xref: /openbmc/qemu/hw/intc/xive.c (revision f3635813)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 
29 /*
30  * Convert a priority number to an Interrupt Pending Buffer (IPB)
31  * register, which indicates a pending interrupt at the priority
32  * corresponding to the bit number
33  */
34 static uint8_t priority_to_ipb(uint8_t priority)
35 {
36     return priority > XIVE_PRIORITY_MAX ?
37         0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 }
39 
40 /*
41  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42  * Interrupt Priority Register (PIPR), which contains the priority of
43  * the most favored pending notification.
44  */
45 static uint8_t ipb_to_pipr(uint8_t ibp)
46 {
47     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
48 }
49 
50 static void ipb_update(uint8_t *regs, uint8_t priority)
51 {
52     regs[TM_IPB] |= priority_to_ipb(priority);
53     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
54 }
55 
56 static uint8_t exception_mask(uint8_t ring)
57 {
58     switch (ring) {
59     case TM_QW1_OS:
60         return TM_QW1_NSR_EO;
61     case TM_QW3_HV_PHYS:
62         return TM_QW3_NSR_HE;
63     default:
64         g_assert_not_reached();
65     }
66 }
67 
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
69 {
70         switch (ring) {
71         case TM_QW0_USER:
72                 return 0; /* Not supported */
73         case TM_QW1_OS:
74                 return tctx->os_output;
75         case TM_QW2_HV_POOL:
76         case TM_QW3_HV_PHYS:
77                 return tctx->hv_output;
78         default:
79                 return 0;
80         }
81 }
82 
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
84 {
85     uint8_t *regs = &tctx->regs[ring];
86     uint8_t nsr = regs[TM_NSR];
87     uint8_t mask = exception_mask(ring);
88 
89     qemu_irq_lower(xive_tctx_output(tctx, ring));
90 
91     if (regs[TM_NSR] & mask) {
92         uint8_t cppr = regs[TM_PIPR];
93 
94         regs[TM_CPPR] = cppr;
95 
96         /* Reset the pending buffer bit */
97         regs[TM_IPB] &= ~priority_to_ipb(cppr);
98         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
99 
100         /* Drop Exception bit */
101         regs[TM_NSR] &= ~mask;
102     }
103 
104     return (nsr << 8) | regs[TM_CPPR];
105 }
106 
107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
108 {
109     uint8_t *regs = &tctx->regs[ring];
110 
111     if (regs[TM_PIPR] < regs[TM_CPPR]) {
112         switch (ring) {
113         case TM_QW1_OS:
114             regs[TM_NSR] |= TM_QW1_NSR_EO;
115             break;
116         case TM_QW3_HV_PHYS:
117             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
118             break;
119         default:
120             g_assert_not_reached();
121         }
122         qemu_irq_raise(xive_tctx_output(tctx, ring));
123     }
124 }
125 
126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
127 {
128     if (cppr > XIVE_PRIORITY_MAX) {
129         cppr = 0xff;
130     }
131 
132     tctx->regs[ring + TM_CPPR] = cppr;
133 
134     /* CPPR has changed, check if we need to raise a pending exception */
135     xive_tctx_notify(tctx, ring);
136 }
137 
138 static inline uint32_t xive_tctx_word2(uint8_t *ring)
139 {
140     return *((uint32_t *) &ring[TM_WORD2]);
141 }
142 
143 /*
144  * XIVE Thread Interrupt Management Area (TIMA)
145  */
146 
147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
148                                 uint64_t value, unsigned size)
149 {
150     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
151 }
152 
153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
154 {
155     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
156 }
157 
158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
159                                       unsigned size)
160 {
161     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
162     uint32_t qw2w2;
163 
164     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
165     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
166     return qw2w2;
167 }
168 
169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
170                             uint64_t value, unsigned size)
171 {
172     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
173 }
174 
175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
176 {
177     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
178 }
179 
180 /*
181  * Define an access map for each page of the TIMA that we will use in
182  * the memory region ops to filter values when doing loads and stores
183  * of raw registers values
184  *
185  * Registers accessibility bits :
186  *
187  *    0x0 - no access
188  *    0x1 - write only
189  *    0x2 - read only
190  *    0x3 - read/write
191  */
192 
193 static const uint8_t xive_tm_hw_view[] = {
194     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
195     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
196     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
197     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
198 };
199 
200 static const uint8_t xive_tm_hv_view[] = {
201     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
202     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
203     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
204     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
205 };
206 
207 static const uint8_t xive_tm_os_view[] = {
208     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
209     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
210     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
211     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
212 };
213 
214 static const uint8_t xive_tm_user_view[] = {
215     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
216     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
217     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
218     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
219 };
220 
221 /*
222  * Overall TIMA access map for the thread interrupt management context
223  * registers
224  */
225 static const uint8_t *xive_tm_views[] = {
226     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
227     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
228     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
229     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
230 };
231 
232 /*
233  * Computes a register access mask for a given offset in the TIMA
234  */
235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
236 {
237     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
238     uint8_t reg_offset = offset & 0x3F;
239     uint8_t reg_mask = write ? 0x1 : 0x2;
240     uint64_t mask = 0x0;
241     int i;
242 
243     for (i = 0; i < size; i++) {
244         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
245             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
246         }
247     }
248 
249     return mask;
250 }
251 
252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
253                               unsigned size)
254 {
255     uint8_t ring_offset = offset & 0x30;
256     uint8_t reg_offset = offset & 0x3F;
257     uint64_t mask = xive_tm_mask(offset, size, true);
258     int i;
259 
260     /*
261      * Only 4 or 8 bytes stores are allowed and the User ring is
262      * excluded
263      */
264     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
265         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
266                       HWADDR_PRIx"\n", offset);
267         return;
268     }
269 
270     /*
271      * Use the register offset for the raw values and filter out
272      * reserved values
273      */
274     for (i = 0; i < size; i++) {
275         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
276         if (byte_mask) {
277             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
278                 byte_mask;
279         }
280     }
281 }
282 
283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
284 {
285     uint8_t ring_offset = offset & 0x30;
286     uint8_t reg_offset = offset & 0x3F;
287     uint64_t mask = xive_tm_mask(offset, size, false);
288     uint64_t ret;
289     int i;
290 
291     /*
292      * Only 4 or 8 bytes loads are allowed and the User ring is
293      * excluded
294      */
295     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
296         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
297                       HWADDR_PRIx"\n", offset);
298         return -1;
299     }
300 
301     /* Use the register offset for the raw values */
302     ret = 0;
303     for (i = 0; i < size; i++) {
304         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
305     }
306 
307     /* filter out reserved values */
308     return ret & mask;
309 }
310 
311 /*
312  * The TM context is mapped twice within each page. Stores and loads
313  * to the first mapping below 2K write and read the specified values
314  * without modification. The second mapping above 2K performs specific
315  * state changes (side effects) in addition to setting/returning the
316  * interrupt management area context of the processor thread.
