: 1853 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1854 offset); 1855 return -1; 1856 } 1857 1858 if (pq != xive_get_field32(end_esmask, end.w1)) { 1859 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1860 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1861 } 1862 1863 return ret; 1864 } 1865 1866 /* 1867 * END ESB MMIO stores are invalid 1868 */ 1869 static void xive_end_source_write(void *opaque, hwaddr addr, 1870 uint64_t value, unsigned size) 1871 { 1872 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1873 HWADDR_PRIx"\n", addr); 1874 } 1875 1876 static const MemoryRegionOps xive_end_source_ops = { 1877 .read = xive_end_source_read, 1878 .write = xive_end_source_write, 1879 .endianness = DEVICE_BIG_ENDIAN, 1880 .valid = { 1881 .min_access_size = 8, 1882 .max_access_size = 8, 1883 }, 1884 .impl = { 1885 .min_access_size = 8, 1886 .max_access_size = 8, 1887 }, 1888 }; 1889 1890 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1891 { 1892 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1893 1894 assert(xsrc->xrtr); 1895 1896 if (!xsrc->nr_ends) { 1897 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1898 return; 1899 } 1900 1901 if (xsrc->esb_shift != XIVE_ESB_4K && 1902 xsrc->esb_shift != XIVE_ESB_64K) { 1903 error_setg(errp, "Invalid ESB shift setting"); 1904 return; 1905 } 1906 1907 /* 1908 * Each END is assigned an even/odd pair of MMIO pages, the even page 1909 * manages the ESn field while the odd page manages the ESe field. 1910 */ 1911 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1912 &xive_end_source_ops, xsrc, "xive.end", 1913 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1914 } 1915 1916 static Property xive_end_source_properties[] = { 1917 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 1918 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 1919 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 1920 XiveRouter *), 1921 DEFINE_PROP_END_OF_LIST(), 1922 }; 1923 1924 static void xive_end_source_class_init(ObjectClass *klass, void *data) 1925 { 1926 DeviceClass *dc = DEVICE_CLASS(klass); 1927 1928 dc->desc = "XIVE END Source"; 1929 device_class_set_props(dc, xive_end_source_properties); 1930 dc->realize = xive_end_source_realize; 1931 /* 1932 * Reason: part of XIVE interrupt controller, needs to be wired up, 1933 * e.g. by spapr_xive_instance_init(). 1934 */ 1935 dc->user_creatable = false; 1936 } 1937 1938 static const TypeInfo xive_end_source_info = { 1939 .name = TYPE_XIVE_END_SOURCE, 1940 .parent = TYPE_DEVICE, 1941 .instance_size = sizeof(XiveENDSource), 1942 .class_init = xive_end_source_class_init, 1943 }; 1944 1945 /* 1946 * XIVE Notifier 1947 */ 1948 static const TypeInfo xive_notifier_info = { 1949 .name = TYPE_XIVE_NOTIFIER, 1950 .parent = TYPE_INTERFACE, 1951 .class_size = sizeof(XiveNotifierClass), 1952 }; 1953 1954 /* 1955 * XIVE Presenter 1956 */ 1957 static const TypeInfo xive_presenter_info = { 1958 .name = TYPE_XIVE_PRESENTER, 1959 .parent = TYPE_INTERFACE, 1960 .class_size = sizeof(XivePresenterClass), 1961 }; 1962 1963 /* 1964 * XIVE Fabric 1965 */ 1966 static const TypeInfo xive_fabric_info = { 1967 .name = TYPE_XIVE_FABRIC, 1968 .parent = TYPE_INTERFACE, 1969 .class_size = sizeof(XiveFabricClass), 1970 }; 1971 1972 static void xive_register_types(void) 1973 { 1974 type_register_static(&xive_fabric_info); 1975 type_register_static(&xive_source_info); 1976 type_register_static(&xive_notifier_info); 1977 type_register_static(&xive_presenter_info); 1978 type_register_static(&xive_router_info); 1979 type_register_static(&xive_end_source_info); 1980 type_register_static(&xive_tctx_info); 1981 } 1982 1983 type_init(xive_register_types) 1984