1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive_regs.h" 24 #include "trace.h" 25 26 /* 27 * XIVE Thread Interrupt Management context 28 */ 29 30 /* 31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 32 * Interrupt Priority Register (PIPR), which contains the priority of 33 * the most favored pending notification. 34 */ 35 static uint8_t ipb_to_pipr(uint8_t ibp) 36 { 37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 38 } 39 40 static uint8_t exception_mask(uint8_t ring) 41 { 42 switch (ring) { 43 case TM_QW1_OS: 44 return TM_QW1_NSR_EO; 45 case TM_QW3_HV_PHYS: 46 return TM_QW3_NSR_HE; 47 default: 48 g_assert_not_reached(); 49 } 50 } 51 52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 53 { 54 switch (ring) { 55 case TM_QW0_USER: 56 return 0; /* Not supported */ 57 case TM_QW1_OS: 58 return tctx->os_output; 59 case TM_QW2_HV_POOL: 60 case TM_QW3_HV_PHYS: 61 return tctx->hv_output; 62 default: 63 return 0; 64 } 65 } 66 67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 68 { 69 uint8_t *regs = &tctx->regs[ring]; 70 uint8_t nsr = regs[TM_NSR]; 71 uint8_t mask = exception_mask(ring); 72 73 qemu_irq_lower(xive_tctx_output(tctx, ring)); 74 75 if (regs[TM_NSR] & mask) { 76 uint8_t cppr = regs[TM_PIPR]; 77 78 regs[TM_CPPR] = cppr; 79 80 /* Reset the pending buffer bit */ 81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 83 84 /* Drop Exception bit */ 85 regs[TM_NSR] &= ~mask; 86 87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 88 regs[TM_IPB], regs[TM_PIPR], 89 regs[TM_CPPR], regs[TM_NSR]); 90 } 91 92 return (nsr << 8) | regs[TM_CPPR]; 93 } 94 95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 96 { 97 uint8_t *regs = &tctx->regs[ring]; 98 99 if (regs[TM_PIPR] < regs[TM_CPPR]) { 100 switch (ring) { 101 case TM_QW1_OS: 102 regs[TM_NSR] |= TM_QW1_NSR_EO; 103 break; 104 case TM_QW3_HV_PHYS: 105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 106 break; 107 default: 108 g_assert_not_reached(); 109 } 110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 111 regs[TM_IPB], regs[TM_PIPR], 112 regs[TM_CPPR], regs[TM_NSR]); 113 qemu_irq_raise(xive_tctx_output(tctx, ring)); 114 } 115 } 116 117 void xive_tctx_reset_os_signal(XiveTCTX *tctx) 118 { 119 /* 120 * Lower the External interrupt. Used when pulling an OS 121 * context. It is necessary to avoid catching it in the hypervisor 122 * context. It should be raised again when re-pushing the OS 123 * context. 124 */ 125 qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS)); 126 } 127 128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 129 { 130 uint8_t *regs = &tctx->regs[ring]; 131 132 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 133 regs[TM_IPB], regs[TM_PIPR], 134 cppr, regs[TM_NSR]); 135 136 if (cppr > XIVE_PRIORITY_MAX) { 137 cppr = 0xff; 138 } 139 140 tctx->regs[ring + TM_CPPR] = cppr; 141 142 /* CPPR has changed, check if we need to raise a pending exception */ 143 xive_tctx_notify(tctx, ring); 144 } 145 146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 147 { 148 uint8_t *regs = &tctx->regs[ring]; 149 150 regs[TM_IPB] |= ipb; 151 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 152 xive_tctx_notify(tctx, ring); 153 } 154 155 /* 156 * XIVE Thread Interrupt Management Area (TIMA) 157 */ 158 159 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 160 hwaddr offset, uint64_t value, unsigned size) 161 { 162 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 163 } 164 165 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 166 hwaddr offset, unsigned size) 167 { 168 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 169 } 170 171 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 172 hwaddr offset, unsigned size) 173 { 174 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 175 uint32_t qw2w2; 176 177 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 178 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 179 return qw2w2; 180 } 181 182 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 183 uint64_t value, unsigned size) 184 { 185 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 186 } 187 188 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 189 hwaddr offset, unsigned size) 190 { 191 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 192 } 193 194 /* 195 * Define an access map for each page of the TIMA that we will use in 196 * the memory region ops to filter values when doing loads and stores 197 * of raw registers values 198 * 199 * Registers accessibility bits : 200 * 201 * 0x0 - no access 202 * 0x1 - write only 203 * 0x2 - read only 204 * 0x3 - read/write 205 */ 206 207 static const uint8_t xive_tm_hw_view[] = { 208 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 209 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 210 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 211 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 212 }; 213 214 static const uint8_t xive_tm_hv_view[] = { 215 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 216 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 217 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 218 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 219 }; 220 221 static const uint8_t xive_tm_os_view[] = { 222 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 223 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 226 }; 227 228 static const uint8_t xive_tm_user_view[] = { 229 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 231 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 233 }; 234 235 /* 236 * Overall TIMA access map for the thread interrupt management context 237 * registers 238 */ 239 static const uint8_t *xive_tm_views[] = { 240 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 241 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 242 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 243 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 244 }; 245 246 /* 247 * Computes a register access mask for a given offset in the TIMA 248 */ 249 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 250 { 251 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 252 uint8_t reg_offset = offset & TM_REG_OFFSET; 253 uint8_t reg_mask = write ? 