317  */
318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
319 {
320     return xive_tctx_accept(tctx, TM_QW1_OS);
321 }
322 
323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
324                                 uint64_t value, unsigned size)
325 {
326     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
327 }
328 
329 /*
330  * Adjust the IPB to allow a CPU to process event queues of other
331  * priorities during one physical interrupt cycle.
332  */
333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
334                                    uint64_t value, unsigned size)
335 {
336     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
337     xive_tctx_notify(tctx, TM_QW1_OS);
338 }
339 
340 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
341                                     unsigned size)
342 {
343     uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
344     uint32_t qw1w2;
345 
346     qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0);
347     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
348     return qw1w2;
349 }
350 
351 /*
352  * Define a mapping of "special" operations depending on the TIMA page
353  * offset and the size of the operation.
354  */
355 typedef struct XiveTmOp {
356     uint8_t  page_offset;
357     uint32_t op_offset;
358     unsigned size;
359     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
360                               unsigned size);
361     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
362 } XiveTmOp;
363 
364 static const XiveTmOp xive_tm_operations[] = {
365     /*
366      * MMIOs below 2K : raw values and special operations without side
367      * effects
368      */
369     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
370     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
371     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
372     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
373 
374     /* MMIOs above 2K : special operations with side effects */
375     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
376     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
377     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
378     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
379     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
380     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
381     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
382 };
383 
384 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
385 {
386     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
387     uint32_t op_offset = offset & 0xFFF;
388     int i;
389 
390     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
391         const XiveTmOp *xto = &xive_tm_operations[i];
392 
393         /* Accesses done from a more privileged TIMA page is allowed */
394         if (xto->page_offset >= page_offset &&
395             xto->op_offset == op_offset &&
396             xto->size == size &&
397             ((write && xto->write_handler) || (!write && xto->read_handler))) {
398             return xto;
399         }
400     }
401     return NULL;
402 }
403 
404 /*
405  * TIMA MMIO handlers
406  */
407 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
408                         unsigned size)
409 {
410     const XiveTmOp *xto;
411 
412     /*
413      * TODO: check V bit in Q[0-3]W2
414      */
415 
416     /*
417      * First, check for special operations in the 2K region
418      */
419     if (offset & 0x800) {
420         xto = xive_tm_find_op(offset, size, true);
421         if (!xto) {
422             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
423                           "@%"HWADDR_PRIx"\n", offset);
424         } else {
425             xto->write_handler(tctx, offset, value, size);
426         }
427         return;
428     }
429 
430     /*
431      * Then, for special operations in the region below 2K.
432      */
433     xto = xive_tm_find_op(offset, size, true);
434     if (xto) {
435         xto->write_handler(tctx, offset, value, size);
436         return;
437     }
438 
439     /*
440      * Finish with raw access to the register values
441      */
442     xive_tm_raw_write(tctx, offset, value, size);
443 }
444 
445 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
446 {
447     const XiveTmOp *xto;
448 
449     /*
450      * TODO: check V bit in Q[0-3]W2
451      */
452 
453     /*
454      * First, check for special operations in the 2K region
455      */
456     if (offset & 0x800) {
457         xto = xive_tm_find_op(offset, size, false);
458         if (!xto) {
459             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
460                           "@%"HWADDR_PRIx"\n", offset);
461             return -1;
462         }
463         return xto->read_handler(tctx, offset, size);
464     }
465 
466     /*
467      * Then, for special operations in the region below 2K.
468      */
469     xto = xive_tm_find_op(offset, size, false);
470     if (xto) {
471         return xto->read_handler(tctx, offset, size);
472     }
473 
474     /*
475      * Finish with raw access to the register values
476      */
477     return xive_tm_raw_read(tctx, offset, size);
478 }
479 
480 static void xive_tm_write(void *opaque, hwaddr offset,
481                           uint64_t value, unsigned size)
482 {
483     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
484 
485     xive_tctx_tm_write(tctx, offset, value, size);
486 }
487 
488 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
489 {
490     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
491 
492     return xive_tctx_tm_read(tctx, offset, size);
493 }
494 
495 const MemoryRegionOps xive_tm_ops = {
496     .read = xive_tm_read,
497     .write = xive_tm_write,
498     .endianness = DEVICE_BIG_ENDIAN,
499     .valid = {
500         .min_access_size = 1,
501         .max_access_size = 8,
502     },
503     .impl = {
504         .min_access_size = 1,
505         .max_access_size = 8,
506     },
507 };
508 
509 static char *xive_tctx_ring_print(uint8_t *ring)
510 {
511     uint32_t w2 = xive_tctx_word2(ring);
512 
513     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
514                    "%02x  %02x   %02x  %08x",
515                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
516                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
517                    be32_to_cpu(w2));
518 }
519 
520 static const char * const xive_tctx_ring_names[] = {
521     "USER", "OS", "POOL", "PHYS",
522 };
523 
524 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
525 {
526     int cpu_index;
527     int i;
528 
529     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
530      * are hot plugged or unplugged.
531      */
532     if (!tctx) {
533         return;
534     }
535 
536     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
537 
538     if (kvm_irqchip_in_kernel()) {
539         Error *local_err = NULL;
540 
541         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
542         if (local_err) {
543             error_report_err(local_err);
544             return;
545         }
546     }
547 
548     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
549                    "  W2\n", cpu_index);
550 
551     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
552         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
553         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
554                        xive_tctx_ring_names[i], s);
555         g_free(s);
556     }
557 }
558 
559 void xive_tctx_reset(XiveTCTX *tctx)
560 {
561     memset(tctx->regs, 0, sizeof(tctx->regs));
562 
563     /* Set some defaults */
564     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
565     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
566     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
567 
568     /*
569      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
570      * CPPR is first set.
571      */
572     tctx->regs[TM_QW1_OS + TM_PIPR] =
573         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
574     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
575         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
576 }
577 
578 static void xive_tctx_realize(DeviceState *dev, Error **errp)
579 {
580     XiveTCTX *tctx = XIVE_TCTX(dev);
581     PowerPCCPU *cpu;
582     CPUPPCState *env;
583     Object *obj;
584     Error *local_err = NULL;
585 
586     obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
587     if (!obj) {
588         error_propagate(errp, local_err);
589         error_prepend(errp, "required link 'cpu' not found: ");
590         return;
591     }
592 
593     cpu = POWERPC_CPU(obj);
594     tctx->cs = CPU(obj);
595 
596     env = &cpu->env;
597     switch (PPC_INPUT(env)) {
598     case PPC_FLAGS_INPUT_POWER9:
599         tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
600         tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
601         break;
602 
603     default:
604         error_setg(errp, "XIVE interrupt controller does not support "
605                    "this CPU bus model");
606         return;
607     }
608 
609     /* Connect the presenter to the VCPU (required for CPU hotplug) */
610     if (kvm_irqchip_in_kernel()) {
611         kvmppc_xive_cpu_connect(tctx, &local_err);
612         if (local_err) {
613             error_propagate(errp, local_err);
614             return;
615         }
616     }
617 }
618 
619 static int vmstate_xive_tctx_pre_save(void *opaque)
620 {
621     Error *local_err = NULL;
622 
623     if (kvm_irqchip_in_kernel()) {
624         kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
625         if (local_err) {
626             error_report_err(local_err);
627             return -1;
628         }
629     }
630 
631     return 0;
632 }
633 
634 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
635 {
636     Error *local_err = NULL;
637 
638     if (kvm_irqchip_in_kernel()) {
639         /*
640          * Required for hotplugged CPU, for which the state comes
641          * after all states of the machine.
642          */
643         kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
644         if (local_err) {
645             error_report_err(local_err);
646             return -1;
647         }
648     }
649 
650     return 0;
651 }
652 
653 static const VMStateDescription vmstate_xive_tctx = {
654     .name = TYPE_XIVE_TCTX,
655     .version_id = 1,
656     .minimum_version_id = 1,
657     .pre_save = vmstate_xive_tctx_pre_save,
658     .post_load = vmstate_xive_tctx_post_load,
659     .fields = (VMStateField[]) {
660         VMSTATE_BUFFER(regs, XiveTCTX),
661         VMSTATE_END_OF_LIST()
662     },
663 };
664 
665 static void xive_tctx_class_init(ObjectClass *klass, void *data)
666 {
667     DeviceClass *dc = DEVICE_CLASS(klass);
668 
669     dc->desc = "XIVE Interrupt Thread Context";
670     dc->realize = xive_tctx_realize;
671     dc->vmsd = &vmstate_xive_tctx;
672     /*
673      * Reason: part of XIVE interrupt controller, needs to be wired up
674      * by xive_tctx_create().
675      */
676     dc->user_creatable = false;
677 }
678 
679 static const TypeInfo xive_tctx_info = {
680     .name          = TYPE_XIVE_TCTX,
681     .parent        = TYPE_DEVICE,
682     .instance_size = sizeof(XiveTCTX),
683     .class_init    = xive_tctx_class_init,
684 };
685 
686 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
687 {
688     Error *local_err = NULL;
689     Object *obj;
690 
691     obj = object_new(TYPE_XIVE_TCTX);
692     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
693     object_unref(obj);
694     object_ref(cpu);
695     object_property_add_const_link(obj, "cpu", cpu, &error_abort);
696     object_property_set_bool(obj, true, "realized", &local_err);
697     if (local_err) {
698         goto error;
699     }
700 
701     return obj;
702 
703 error:
704     object_unparent(obj);
705     error_propagate(errp, local_err);
706     return NULL;
707 }
708 
709 void xive_tctx_destroy(XiveTCTX *tctx)
710 {
711     Object *obj = OBJECT(tctx);
712 
713     object_unref(object_property_get_link(obj, "cpu", &error_abort));
714     object_unparent(obj);
715 }
716 
717 /*
718  * XIVE ESB helpers
719  */
720 
721 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
722 {
723     uint8_t old_pq = *pq & 0x3;
724 
725     *pq &= ~0x3;
726     *pq |= value & 0x3;
727 
728     return old_pq;
729 }
730 
731 static bool xive_esb_trigger(uint8_t *pq)
732 {
733     uint8_t old_pq = *pq & 0x3;
734 
735     switch (old_pq) {
736     case XIVE_ESB_RESET:
737         xive_esb_set(pq, XIVE_ESB_PENDING);
738         return true;
739     case XIVE_ESB_PENDING:
740     case XIVE_ESB_QUEUED:
741         xive_esb_set(pq, XIVE_ESB_QUEUED);
742         return false;
743     case XIVE_ESB_OFF:
744         xive_esb_set(pq, XIVE_ESB_OFF);
745         return false;
746     default:
747          g_assert_not_reached();
748     }
749 }
750 
751 static bool xive_esb_eoi(uint8_t *pq)
752 {
753     uint8_t old_pq = *pq & 0x3;
754 
755     switch (old_pq) {
756     case XIVE_ESB_RESET:
757     case XIVE_ESB_PENDING:
758         xive_esb_set(pq, XIVE_ESB_RESET);
759         return false;
760     case XIVE_ESB_QUEUED:
761         xive_esb_set(pq, XIVE_ESB_PENDING);
762         return true;
763     case XIVE_ESB_OFF:
764         xive_esb_set(pq, XIVE_ESB_OFF);
765         return false;
766     default:
767          g_assert_not_reached();
768     }
769 }
770 
771 /*
772  * XIVE Interrupt Source (or IVSE)
773  */
774 
775 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
776 {
777     assert(srcno < xsrc->nr_irqs);
778 
779     return xsrc->status[srcno] & 0x3;
780 }
781 
782 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
783 {
784     assert(srcno < xsrc->nr_irqs);
785 
786     return xive_esb_set(&xsrc->status[srcno], pq);
787 }
788 
789 /*
790  * Returns whether the event notification should be forwarded.