0x1 : 0x2; 254 uint64_t mask = 0x0; 255 int i; 256 257 for (i = 0; i < size; i++) { 258 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 259 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 260 } 261 } 262 263 return mask; 264 } 265 266 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 267 unsigned size) 268 { 269 uint8_t ring_offset = offset & TM_RING_OFFSET; 270 uint8_t reg_offset = offset & TM_REG_OFFSET; 271 uint64_t mask = xive_tm_mask(offset, size, true); 272 int i; 273 274 /* 275 * Only 4 or 8 bytes stores are allowed and the User ring is 276 * excluded 277 */ 278 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 279 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 280 HWADDR_PRIx"\n", offset); 281 return; 282 } 283 284 /* 285 * Use the register offset for the raw values and filter out 286 * reserved values 287 */ 288 for (i = 0; i < size; i++) { 289 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 290 if (byte_mask) { 291 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 292 byte_mask; 293 } 294 } 295 } 296 297 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 298 { 299 uint8_t ring_offset = offset & TM_RING_OFFSET; 300 uint8_t reg_offset = offset & TM_REG_OFFSET; 301 uint64_t mask = xive_tm_mask(offset, size, false); 302 uint64_t ret; 303 int i; 304 305 /* 306 * Only 4 or 8 bytes loads are allowed and the User ring is 307 * excluded 308 */ 309 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 310 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 311 HWADDR_PRIx"\n", offset); 312 return -1; 313 } 314 315 /* Use the register offset for the raw values */ 316 ret = 0; 317 for (i = 0; i < size; i++) { 318 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 319 } 320 321 /* filter out reserved values */ 322 return ret & mask; 323 } 324 325 /* 326 * The TM context is mapped twice within each page. Stores and loads 327 * to the first mapping below 2K write and read the specified values 328 * without modification. The second mapping above 2K performs specific 329 * state changes (side effects) in addition to setting/returning the 330 * interrupt management area context of the processor thread. 331 */ 332 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 333 hwaddr offset, unsigned size) 334 { 335 return xive_tctx_accept(tctx, TM_QW1_OS); 336 } 337 338 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 339 hwaddr offset, uint64_t value, unsigned size) 340 { 341 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 342 } 343 344 /* 345 * Adjust the IPB to allow a CPU to process event queues of other 346 * priorities during one physical interrupt cycle. 347 */ 348 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 349 hwaddr offset, uint64_t value, unsigned size) 350 { 351 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff)); 352 } 353 354 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 355 uint32_t *nvt_idx, bool *vo) 356 { 357 if (nvt_blk) { 358 *nvt_blk = xive_nvt_blk(cam); 359 } 360 if (nvt_idx) { 361 *nvt_idx = xive_nvt_idx(cam); 362 } 363 if (vo) { 364 *vo = !!(cam & TM_QW1W2_VO); 365 } 366 } 367 368 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 369 uint32_t *nvt_idx, bool *vo) 370 { 371 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 372 uint32_t cam = be32_to_cpu(qw1w2); 373 374 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 375 return qw1w2; 376 } 377 378 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 379 { 380 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 381 } 382 383 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 384 hwaddr offset, unsigned size) 385 { 386 uint32_t qw1w2; 387 uint32_t qw1w2_new; 388 uint8_t nvt_blk; 389 uint32_t nvt_idx; 390 bool vo; 391 392 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 393 394 if (!vo) { 395 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 396 nvt_blk, nvt_idx); 397 } 398 399 /* Invalidate CAM line */ 400 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 401 xive_tctx_set_os_cam(tctx, qw1w2_new); 402 403 xive_tctx_reset_os_signal(tctx); 404 return qw1w2; 405 } 406 407 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 408 uint8_t nvt_blk, uint32_t nvt_idx) 409 { 410 XiveNVT nvt; 411 uint8_t ipb; 412 413 /* 414 * Grab the associated NVT to pull the pending bits, and merge 415 * them with the IPB of the thread interrupt context registers 416 */ 417 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 418 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 419 nvt_blk, nvt_idx); 420 return; 421 } 422 423 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 424 425 if (ipb) { 426 /* Reset the NVT value */ 427 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 428 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 429 } 430 /* 431 * Always call xive_tctx_ipb_update(). Even if there were no 432 * escalation triggered, there could be a pending interrupt which 433 * was saved when the context was pulled and that we need to take 434 * into account by recalculating the PIPR (which is not 435 * saved/restored). 436 * It will also raise the External interrupt signal if needed. 437 */ 438 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 439 } 440 441 /* 442 * Updating the OS CAM line can trigger a resend of interrupt 443 */ 444 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 445 hwaddr offset, uint64_t value, unsigned size) 446 { 447 uint32_t cam = value; 448 uint32_t qw1w2 = cpu_to_be32(cam); 449 uint8_t nvt_blk; 450 uint32_t nvt_idx; 451 bool vo; 452 453 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 454 455 /* First update the registers */ 456 xive_tctx_set_os_cam(tctx, qw1w2); 457 458 /* Check the interrupt pending bits */ 459 if (vo) { 460 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 461 } 462 } 463 464 /* 465 * Define a mapping of "special" operations depending on the TIMA page 466 * offset and the size of the operation. 467 */ 468 typedef struct XiveTmOp { 469 uint8_t page_offset; 470 uint32_t op_offset; 471 unsigned size; 472 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 473 hwaddr offset, 474 uint64_t value, unsigned size); 475 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 476 unsigned size); 477 } XiveTmOp; 478 479 static const XiveTmOp xive_tm_operations[] = { 480 /* 481 * MMIOs below 2K : raw values and special operations without side 482 * effects 483 */ 484 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 485 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 486 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 487 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 488 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 489 490 /* MMIOs above 2K : special operations with side effects */ 491 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 492 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 493 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 494 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 495 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 496 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 497 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 498 }; 499 500 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 501 { 502 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 503 uint32_t op_offset = offset & TM_ADDRESS_MASK; 504 int i; 505 506 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 507 const XiveTmOp *xto = &xive_tm_operations[i]; 508 509 /* Accesses done from a more privileged TIMA page is allowed */ 510 if (xto->page_offset >= page_offset && 511 xto->op_offset == op_offset && 512 xto->size == size && 513 ((write && xto->write_handler) || (!write && xto->read_handler))) { 514 return xto; 515 } 516 } 517 return NULL; 518 } 519 520 /* 521 * TIMA MMIO handlers 522 */ 523 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 524 uint64_t value, unsigned size) 525 { 526 const XiveTmOp *xto; 527 528 trace_xive_tctx_tm_write(offset, size, value); 529 530 /* 531 * TODO: check V bit in Q[0-3]W2 532 */ 533 534 /* 535 * First, check for special operations in the 2K region 536 */ 537 if (offset & TM_SPECIAL_OP) { 538 xto = xive_tm_find_op(offset, size, true); 539 if (!xto) { 540 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 541 "@%"HWADDR_PRIx"\n", offset); 542 } else { 543 xto->write_handler(xptr, tctx, offset, value, size); 544 } 545 return; 546 } 547 548 /* 549 * Then, for special operations in the region below 2K. 550 */ 551 xto = xive_tm_find_op(offset, size, true); 552 if (xto) { 553 xto->write_handler(xptr, tctx, offset, value, size); 554 return; 555 } 556 557 /* 558 * Finish with raw access to the register values 559 */ 560 xive_tm_raw_write(tctx, offset, value, size); 561 } 562 563 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 564 unsigned size) 565 { 566 const XiveTmOp *xto; 567 uint64_t ret; 568 569 /* 570 * TODO: check V bit in Q[0-3]W2 571 */ 572 573 /* 574 * First, check for special operations in the 2K region 575 */ 576 if (offset & TM_SPECIAL_OP) { 577 xto = xive_tm_find_op(offset, size, false); 578 if (!xto) { 579 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 580 "@%"HWADDR_PRIx"\n", offset); 581 return -1; 582 } 583 ret = xto->read_handler(xptr, tctx, offset, size); 584 goto out; 585 } 586 587 /* 588 * Then, for special operations in the region below 2K. 589 */ 590 xto = xive_tm_find_op(offset, size, false); 591 if (xto) { 592 ret = xto->read_handler(xptr, tctx, offset, size); 593 goto out; 594 } 595 596 /* 597 * Finish with raw access to the register values 598 */ 599 ret = xive_tm_raw_read(tctx, offset, size); 600 out: 601 trace_xive_tctx_tm_read(offset, size, ret); 602 return ret; 603 } 604 605 static char *xive_tctx_ring_print(uint8_t *ring) 606 { 607 uint32_t w2 = xive_tctx_word2(ring); 608 609 return g_strdup_printf("%02x %02x %02x %02x %02x " 610 "%02x %02x %02x %08x", 611 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 612 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 613 be32_to_cpu(w2)); 614 } 615 616 static const char * const xive_tctx_ring_names[] = { 617 "USER", "OS", "POOL", "PHYS", 618 }; 619 620 /* 621 * kvm_irqchip_in_kernel() will cause the compiler to turn this 622 * info a nop if CONFIG_KVM isn't defined. 623 */ 624 #define xive_in_kernel(xptr) \ 625 (kvm_irqchip_in_kernel() && \ 626 ({ \ 627 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 628 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 629 })) 630 631 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 632 { 633 int cpu_index; 634 int i; 635 636 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 637 * are hot plugged or unplugged. 638 */ 639 if (!tctx) { 640 return; 641 } 642 643 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 644 645 if (xive_in_kernel(tctx->xptr)) { 646 Error *local_err = NULL; 647 648 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 649 if (local_err) { 650 error_report_err(local_err); 651 return; 652 } 653 } 654 655 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 656 " W2\n", cpu_index); 657 658 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 659 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 660 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 661 xive_tctx_ring_names[i], s); 662 g_free(s); 663 } 664 } 665 666 void xive_tctx_reset(XiveTCTX *tctx) 667 { 668 memset(tctx->regs, 0, sizeof(tctx->regs)); 669 670 /* Set some defaults */ 671 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 672 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 673 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 674 675 /* 676 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 677 * CPPR is first set. 678 */ 679 tctx->regs[TM_QW1_OS + TM_PIPR] = 680 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 681 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 682 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 683 } 684 685 static void xive_tctx_realize(DeviceState *dev, Error **errp) 686 { 687 XiveTCTX *tctx = XIVE_TCTX(dev); 688 PowerPCCPU *cpu; 689 CPUPPCState *env; 690 691 assert(tctx->cs); 692 assert(tctx->xptr); 693 694 cpu = POWERPC_CPU(tctx->cs); 695 env = &cpu->env; 696 switch (PPC_INPUT(env)) { 697 case PPC_FLAGS_INPUT_POWER9: 698 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT); 699 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT); 700 break; 701 702 default: 703 error_setg(errp, "XIVE interrupt controller does not support " 704 "this CPU bus model"); 705 return; 706 } 707 708 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 709 if (xive_in_kernel(tctx->xptr)) { 710 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 711 return; 712 } 713 } 714 } 715 716 static int vmstate_xive_tctx_pre_save(void *opaque) 717 { 718 XiveTCTX *tctx = XIVE_TCTX(opaque); 719 Error *local_err = NULL; 720 int ret; 721 722 if (xive_in_kernel(tctx->xptr)) { 723 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 724 if (ret < 0) { 725 error_report_err(local_err); 726 return ret; 727 } 728 } 729 730 return 0; 731 } 732 733 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 734 { 735 XiveTCTX *tctx = XIVE_TCTX(opaque); 736 Error *local_err = NULL; 737 int ret; 738 739 if (xive_in_kernel(tctx->xptr)) { 740 /* 741 * Required for hotplugged CPU, for which the state comes 742 * after all states of the machine. 743 */ 744 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 745 if (ret < 0) { 746 error_report_err(local_err); 747 return ret; 748 } 749 } 750 751 return 0; 752 } 753 754 static const VMStateDescription vmstate_xive_tctx = { 755 .name = TYPE_XIVE_TCTX, 756 .version_id = 1, 757 .minimum_version_id = 1, 758 .pre_save = vmstate_xive_tctx_pre_save, 759 .post_load = vmstate_xive_tctx_post_load, 760 .fields = (VMStateField[]) { 761 VMSTATE_BUFFER(regs, XiveTCTX), 762 VMSTATE_END_OF_LIST() 763 }, 764 }; 765 766 static Property xive_tctx_properties[] = { 767 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 768 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 769 XivePresenter *), 770 DEFINE_PROP_END_OF_LIST(), 771 }; 772 773 static void xive_tctx_class_init(ObjectClass *klass, void *data) 774 { 775 DeviceClass *dc = DEVICE_CLASS(klass); 776 777 dc->desc = "XIVE Interrupt Thread Context"; 778 dc->realize = xive_tctx_realize; 779 dc->vmsd = &vmstate_xive_tctx; 780 device_class_set_props(dc, xive_tctx_properties); 781 /* 782 * Reason: part of XIVE interrupt controller, needs to be wired up 783 * by xive_tctx_create(). 