791  */
792 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
793 {
794     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
795 
796     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
797 
798     switch (old_pq) {
799     case XIVE_ESB_RESET:
800         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
801         return true;
802     default:
803         return false;
804     }
805 }
806 
807 /*
808  * Returns whether the event notification should be forwarded.
809  */
810 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
811 {
812     bool ret;
813 
814     assert(srcno < xsrc->nr_irqs);
815 
816     ret = xive_esb_trigger(&xsrc->status[srcno]);
817 
818     if (xive_source_irq_is_lsi(xsrc, srcno) &&
819         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
820         qemu_log_mask(LOG_GUEST_ERROR,
821                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
822     }
823 
824     return ret;
825 }
826 
827 /*
828  * Returns whether the event notification should be forwarded.
829  */
830 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
831 {
832     bool ret;
833 
834     assert(srcno < xsrc->nr_irqs);
835 
836     ret = xive_esb_eoi(&xsrc->status[srcno]);
837 
838     /*
839      * LSI sources do not set the Q bit but they can still be
840      * asserted, in which case we should forward a new event
841      * notification
842      */
843     if (xive_source_irq_is_lsi(xsrc, srcno) &&
844         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
845         ret = xive_source_lsi_trigger(xsrc, srcno);
846     }
847 
848     return ret;
849 }
850 
851 /*
852  * Forward the source event notification to the Router
853  */
854 static void xive_source_notify(XiveSource *xsrc, int srcno)
855 {
856     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
857 
858     if (xnc->notify) {
859         xnc->notify(xsrc->xive, srcno);
860     }
861 }
862 
863 /*
864  * In a two pages ESB MMIO setting, even page is the trigger page, odd
865  * page is for management
866  */
867 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
868 {
869     return !((addr >> shift) & 1);
870 }
871 
872 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
873 {
874     return xive_source_esb_has_2page(xsrc) &&
875         addr_is_even(addr, xsrc->esb_shift - 1);
876 }
877 
878 /*
879  * ESB MMIO loads
880  *                      Trigger page    Management/EOI page
881  *
882  * ESB MMIO setting     2 pages         1 or 2 pages
883  *
884  * 0x000 .. 0x3FF       -1              EOI and return 0|1
885  * 0x400 .. 0x7FF       -1              EOI and return 0|1
886  * 0x800 .. 0xBFF       -1              return PQ
887  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
888  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
889  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
890  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
891  */
892 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
893 {
894     XiveSource *xsrc = XIVE_SOURCE(opaque);
895     uint32_t offset = addr & 0xFFF;
896     uint32_t srcno = addr >> xsrc->esb_shift;
897     uint64_t ret = -1;
898 
899     /* In a two pages ESB MMIO setting, trigger page should not be read */
900     if (xive_source_is_trigger_page(xsrc, addr)) {
901         qemu_log_mask(LOG_GUEST_ERROR,
902                       "XIVE: invalid load on IRQ %d trigger page at "
903                       "0x%"HWADDR_PRIx"\n", srcno, addr);
904         return -1;
905     }
906 
907     switch (offset) {
908     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
909         ret = xive_source_esb_eoi(xsrc, srcno);
910 
911         /* Forward the source event notification for routing */
912         if (ret) {
913             xive_source_notify(xsrc, srcno);
914         }
915         break;
916 
917     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
918         ret = xive_source_esb_get(xsrc, srcno);
919         break;
920 
921     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
922     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
923     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
924     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
925         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
926         break;
927     default:
928         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
929                       offset);
930     }
931 
932     return ret;
933 }
934 
935 /*
936  * ESB MMIO stores
937  *                      Trigger page    Management/EOI page
938  *
939  * ESB MMIO setting     2 pages         1 or 2 pages
940  *
941  * 0x000 .. 0x3FF       Trigger         Trigger
942  * 0x400 .. 0x7FF       Trigger         EOI
943  * 0x800 .. 0xBFF       Trigger         undefined
944  * 0xC00 .. 0xCFF       Trigger         PQ=00
945  * 0xD00 .. 0xDFF       Trigger         PQ=01
946  * 0xE00 .. 0xDFF       Trigger         PQ=10
947  * 0xF00 .. 0xDFF       Trigger         PQ=11
948  */
949 static void xive_source_esb_write(void *opaque, hwaddr addr,
950                                   uint64_t value, unsigned size)
951 {
952     XiveSource *xsrc = XIVE_SOURCE(opaque);
953     uint32_t offset = addr & 0xFFF;
954     uint32_t srcno = addr >> xsrc->esb_shift;
955     bool notify = false;
956 
957     /* In a two pages ESB MMIO setting, trigger page only triggers */
958     if (xive_source_is_trigger_page(xsrc, addr)) {
959         notify = xive_source_esb_trigger(xsrc, srcno);
960         goto out;
961     }
962 
963     switch (offset) {
964     case 0 ... 0x3FF:
965         notify = xive_source_esb_trigger(xsrc, srcno);
966         break;
967 
968     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
969         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
970             qemu_log_mask(LOG_GUEST_ERROR,
971                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
972             return;
973         }
974 
975         notify = xive_source_esb_eoi(xsrc, srcno);
976         break;
977 
978     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
979     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
980     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
981     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
982         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
983         break;
984 
985     default:
986         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
987                       offset);
988         return;
989     }
990 
991 out:
992     /* Forward the source event notification for routing */
993     if (notify) {
994         xive_source_notify(xsrc, srcno);
995     }
996 }
997 
998 static const MemoryRegionOps xive_source_esb_ops = {
999     .read = xive_source_esb_read,
1000     .write = xive_source_esb_write,
1001     .endianness = DEVICE_BIG_ENDIAN,
1002     .valid = {
1003         .min_access_size = 8,
1004         .max_access_size = 8,
1005     },
1006     .impl = {
1007         .min_access_size = 8,
1008         .max_access_size = 8,
1009     },
1010 };
1011 
1012 void xive_source_set_irq(void *opaque, int srcno, int val)
1013 {
1014     XiveSource *xsrc = XIVE_SOURCE(opaque);
1015     bool notify = false;
1016 
1017     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1018         if (val) {
1019             notify = xive_source_lsi_trigger(xsrc, srcno);
1020         } else {
1021             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1022         }
1023     } else {
1024         if (val) {
1025             notify = xive_source_esb_trigger(xsrc, srcno);
1026         }
1027     }
1028 
1029     /* Forward the source event notification for routing */
1030     if (notify) {
1031         xive_source_notify(xsrc, srcno);
1032     }
1033 }
1034 
1035 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1036 {
1037     int i;
1038 
1039     for (i = 0; i < xsrc->nr_irqs; i++) {
1040         uint8_t pq = xive_source_esb_get(xsrc, i);
1041 
1042         if (pq == XIVE_ESB_OFF) {
1043             continue;
1044         }
1045 
1046         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1047                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1048                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1049                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1050                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1051     }
1052 }
1053 
1054 static void xive_source_reset(void *dev)
1055 {
1056     XiveSource *xsrc = XIVE_SOURCE(dev);
1057 
1058     /* Do not clear the LSI bitmap */
1059 
1060     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1061     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1062 }
1063 
1064 static void xive_source_realize(DeviceState *dev, Error **errp)
1065 {
1066     XiveSource *xsrc = XIVE_SOURCE(dev);
1067     Object *obj;
1068     Error *local_err = NULL;
1069 
1070     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1071     if (!obj) {
1072         error_propagate(errp, local_err);
1073         error_prepend(errp, "required link 'xive' not found: ");
1074         return;
1075     }
1076 
1077     xsrc->xive = XIVE_NOTIFIER(obj);
1078 
1079     if (!xsrc->nr_irqs) {
1080         error_setg(errp, "Number of interrupt needs to be greater than 0");
1081         return;
1082     }
1083 
1084     if (xsrc->esb_shift != XIVE_ESB_4K &&
1085         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1086         xsrc->esb_shift != XIVE_ESB_64K &&
1087         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1088         error_setg(errp, "Invalid ESB shift setting");
1089         return;
1090     }
1091 
1092     xsrc->status = g_malloc0(xsrc->nr_irqs);
1093     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1094 
1095     if (!kvm_irqchip_in_kernel()) {
1096         memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1097                               &xive_source_esb_ops, xsrc, "xive.esb",
1098                               (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1099     }
1100 
1101     qemu_register_reset(xive_source_reset, dev);
1102 }
1103 
1104 static const VMStateDescription vmstate_xive_source = {
1105     .name = TYPE_XIVE_SOURCE,
1106     .version_id = 1,
1107     .minimum_version_id = 1,
1108     .fields = (VMStateField[]) {
1109         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1110         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1111         VMSTATE_END_OF_LIST()
1112     },
1113 };
1114 
1115 /*
1116  * The default XIVE interrupt source setting for the ESB MMIOs is two
1117  * 64k pages without Store EOI, to be in sync with KVM.
1118  */
1119 static Property xive_source_properties[] = {
1120     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1121     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1122     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1123     DEFINE_PROP_END_OF_LIST(),
1124 };
1125 
1126 static void xive_source_class_init(ObjectClass *klass, void *data)
1127 {
1128     DeviceClass *dc = DEVICE_CLASS(klass);
1129 
1130     dc->desc    = "XIVE Interrupt Source";
1131     dc->props   = xive_source_properties;
1132     dc->realize = xive_source_realize;
1133     dc->vmsd    = &vmstate_xive_source;
1134     /*
1135      * Reason: part of XIVE interrupt controller, needs to be wired up,
1136      * e.g. by spapr_xive_instance_init().
1137      */
1138     dc->user_creatable = false;
1139 }
1140 
1141 static const TypeInfo xive_source_info = {
1142     .name          = TYPE_XIVE_SOURCE,
1143     .parent        = TYPE_DEVICE,
1144     .instance_size = sizeof(XiveSource),
1145     .class_init    = xive_source_class_init,
1146 };
1147 
1148 /*
1149  * XiveEND helpers
1150  */
1151 
1152 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1153 {
1154     uint64_t qaddr_base = xive_end_qaddr(end);
1155     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1156     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1157     uint32_t qentries = 1 << (qsize + 10);
1158     int i;
1159 
1160     /*
1161      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1162      */
1163     monitor_printf(mon, " [ ");
1164     qindex = (qindex - (width - 1)) & (qentries - 1);
1165     for (i = 0; i < width; i++) {
1166         uint64_t qaddr = qaddr_base + (qindex << 2);
1167         uint32_t qdata = -1;
1168 
1169         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1170                             sizeof(qdata))) {
1171             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1172                           HWADDR_PRIx "\n", qaddr);
1173             return;
1174         }
1175         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1176                        be32_to_cpu(qdata));
1177         qindex = (qindex + 1) & (qentries - 1);
1178     }
1179     monitor_printf(mon, "]");
1180 }
1181 
1182 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1183 {
1184     uint64_t qaddr_base = xive_end_qaddr(end);
1185     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1186     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1187     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1188     uint32_t qentries = 1 << (qsize + 10);
1189 
1190     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1191     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1192     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1193     uint8_t pq;
1194 
1195     if (!xive_end_is_valid(end)) {
1196         return;
1197     }
1198 
1199     pq = xive_get_field32(END_W1_ESn, end->w1);
1200 
1201     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1202                    end_idx,
1203                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1204                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1205                    xive_end_is_valid(end)    ? 'v' : '-',
1206                    xive_end_is_enqueue(end)  ? 'q' : '-',
1207                    xive_end_is_notify(end)   ? 'n' : '-',
1208                    xive_end_is_backlog(end)  ? 'b' : '-',
1209                    xive_end_is_escalate(end) ? 'e' : '-',
1210                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1211                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1212                    priority, nvt_blk, nvt_idx);
1213 
1214     if (qaddr_base) {
1215         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1216                        qaddr_base, qindex, qentries, qgen);
1217         xive_end_queue_pic_print_info(end, 6, mon);
1218     }
1219     monitor_printf(mon, "\n");
1220 }
1221 
1222 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1223 {
1224     uint64_t qaddr_base = xive_end_qaddr(end);
1225     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1226     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1227     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1228 
1229     uint64_t qaddr = qaddr_base + (qindex << 2);
1230     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1231     uint32_t qentries = 1 << (qsize + 10);
1232 
1233     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1234         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1235                       HWADDR_PRIx "\n", qaddr);
1236         return;
1237     }
1238 
1239     qindex = (qindex + 1) & (qentries - 1);
1240     if (qindex == 0) {