784 */ 785 dc->user_creatable = false; 786 } 787 788 static const TypeInfo xive_tctx_info = { 789 .name = TYPE_XIVE_TCTX, 790 .parent = TYPE_DEVICE, 791 .instance_size = sizeof(XiveTCTX), 792 .class_init = xive_tctx_class_init, 793 }; 794 795 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 796 { 797 Object *obj; 798 799 obj = object_new(TYPE_XIVE_TCTX); 800 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 801 object_unref(obj); 802 object_property_set_link(obj, "cpu", cpu, &error_abort); 803 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 804 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 805 object_unparent(obj); 806 return NULL; 807 } 808 return obj; 809 } 810 811 void xive_tctx_destroy(XiveTCTX *tctx) 812 { 813 Object *obj = OBJECT(tctx); 814 815 object_unparent(obj); 816 } 817 818 /* 819 * XIVE ESB helpers 820 */ 821 822 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 823 { 824 uint8_t old_pq = *pq & 0x3; 825 826 *pq &= ~0x3; 827 *pq |= value & 0x3; 828 829 return old_pq; 830 } 831 832 bool xive_esb_trigger(uint8_t *pq) 833 { 834 uint8_t old_pq = *pq & 0x3; 835 836 switch (old_pq) { 837 case XIVE_ESB_RESET: 838 xive_esb_set(pq, XIVE_ESB_PENDING); 839 return true; 840 case XIVE_ESB_PENDING: 841 case XIVE_ESB_QUEUED: 842 xive_esb_set(pq, XIVE_ESB_QUEUED); 843 return false; 844 case XIVE_ESB_OFF: 845 xive_esb_set(pq, XIVE_ESB_OFF); 846 return false; 847 default: 848 g_assert_not_reached(); 849 } 850 } 851 852 bool xive_esb_eoi(uint8_t *pq) 853 { 854 uint8_t old_pq = *pq & 0x3; 855 856 switch (old_pq) { 857 case XIVE_ESB_RESET: 858 case XIVE_ESB_PENDING: 859 xive_esb_set(pq, XIVE_ESB_RESET); 860 return false; 861 case XIVE_ESB_QUEUED: 862 xive_esb_set(pq, XIVE_ESB_PENDING); 863 return true; 864 case XIVE_ESB_OFF: 865 xive_esb_set(pq, XIVE_ESB_OFF); 866 return false; 867 default: 868 g_assert_not_reached(); 869 } 870 } 871 872 /* 873 * XIVE Interrupt Source (or IVSE) 874 */ 875 876 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 877 { 878 assert(srcno < xsrc->nr_irqs); 879 880 return xsrc->status[srcno] & 0x3; 881 } 882 883 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 884 { 885 assert(srcno < xsrc->nr_irqs); 886 887 return xive_esb_set(&xsrc->status[srcno], pq); 888 } 889 890 /* 891 * Returns whether the event notification should be forwarded. 892 */ 893 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 894 { 895 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 896 897 xive_source_set_asserted(xsrc, srcno, true); 898 899 switch (old_pq) { 900 case XIVE_ESB_RESET: 901 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 902 return true; 903 default: 904 return false; 905 } 906 } 907 908 /* 909 * Sources can be configured with PQ offloading in which case the check 910 * on the PQ state bits of MSIs is disabled 911 */ 912 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno) 913 { 914 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) && 915 !xive_source_irq_is_lsi(xsrc, srcno); 916 } 917 918 /* 919 * Returns whether the event notification should be forwarded. 920 */ 921 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 922 { 923 bool ret; 924 925 assert(srcno < xsrc->nr_irqs); 926 927 if (xive_source_esb_disabled(xsrc, srcno)) { 928 return true; 929 } 930 931 ret = xive_esb_trigger(&xsrc->status[srcno]); 932 933 if (xive_source_irq_is_lsi(xsrc, srcno) && 934 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 935 qemu_log_mask(LOG_GUEST_ERROR, 936 "XIVE: queued an event on LSI IRQ %d\n", srcno); 937 } 938 939 return ret; 940 } 941 942 /* 943 * Returns whether the event notification should be forwarded. 944 */ 945 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 946 { 947 bool ret; 948 949 assert(srcno < xsrc->nr_irqs); 950 951 if (xive_source_esb_disabled(xsrc, srcno)) { 952 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno); 953 return false; 954 } 955 956 ret = xive_esb_eoi(&xsrc->status[srcno]); 957 958 /* 959 * LSI sources do not set the Q bit but they can still be 960 * asserted, in which case we should forward a new event 961 * notification 962 */ 963 if (xive_source_irq_is_lsi(xsrc, srcno) && 964 xive_source_is_asserted(xsrc, srcno)) { 965 ret = xive_source_lsi_trigger(xsrc, srcno); 966 } 967 968 return ret; 969 } 970 971 /* 972 * Forward the source event notification to the Router 973 */ 974 static void xive_source_notify(XiveSource *xsrc, int srcno) 975 { 976 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 977 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno); 978 979 if (xnc->notify) { 980 xnc->notify(xsrc->xive, srcno, pq_checked); 981 } 982 } 983 984 /* 985 * In a two pages ESB MMIO setting, even page is the trigger page, odd 986 * page is for management 987 */ 988 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 989 { 990 return !((addr >> shift) & 1); 991 } 992 993 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 994 { 995 return xive_source_esb_has_2page(xsrc) && 996 addr_is_even(addr, xsrc->esb_shift - 1); 997 } 998 999 /* 1000 * ESB MMIO loads 1001 * Trigger page Management/EOI page 1002 * 1003 * ESB MMIO setting 2 pages 1 or 2 pages 1004 * 1005 * 0x000 .. 0x3FF -1 EOI and return 0|1 1006 * 0x400 .. 0x7FF -1 EOI and return 0|1 1007 * 0x800 .. 0xBFF -1 return PQ 1008 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 1009 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 1010 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 1011 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 1012 */ 1013 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 1014 { 1015 XiveSource *xsrc = XIVE_SOURCE(opaque); 1016 uint32_t offset = addr & 0xFFF; 1017 uint32_t srcno = addr >> xsrc->esb_shift; 1018 uint64_t ret = -1; 1019 1020 /* In a two pages ESB MMIO setting, trigger page should not be read */ 1021 if (xive_source_is_trigger_page(xsrc, addr)) { 1022 qemu_log_mask(LOG_GUEST_ERROR, 1023 "XIVE: invalid load on IRQ %d trigger page at " 1024 "0x%"HWADDR_PRIx"\n", srcno, addr); 1025 return -1; 1026 } 1027 1028 switch (offset) { 1029 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1030 ret = xive_source_esb_eoi(xsrc, srcno); 1031 1032 /* Forward the source event notification for routing */ 1033 if (ret) { 1034 xive_source_notify(xsrc, srcno); 1035 } 1036 break; 1037 1038 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1039 ret = xive_source_esb_get(xsrc, srcno); 1040 break; 1041 1042 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1043 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1044 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1045 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1046 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1047 break; 1048 default: 1049 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1050 offset); 1051 } 1052 1053 trace_xive_source_esb_read(addr, srcno, ret); 1054 1055 return ret; 1056 } 1057 1058 /* 1059 * ESB MMIO stores 1060 * Trigger page Management/EOI page 1061 * 1062 * ESB MMIO setting 2 pages 1 or 2 pages 1063 * 1064 * 0x000 .. 