1241         qgen ^= 1;
1242         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1243     }
1244     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1245 }
1246 
1247 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1248                                    Monitor *mon)
1249 {
1250     XiveEAS *eas = (XiveEAS *) &end->w4;
1251     uint8_t pq;
1252 
1253     if (!xive_end_is_escalate(end)) {
1254         return;
1255     }
1256 
1257     pq = xive_get_field32(END_W1_ESe, end->w1);
1258 
1259     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1260                    end_idx,
1261                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1262                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1263                    xive_eas_is_valid(eas) ? 'V' : ' ',
1264                    xive_eas_is_masked(eas) ? 'M' : ' ',
1265                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1266                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1267                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1268 }
1269 
1270 /*
1271  * XIVE Router (aka. Virtualization Controller or IVRE)
1272  */
1273 
1274 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1275                         XiveEAS *eas)
1276 {
1277     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1278 
1279     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1280 }
1281 
1282 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1283                         XiveEND *end)
1284 {
1285    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1286 
1287    return xrc->get_end(xrtr, end_blk, end_idx, end);
1288 }
1289 
1290 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1291                           XiveEND *end, uint8_t word_number)
1292 {
1293    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1294 
1295    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1296 }
1297 
1298 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1299                         XiveNVT *nvt)
1300 {
1301    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1302 
1303    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1304 }
1305 
1306 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1307                         XiveNVT *nvt, uint8_t word_number)
1308 {
1309    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1310 
1311    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1312 }
1313 
1314 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1315 {
1316     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1317 
1318     return xrc->get_tctx(xrtr, cs);
1319 }
1320 
1321 /*
1322  * Encode the HW CAM line in the block group mode format :
1323  *
1324  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1325  */
1326 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1327 {
1328     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1329     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1330 
1331     return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1332 }
1333 
1334 /*
1335  * The thread context register words are in big-endian format.
1336  */
1337 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1338                                      uint8_t nvt_blk, uint32_t nvt_idx,
1339                                      bool cam_ignore, uint32_t logic_serv)
1340 {
1341     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1342     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1343     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1344     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1345     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1346 
1347     /*
1348      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1349      * identifier are ignored in the "CAM" match.
1350      */
1351 
1352     if (format == 0) {
1353         if (cam_ignore == true) {
1354             /*
1355              * F=0 & i=1: Logical server notification (bits ignored at
1356              * the end of the NVT identifier)
1357              */
1358             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1359                           nvt_blk, nvt_idx);
1360              return -1;
1361         }
1362 
1363         /* F=0 & i=0: Specific NVT notification */
1364 
1365         /* PHYS ring */
1366         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1367             cam == xive_tctx_hw_cam_line(tctx)) {
1368             return TM_QW3_HV_PHYS;
1369         }
1370 
1371         /* HV POOL ring */
1372         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1373             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1374             return TM_QW2_HV_POOL;
1375         }
1376 
1377         /* OS ring */
1378         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1379             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1380             return TM_QW1_OS;
1381         }
1382     } else {
1383         /* F=1 : User level Event-Based Branch (EBB) notification */
1384 
1385         /* USER ring */
1386         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1387              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1388              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1389              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1390             return TM_QW0_USER;
1391         }
1392     }
1393     return -1;
1394 }
1395 
1396 typedef struct XiveTCTXMatch {
1397     XiveTCTX *tctx;
1398     uint8_t ring;
1399 } XiveTCTXMatch;
1400 
1401 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1402                                  uint8_t nvt_blk, uint32_t nvt_idx,
1403                                  bool cam_ignore, uint8_t priority,
1404                                  uint32_t logic_serv, XiveTCTXMatch *match)
1405 {
1406     CPUState *cs;
1407 
1408     /*
1409      * TODO (PowerNV): handle chip_id overwrite of block field for
1410      * hardwired CAM compares
1411      */
1412 
1413     CPU_FOREACH(cs) {
1414         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1415         int ring;
1416 
1417         /*
1418          * Skip partially initialized vCPUs. This can happen when
1419          * vCPUs are hotplugged.
1420          */
1421         if (!tctx) {
1422             continue;
1423         }
1424 
1425         /*
1426          * HW checks that the CPU is enabled in the Physical Thread
1427          * Enable Register (PTER).
1428          */
1429 
1430         /*
1431          * Check the thread context CAM lines and record matches. We
1432          * will handle CPU exception delivery later
1433          */
1434         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1435                                          cam_ignore, logic_serv);
1436         /*
1437          * Save the context and follow on to catch duplicates, that we
1438          * don't support yet.
1439          */
1440         if (ring != -1) {
1441             if (match->tctx) {
1442                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1443                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1444                 return false;
1445             }
1446 
1447             match->ring = ring;
1448             match->tctx = tctx;
1449         }
1450     }
1451 
1452     if (!match->tctx) {
1453         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1454                       nvt_blk, nvt_idx);
1455         return false;
1456     }
1457 
1458     return true;
1459 }
1460 
1461 /*
1462  * This is our simple Xive Presenter Engine model. It is merged in the
1463  * Router as it does not require an extra object.
1464  *
1465  * It receives notification requests sent by the IVRE to find one
1466  * matching NVT (or more) dispatched on the processor threads. In case
1467  * of a single NVT notification, the process is abreviated and the
1468  * thread is signaled if a match is found. In case of a logical server
1469  * notification (bits ignored at the end of the NVT identifier), the
1470  * IVPE and IVRE select a winning thread using different filters. This
1471  * involves 2 or 3 exchanges on the PowerBus that the model does not
1472  * support.
1473  *
1474  * The parameters represent what is sent on the PowerBus
1475  */
1476 static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1477                                   uint8_t nvt_blk, uint32_t nvt_idx,
1478                                   bool cam_ignore, uint8_t priority,
1479                                   uint32_t logic_serv)
1480 {
1481     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1482     bool found;
1483 
1484     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1485                                  priority, logic_serv, &match);
1486     if (found) {
1487         ipb_update(&match.tctx->regs[match.ring], priority);
1488         xive_tctx_notify(match.tctx, match.ring);
1489     }
1490 
1491     return found;
1492 }
1493 
1494 /*
1495  * Notification using the END ESe/ESn bit (Event State Buffer for
1496  * escalation and notification). Profide futher coalescing in the
1497  * Router.
1498  */
1499 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1500                                       uint32_t end_idx, XiveEND *end,
1501                                       uint32_t end_esmask)
1502 {
1503     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1504     bool notify = xive_esb_trigger(&pq);
1505 
1506     if (pq != xive_get_field32(end_esmask, end->w1)) {
1507         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1508         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1509     }
1510 
1511     /* ESe/n[Q]=1 : end of notification */
1512     return notify;
1513 }
1514 
1515 /*
1516  * An END trigger can come from an event trigger (IPI or HW) or from
1517  * another chip. We don't model the PowerBus but the END trigger
1518  * message has the same parameters than in the function below.
1519  */
1520 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1521                                    uint32_t end_idx, uint32_t end_data)
1522 {
1523     XiveEND end;
1524     uint8_t priority;
1525     uint8_t format;
1526     uint8_t nvt_blk;
1527     uint32_t nvt_idx;
1528     XiveNVT nvt;
1529     bool found;
1530 
1531     /* END cache lookup */
1532     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1533         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1534                       end_idx);
1535         return;
1536     }
1537 
1538     if (!xive_end_is_valid(&end)) {
1539         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1540                       end_blk, end_idx);
1541         return;
1542     }
1543 
1544     if (xive_end_is_enqueue(&end)) {
1545         xive_end_enqueue(&end, end_data);
1546         /* Enqueuing event data modifies the EQ toggle and index */
1547         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1548     }
1549 
1550     /*
1551      * When the END is silent, we skip the notification part.
1552      */
1553     if (xive_end_is_silent_escalation(&end)) {
1554         goto do_escalation;
1555     }
1556 
1557     /*
1558      * The W7 format depends on the F bit in W6. It defines the type
1559      * of the notification :
1560      *
1561      *   F=0 : single or multiple NVT notification
1562      *   F=1 : User level Event-Based Branch (EBB) notification, no
1563      *         priority
1564      */
1565     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1566     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1567 
1568     /* The END is masked */
1569     if (format == 0 && priority == 0xff) {
1570         return;
1571     }
1572 
1573     /*
1574      * Check the END ESn (Event State Buffer for notification) for
1575      * even futher coalescing in the Router
1576      */
1577     if (!xive_end_is_notify(&end)) {
1578         /* ESn[Q]=1 : end of notification */
1579         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1580                                        &end, END_W1_ESn)) {
1581             return;
1582         }
1583     }
1584 
1585     /*
1586      * Follows IVPE notification
1587      */
1588     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1589     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1590 
1591     /* NVT cache lookup */
1592     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1593         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1594                       nvt_blk, nvt_idx);
1595         return;
1596     }
1597 
1598     if (!xive_nvt_is_valid(&nvt)) {
1599         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1600                       nvt_blk, nvt_idx);
1601         return;
1602     }
1603 
1604     found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx,
1605                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1606                           priority,
1607                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1608 
1609     /* TODO: Auto EOI. */
1610 
1611     if (found) {
1612         return;
1613     }
1614 
1615     /*
1616      * If no matching NVT is dispatched on a HW thread :
1617      * - specific VP: update the NVT structure if backlog is activated
1618      * - logical server : forward request to IVPE (not supported)
1619      */
1620     if (xive_end_is_backlog(&end)) {
1621         if (format == 1) {
1622             qemu_log_mask(LOG_GUEST_ERROR,
1623                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1624                           end_blk, end_idx);
1625             return;
1626         }
1627         /* Record the IPB in the associated NVT structure */
1628         ipb_update((uint8_t *) &nvt.w4, priority);
1629         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1630 
1631         /*
1632          * On HW, follows a "Broadcast Backlog" to IVPEs
1633          */
1634     }
1635 
1636 do_escalation:
1637     /*
1638      * If activated, escalate notification using the ESe PQ bits and
1639      * the EAS in w4-5
1640      */
1641     if (!xive_end_is_escalate(&end)) {
1642         return;
1643     }
1644 
1645     /*
1646      * Check the END ESe (Event State Buffer for escalation) for even
1647      * futher coalescing in the Router
1648      */
1649     if (!xive_end_is_uncond_escalation(&end)) {
1650         /* ESe[Q]=1 : end of notification */
1651         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1652                                        &end, END_W1_ESe)) {
1653             return;
1654         }
1655     }
1656 
1657     /*
1658      * The END trigger becomes an Escalation trigger
1659      */
1660     xive_router_end_notify(xrtr,
1661                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1662                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1663                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1664 }
1665 
1666 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1667 {
1668     XiveRouter *xrtr = XIVE_ROUTER(xn);
1669     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1670     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1671     XiveEAS eas;
1672 
1673     /* EAS cache lookup */
1674     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1675         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1676         return;
1677     }
1678 
1679     /*
1680      * The IVRE checks the State Bit Cache at this point. We skip the
1681      * SBC lookup because the state bits of the sources are modeled
1682      * internally in QEMU.