0x3FF Trigger Trigger 1065 * 0x400 .. 0x7FF Trigger EOI 1066 * 0x800 .. 0xBFF Trigger undefined 1067 * 0xC00 .. 0xCFF Trigger PQ=00 1068 * 0xD00 .. 0xDFF Trigger PQ=01 1069 * 0xE00 .. 0xDFF Trigger PQ=10 1070 * 0xF00 .. 0xDFF Trigger PQ=11 1071 */ 1072 static void xive_source_esb_write(void *opaque, hwaddr addr, 1073 uint64_t value, unsigned size) 1074 { 1075 XiveSource *xsrc = XIVE_SOURCE(opaque); 1076 uint32_t offset = addr & 0xFFF; 1077 uint32_t srcno = addr >> xsrc->esb_shift; 1078 bool notify = false; 1079 1080 trace_xive_source_esb_write(addr, srcno, value); 1081 1082 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1083 if (xive_source_is_trigger_page(xsrc, addr)) { 1084 notify = xive_source_esb_trigger(xsrc, srcno); 1085 goto out; 1086 } 1087 1088 switch (offset) { 1089 case 0 ... 0x3FF: 1090 notify = xive_source_esb_trigger(xsrc, srcno); 1091 break; 1092 1093 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1094 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1095 qemu_log_mask(LOG_GUEST_ERROR, 1096 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1097 return; 1098 } 1099 1100 notify = xive_source_esb_eoi(xsrc, srcno); 1101 break; 1102 1103 /* 1104 * This is an internal offset used to inject triggers when the PQ 1105 * state bits are not controlled locally. Such as for LSIs when 1106 * under ABT mode. 1107 */ 1108 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1109 notify = true; 1110 break; 1111 1112 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1113 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1114 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1115 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1116 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1117 break; 1118 1119 default: 1120 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1121 offset); 1122 return; 1123 } 1124 1125 out: 1126 /* Forward the source event notification for routing */ 1127 if (notify) { 1128 xive_source_notify(xsrc, srcno); 1129 } 1130 } 1131 1132 static const MemoryRegionOps xive_source_esb_ops = { 1133 .read = xive_source_esb_read, 1134 .write = xive_source_esb_write, 1135 .endianness = DEVICE_BIG_ENDIAN, 1136 .valid = { 1137 .min_access_size = 8, 1138 .max_access_size = 8, 1139 }, 1140 .impl = { 1141 .min_access_size = 8, 1142 .max_access_size = 8, 1143 }, 1144 }; 1145 1146 void xive_source_set_irq(void *opaque, int srcno, int val) 1147 { 1148 XiveSource *xsrc = XIVE_SOURCE(opaque); 1149 bool notify = false; 1150 1151 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1152 if (val) { 1153 notify = xive_source_lsi_trigger(xsrc, srcno); 1154 } else { 1155 xive_source_set_asserted(xsrc, srcno, false); 1156 } 1157 } else { 1158 if (val) { 1159 notify = xive_source_esb_trigger(xsrc, srcno); 1160 } 1161 } 1162 1163 /* Forward the source event notification for routing */ 1164 if (notify) { 1165 xive_source_notify(xsrc, srcno); 1166 } 1167 } 1168 1169 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1170 { 1171 int i; 1172 1173 for (i = 0; i < xsrc->nr_irqs; i++) { 1174 uint8_t pq = xive_source_esb_get(xsrc, i); 1175 1176 if (pq == XIVE_ESB_OFF) { 1177 continue; 1178 } 1179 1180 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1181 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1182 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1183 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1184 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1185 } 1186 } 1187 1188 static void xive_source_reset(void *dev) 1189 { 1190 XiveSource *xsrc = XIVE_SOURCE(dev); 1191 1192 /* Do not clear the LSI bitmap */ 1193 1194 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 1195 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 1196 } 1197 1198 static void xive_source_realize(DeviceState *dev, Error **errp) 1199 { 1200 XiveSource *xsrc = XIVE_SOURCE(dev); 1201 size_t esb_len = xive_source_esb_len(xsrc); 1202 1203 assert(xsrc->xive); 1204 1205 if (!xsrc->nr_irqs) { 1206 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1207 return; 1208 } 1209 1210 if (xsrc->esb_shift != XIVE_ESB_4K && 1211 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1212 xsrc->esb_shift != XIVE_ESB_64K && 1213 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1214 error_setg(errp, "Invalid ESB shift setting"); 1215 return; 1216 } 1217 1218 xsrc->status = g_malloc0(xsrc->nr_irqs); 1219 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1220 1221 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1222 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1223 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1224 esb_len); 1225 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1226 1227 qemu_register_reset(xive_source_reset, dev); 1228 } 1229 1230 static const VMStateDescription vmstate_xive_source = { 1231 .name = TYPE_XIVE_SOURCE, 1232 .version_id = 1, 1233 .minimum_version_id = 1, 1234 .fields = (VMStateField[]) { 1235 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1236 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1237 VMSTATE_END_OF_LIST() 1238 }, 1239 }; 1240 1241 /* 1242 * The default XIVE interrupt source setting for the ESB MMIOs is two 1243 * 64k pages without Store EOI, to be in sync with KVM. 1244 */ 1245 static Property xive_source_properties[] = { 1246 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1247 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1248 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1249 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1250 XiveNotifier *), 1251 DEFINE_PROP_END_OF_LIST(), 1252 }; 1253 1254 static void xive_source_class_init(ObjectClass *klass, void *data) 1255 { 1256 DeviceClass *dc = DEVICE_CLASS(klass); 1257 1258 dc->desc = "XIVE Interrupt Source"; 1259 device_class_set_props(dc, xive_source_properties); 1260 dc->realize = xive_source_realize; 1261 dc->vmsd = &vmstate_xive_source; 1262 /* 1263 * Reason: part of XIVE interrupt controller, needs to be wired up, 1264 * e.g. by spapr_xive_instance_init(). 1265 */ 1266 dc->user_creatable = false; 1267 } 1268 1269 static const TypeInfo xive_source_info = { 1270 .name = TYPE_XIVE_SOURCE, 1271 .parent = TYPE_DEVICE, 1272 .instance_size = sizeof(XiveSource), 1273 .class_init = xive_source_class_init, 1274 }; 1275 1276 /* 1277 * XiveEND helpers 1278 */ 1279 1280 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1281 { 1282 uint64_t qaddr_base = xive_end_qaddr(end); 1283 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1284 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1285 uint32_t qentries = 1 << (qsize + 10); 1286 int i; 1287 1288 /* 1289 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1290 */ 1291 monitor_printf(mon, " [ "); 1292 qindex = (qindex - (width - 1)) & (qentries - 1); 1293 for (i = 0; i < width; i++) { 1294 uint64_t qaddr = qaddr_base + (qindex << 2); 1295 uint32_t qdata = -1; 1296 1297 if (dma_memory_read(&address_space_memory, qaddr, 1298 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1300 HWADDR_PRIx "\n", qaddr); 1301 return; 1302 } 1303 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1304 be32_to_cpu(qdata)); 1305 qindex = (qindex + 1) & (qentries - 1); 1306 } 1307 monitor_printf(mon, "]"); 1308 } 1309 1310 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1311 { 1312 uint64_t qaddr_base = xive_end_qaddr(end); 1313 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1314 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1315 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1316 uint32_t qentries = 1 << (qsize + 10); 1317 1318 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1319 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1320 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1321 uint8_t pq; 1322 1323 if (!xive_end_is_valid(end)) { 1324 return; 1325 } 1326 1327 pq = xive_get_field32(END_W1_ESn, end->w1); 1328 1329 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1330 end_idx, 1331 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1332 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1333 xive_end_is_valid(end) ? 'v' : '-', 1334 xive_end_is_enqueue(end) ? 'q' : '-', 1335 xive_end_is_notify(end) ? 'n' : '-', 1336 xive_end_is_backlog(end) ? 'b' : '-', 1337 xive_end_is_escalate(end) ? 'e' : '-', 1338 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1339 xive_end_is_silent_escalation(end) ? 's' : '-', 1340 xive_end_is_firmware(end) ? 'f' : '-', 1341 priority, nvt_blk, nvt_idx); 1342 1343 if (qaddr_base) { 1344 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1345 qaddr_base, qindex, qentries, qgen); 1346 xive_end_queue_pic_print_info(end, 6, mon); 1347 } 1348 monitor_printf(mon, "\n"); 1349 } 1350 1351 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1352 { 1353 uint64_t qaddr_base = xive_end_qaddr(end); 1354 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1355 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1356 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1357 1358 uint64_t qaddr = qaddr_base + (qindex << 2); 1359 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1360 uint32_t qentries = 1 << (qsize + 10); 1361 1362 if (dma_memory_write(&address_space_memory, qaddr, 1363 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1364 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1365 HWADDR_PRIx "\n", qaddr); 1366 return; 1367 } 1368 1369 qindex = (qindex + 1) & (qentries - 1); 1370 if (qindex == 0) { 1371 qgen ^= 1; 1372 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1373 } 1374 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1375 } 1376 1377 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1378 Monitor *mon) 1379 { 1380 XiveEAS *eas = (XiveEAS *) &end->w4; 1381 uint8_t pq; 1382 1383 if (!xive_end_is_escalate(end)) { 1384 return; 1385 } 1386 1387 pq = xive_get_field32(END_W1_ESe, end->w1); 1388 1389 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1390 end_idx, 1391 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1392 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1393 xive_eas_is_valid(eas) ? 'V' : ' ', 1394 xive_eas_is_masked(eas) ? 'M' : ' ', 1395 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1396 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1397 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1398 } 1399 1400 /* 1401 * XIVE Router (aka. Virtualization Controller or IVRE) 1402 */ 1403 1404 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1405 XiveEAS *eas) 1406 { 1407 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1408 1409 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1410 } 1411 1412 static 1413 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1414 uint8_t *pq) 1415 { 1416 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1417 1418 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1419 } 1420 1421 static 1422 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1423 uint8_t *pq) 1424 { 1425 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1426 1427 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1428 } 1429 1430 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1431 XiveEND *end) 1432 { 1433 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1434 1435 return xrc->get_end(xrtr, end_blk, end_idx, end); 1436 } 1437 1438 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1439 XiveEND *end, uint8_t word_number) 1440 { 1441 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1442 1443 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1444 } 1445 1446 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1447 XiveNVT *nvt) 1448 { 1449 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1450 1451 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1452 } 1453 1454 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1455 XiveNVT *nvt, uint8_t word_number) 1456 { 1457 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1458 1459 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1460 } 1461 1462 static int xive_router_get_block_id(XiveRouter *xrtr) 1463 { 1464 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1465 1466 return xrc->get_block_id(xrtr); 1467 } 1468 1469 static void xive_router_realize(DeviceState *dev, Error **errp) 1470 { 1471 XiveRouter *xrtr = XIVE_ROUTER(dev); 1472 1473 assert(xrtr->xfb); 1474 } 1475 1476 /* 1477 * Encode the HW CAM line in the block group mode format : 1478 * 1479 * chip << 19 | 0000000 0 0001 thread (7Bit) 1480 */ 1481 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1482 { 1483 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1484 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1485 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1486 1487 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1488 } 1489 1490 /* 1491 * The thread context register words are in big-endian format. 1492 */ 1493 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1494 uint8_t format, 1495 uint8_t nvt_blk, uint32_t nvt_idx, 1496 bool cam_ignore, uint32_t logic_serv) 1497 { 1498 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1499 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1500 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1501 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1502 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1503 1504 /* 1505 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1506 * identifier are ignored in the "CAM" match. 