1683      */
1684 
1685     if (!xive_eas_is_valid(&eas)) {
1686         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1687         return;
1688     }
1689 
1690     if (xive_eas_is_masked(&eas)) {
1691         /* Notification completed */
1692         return;
1693     }
1694 
1695     /*
1696      * The event trigger becomes an END trigger
1697      */
1698     xive_router_end_notify(xrtr,
1699                            xive_get_field64(EAS_END_BLOCK, eas.w),
1700                            xive_get_field64(EAS_END_INDEX, eas.w),
1701                            xive_get_field64(EAS_END_DATA,  eas.w));
1702 }
1703 
1704 static void xive_router_class_init(ObjectClass *klass, void *data)
1705 {
1706     DeviceClass *dc = DEVICE_CLASS(klass);
1707     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1708 
1709     dc->desc    = "XIVE Router Engine";
1710     xnc->notify = xive_router_notify;
1711 }
1712 
1713 static const TypeInfo xive_router_info = {
1714     .name          = TYPE_XIVE_ROUTER,
1715     .parent        = TYPE_SYS_BUS_DEVICE,
1716     .abstract      = true,
1717     .class_size    = sizeof(XiveRouterClass),
1718     .class_init    = xive_router_class_init,
1719     .interfaces    = (InterfaceInfo[]) {
1720         { TYPE_XIVE_NOTIFIER },
1721         { }
1722     }
1723 };
1724 
1725 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1726 {
1727     if (!xive_eas_is_valid(eas)) {
1728         return;
1729     }
1730 
1731     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1732                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1733                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1734                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1735                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1736 }
1737 
1738 /*
1739  * END ESB MMIO loads
1740  */
1741 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1742 {
1743     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1744     uint32_t offset = addr & 0xFFF;
1745     uint8_t end_blk;
1746     uint32_t end_idx;
1747     XiveEND end;
1748     uint32_t end_esmask;
1749     uint8_t pq;
1750     uint64_t ret = -1;
1751 
1752     end_blk = xsrc->block_id;
1753     end_idx = addr >> (xsrc->esb_shift + 1);
1754 
1755     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1756         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1757                       end_idx);
1758         return -1;
1759     }
1760 
1761     if (!xive_end_is_valid(&end)) {
1762         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1763                       end_blk, end_idx);
1764         return -1;
1765     }
1766 
1767     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1768     pq = xive_get_field32(end_esmask, end.w1);
1769 
1770     switch (offset) {
1771     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1772         ret = xive_esb_eoi(&pq);
1773 
1774         /* Forward the source event notification for routing ?? */
1775         break;
1776 
1777     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1778         ret = pq;
1779         break;
1780 
1781     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1782     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1783     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1784     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1785         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1786         break;
1787     default:
1788         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1789                       offset);
1790         return -1;
1791     }
1792 
1793     if (pq != xive_get_field32(end_esmask, end.w1)) {
1794         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1795         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1796     }
1797 
1798     return ret;
1799 }
1800 
1801 /*
1802  * END ESB MMIO stores are invalid
1803  */
1804 static void xive_end_source_write(void *opaque, hwaddr addr,
1805                                   uint64_t value, unsigned size)
1806 {
1807     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1808                   HWADDR_PRIx"\n", addr);
1809 }
1810 
1811 static const MemoryRegionOps xive_end_source_ops = {
1812     .read = xive_end_source_read,
1813     .write = xive_end_source_write,
1814     .endianness = DEVICE_BIG_ENDIAN,
1815     .valid = {
1816         .min_access_size = 8,
1817         .max_access_size = 8,
1818     },
1819     .impl = {
1820         .min_access_size = 8,
1821         .max_access_size = 8,
1822     },
1823 };
1824 
1825 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1826 {
1827     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1828     Object *obj;
1829     Error *local_err = NULL;
1830 
1831     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1832     if (!obj) {
1833         error_propagate(errp, local_err);
1834         error_prepend(errp, "required link 'xive' not found: ");
1835         return;
1836     }
1837 
1838     xsrc->xrtr = XIVE_ROUTER(obj);
1839 
1840     if (!xsrc->nr_ends) {
1841         error_setg(errp, "Number of interrupt needs to be greater than 0");
1842         return;
1843     }
1844 
1845     if (xsrc->esb_shift != XIVE_ESB_4K &&
1846         xsrc->esb_shift != XIVE_ESB_64K) {
1847         error_setg(errp, "Invalid ESB shift setting");
1848         return;
1849     }
1850 
1851     /*
1852      * Each END is assigned an even/odd pair of MMIO pages, the even page
1853      * manages the ESn field while the odd page manages the ESe field.
1854      */
1855     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1856                           &xive_end_source_ops, xsrc, "xive.end",
1857                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1858 }
1859 
1860 static Property xive_end_source_properties[] = {
1861     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1862     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1863     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1864     DEFINE_PROP_END_OF_LIST(),
1865 };
1866 
1867 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1868 {
1869     DeviceClass *dc = DEVICE_CLASS(klass);
1870 
1871     dc->desc    = "XIVE END Source";
1872     dc->props   = xive_end_source_properties;
1873     dc->realize = xive_end_source_realize;
1874     /*
1875      * Reason: part of XIVE interrupt controller, needs to be wired up,
1876      * e.g. by spapr_xive_instance_init().
1877      */
1878     dc->user_creatable = false;
1879 }
1880 
1881 static const TypeInfo xive_end_source_info = {
1882     .name          = TYPE_XIVE_END_SOURCE,
1883     .parent        = TYPE_DEVICE,
1884     .instance_size = sizeof(XiveENDSource),
1885     .class_init    = xive_end_source_class_init,
1886 };
1887 
1888 /*
1889  * XIVE Notifier
1890  */
1891 static const TypeInfo xive_notifier_info = {
1892     .name = TYPE_XIVE_NOTIFIER,
1893     .parent = TYPE_INTERFACE,
1894     .class_size = sizeof(XiveNotifierClass),
1895 };
1896 
1897 static void xive_register_types(void)
1898 {
1899     type_register_static(&xive_source_info);
1900     type_register_static(&xive_notifier_info);
1901     type_register_static(&xive_router_info);
1902     type_register_static(&xive_end_source_info);
1903     type_register_static(&xive_tctx_info);
1904 }
1905 
1906 type_init(xive_register_types)
1907