1507 */ 1508 1509 if (format == 0) { 1510 if (cam_ignore == true) { 1511 /* 1512 * F=0 & i=1: Logical server notification (bits ignored at 1513 * the end of the NVT identifier) 1514 */ 1515 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1516 nvt_blk, nvt_idx); 1517 return -1; 1518 } 1519 1520 /* F=0 & i=0: Specific NVT notification */ 1521 1522 /* PHYS ring */ 1523 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1524 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1525 return TM_QW3_HV_PHYS; 1526 } 1527 1528 /* HV POOL ring */ 1529 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1530 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1531 return TM_QW2_HV_POOL; 1532 } 1533 1534 /* OS ring */ 1535 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1536 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1537 return TM_QW1_OS; 1538 } 1539 } else { 1540 /* F=1 : User level Event-Based Branch (EBB) notification */ 1541 1542 /* USER ring */ 1543 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1544 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1545 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1546 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1547 return TM_QW0_USER; 1548 } 1549 } 1550 return -1; 1551 } 1552 1553 /* 1554 * This is our simple Xive Presenter Engine model. It is merged in the 1555 * Router as it does not require an extra object. 1556 * 1557 * It receives notification requests sent by the IVRE to find one 1558 * matching NVT (or more) dispatched on the processor threads. In case 1559 * of a single NVT notification, the process is abreviated and the 1560 * thread is signaled if a match is found. In case of a logical server 1561 * notification (bits ignored at the end of the NVT identifier), the 1562 * IVPE and IVRE select a winning thread using different filters. This 1563 * involves 2 or 3 exchanges on the PowerBus that the model does not 1564 * support. 1565 * 1566 * The parameters represent what is sent on the PowerBus 1567 */ 1568 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1569 uint8_t nvt_blk, uint32_t nvt_idx, 1570 bool cam_ignore, uint8_t priority, 1571 uint32_t logic_serv) 1572 { 1573 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1574 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1575 int count; 1576 1577 /* 1578 * Ask the machine to scan the interrupt controllers for a match 1579 */ 1580 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1581 priority, logic_serv, &match); 1582 if (count < 0) { 1583 return false; 1584 } 1585 1586 /* handle CPU exception delivery */ 1587 if (count) { 1588 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1589 xive_tctx_ipb_update(match.tctx, match.ring, 1590 xive_priority_to_ipb(priority)); 1591 } 1592 1593 return !!count; 1594 } 1595 1596 /* 1597 * Notification using the END ESe/ESn bit (Event State Buffer for 1598 * escalation and notification). Provide further coalescing in the 1599 * Router. 1600 */ 1601 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1602 uint32_t end_idx, XiveEND *end, 1603 uint32_t end_esmask) 1604 { 1605 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1606 bool notify = xive_esb_trigger(&pq); 1607 1608 if (pq != xive_get_field32(end_esmask, end->w1)) { 1609 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1610 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1611 } 1612 1613 /* ESe/n[Q]=1 : end of notification */ 1614 return notify; 1615 } 1616 1617 /* 1618 * An END trigger can come from an event trigger (IPI or HW) or from 1619 * another chip. We don't model the PowerBus but the END trigger 1620 * message has the same parameters than in the function below. 1621 */ 1622 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1623 uint32_t end_idx, uint32_t end_data) 1624 { 1625 XiveEND end; 1626 uint8_t priority; 1627 uint8_t format; 1628 uint8_t nvt_blk; 1629 uint32_t nvt_idx; 1630 XiveNVT nvt; 1631 bool found; 1632 1633 /* END cache lookup */ 1634 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1635 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1636 end_idx); 1637 return; 1638 } 1639 1640 if (!xive_end_is_valid(&end)) { 1641 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1642 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1643 end_blk, end_idx); 1644 return; 1645 } 1646 1647 if (xive_end_is_enqueue(&end)) { 1648 xive_end_enqueue(&end, end_data); 1649 /* Enqueuing event data modifies the EQ toggle and index */ 1650 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1651 } 1652 1653 /* 1654 * When the END is silent, we skip the notification part. 1655 */ 1656 if (xive_end_is_silent_escalation(&end)) { 1657 goto do_escalation; 1658 } 1659 1660 /* 1661 * The W7 format depends on the F bit in W6. It defines the type 1662 * of the notification : 1663 * 1664 * F=0 : single or multiple NVT notification 1665 * F=1 : User level Event-Based Branch (EBB) notification, no 1666 * priority 1667 */ 1668 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1669 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1670 1671 /* The END is masked */ 1672 if (format == 0 && priority == 0xff) { 1673 return; 1674 } 1675 1676 /* 1677 * Check the END ESn (Event State Buffer for notification) for 1678 * even further coalescing in the Router 1679 */ 1680 if (!xive_end_is_notify(&end)) { 1681 /* ESn[Q]=1 : end of notification */ 1682 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1683 &end, END_W1_ESn)) { 1684 return; 1685 } 1686 } 1687 1688 /* 1689 * Follows IVPE notification 1690 */ 1691 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1692 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1693 1694 /* NVT cache lookup */ 1695 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1696 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1697 nvt_blk, nvt_idx); 1698 return; 1699 } 1700 1701 if (!xive_nvt_is_valid(&nvt)) { 1702 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1703 nvt_blk, nvt_idx); 1704 return; 1705 } 1706 1707 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1708 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1709 priority, 1710 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1711 1712 /* TODO: Auto EOI. */ 1713 1714 if (found) { 1715 return; 1716 } 1717 1718 /* 1719 * If no matching NVT is dispatched on a HW thread : 1720 * - specific VP: update the NVT structure if backlog is activated 1721 * - logical server : forward request to IVPE (not supported) 1722 */ 1723 if (xive_end_is_backlog(&end)) { 1724 uint8_t ipb; 1725 1726 if (format == 1) { 1727 qemu_log_mask(LOG_GUEST_ERROR, 1728 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1729 end_blk, end_idx); 1730 return; 1731 } 1732 /* 1733 * Record the IPB in the associated NVT structure for later 1734 * use. The presenter will resend the interrupt when the vCPU 1735 * is dispatched again on a HW thread. 1736 */ 1737 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1738 xive_priority_to_ipb(priority); 1739 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1740 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1741 1742 /* 1743 * On HW, follows a "Broadcast Backlog" to IVPEs 1744 */ 1745 } 1746 1747 do_escalation: 1748 /* 1749 * If activated, escalate notification using the ESe PQ bits and 1750 * the EAS in w4-5 1751 */ 1752 if (!xive_end_is_escalate(&end)) { 1753 return; 1754 } 1755 1756 /* 1757 * Check the END ESe (Event State Buffer for escalation) for even 1758 * further coalescing in the Router 1759 */ 1760 if (!xive_end_is_uncond_escalation(&end)) { 1761 /* ESe[Q]=1 : end of notification */ 1762 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1763 &end, END_W1_ESe)) { 1764 return; 1765 } 1766 } 1767 1768 trace_xive_router_end_escalate(end_blk, end_idx, 1769 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1770 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1771 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1772 /* 1773 * The END trigger becomes an Escalation trigger 1774 */ 1775 xive_router_end_notify(xrtr, 1776 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1777 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1778 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1779 } 1780 1781 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 1782 { 1783 XiveRouter *xrtr = XIVE_ROUTER(xn); 1784 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1785 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1786 XiveEAS eas; 1787 1788 /* EAS cache lookup */ 1789 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1790 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1791 return; 1792 } 1793 1794 if (!pq_checked) { 1795 bool notify; 1796 uint8_t pq; 1797 1798 /* PQ cache lookup */ 1799 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 1800 /* Set FIR */ 1801 g_assert_not_reached(); 1802 } 1803 1804 notify = xive_esb_trigger(&pq); 1805 1806 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 1807 /* Set FIR */ 1808 g_assert_not_reached(); 1809 } 1810 1811 if (!notify) { 1812 return; 1813 } 1814 } 1815 1816 if (!xive_eas_is_valid(&eas)) { 1817 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1818 return; 1819 } 1820 1821 if (xive_eas_is_masked(&eas)) { 1822 /* Notification completed */ 1823 return; 1824 } 1825 1826 /* 1827 * The event trigger becomes an END trigger 1828 */ 1829 xive_router_end_notify(xrtr, 1830 xive_get_field64(EAS_END_BLOCK, eas.w), 1831 xive_get_field64(EAS_END_INDEX, eas.w), 1832 xive_get_field64(EAS_END_DATA, eas.w)); 1833 } 1834 1835 static Property xive_router_properties[] = { 1836 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1837 TYPE_XIVE_FABRIC, XiveFabric *), 1838 DEFINE_PROP_END_OF_LIST(), 1839 }; 1840 1841 static void xive_router_class_init(ObjectClass *klass, void *data) 1842 { 1843 DeviceClass *dc = DEVICE_CLASS(klass); 1844 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1845 1846 dc->desc = "XIVE Router Engine"; 1847 device_class_set_props(dc, xive_router_properties); 1848 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1849 dc->realize = xive_router_realize; 1850 xnc->notify = xive_router_notify; 1851 } 1852 1853 static const TypeInfo xive_router_info = { 1854 .name = TYPE_XIVE_ROUTER, 1855 .parent = TYPE_SYS_BUS_DEVICE, 1856 .abstract = true, 1857 .instance_size = sizeof(XiveRouter), 1858 .class_size = sizeof(XiveRouterClass), 1859 .class_init = xive_router_class_init, 1860 .interfaces = (InterfaceInfo[]) { 1861 { TYPE_XIVE_NOTIFIER }, 1862 { TYPE_XIVE_PRESENTER }, 1863 { } 1864 } 1865 }; 1866 1867 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1868 { 1869 if (!xive_eas_is_valid(eas)) { 1870 return; 1871 } 1872 1873 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1874 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1875 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1876 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1877 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1878 } 1879 1880 /* 1881 * END ESB MMIO loads 1882 */ 1883 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1884 { 1885 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1886 uint32_t offset = addr & 0xFFF; 1887 uint8_t end_blk; 1888 uint32_t end_idx; 1889 XiveEND end; 1890 uint32_t end_esmask; 1891 uint8_t pq; 1892 uint64_t ret = -1; 1893 1894 /* 1895 * The block id should be deduced from the load address on the END 1896 * ESB MMIO but our model only supports a single block per XIVE chip. 1897 */ 1898 end_blk = xive_router_get_block_id(xsrc->xrtr); 1899 end_idx = addr >> (xsrc->esb_shift + 1); 1900 1901 trace_xive_end_source_read(end_blk, end_idx, addr); 1902 1903 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1904 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1905 end_idx); 1906 return -1; 1907 } 1908 1909 if (!xive_end_is_valid(&end)) { 1910 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1911 end_blk, end_idx); 1912 return -1; 1913 } 1914 1915 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1916 pq = xive_get_field32(end_esmask, end.w1); 1917 1918 switch (offset) { 1919 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1920 ret = xive_esb_eoi(&pq); 1921 1922 /* Forward the source event notification for routing ?? */ 1923 break; 1924 1925 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1926 ret = pq; 1927 break; 1928 1929 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1930 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1931 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1932 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1933 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1934 break; 1935 default: 1936 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1937 offset); 1938 return -1; 1939 } 1940 1941 if (pq != xive_get_field32(end_esmask, end.w1)) { 1942 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1943 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1944 } 1945 1946 return ret; 1947 } 1948 1949 /* 1950 * END ESB MMIO stores are invalid 1951 */ 1952 static void xive_end_source_write(void *opaque, hwaddr addr, 1953 uint64_t value, unsigned size) 1954 { 1955 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1956 HWADDR_PRIx"\n", addr); 1957 } 1958 1959 static const MemoryRegionOps xive_end_source_ops = { 1960 .read = xive_end_source_read, 1961 .write = xive_end_source_write, 1962 .endianness = DEVICE_BIG_ENDIAN, 1963 .valid = { 1964 .min_access_size = 8, 1965 .max_access_size = 8, 1966 }, 1967 .impl = { 1968 .min_access_size = 8, 1969 .max_access_size = 8, 1970 }, 1971 }; 1972 1973 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1974 { 1975 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1976 1977 assert(xsrc->xrtr); 1978 1979 if (!xsrc->nr_ends) { 1980 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1981 return; 1982 } 1983 1984 if (xsrc->esb_shift != XIVE_ESB_4K && 1985 xsrc->esb_shift != XIVE_ESB_64K) { 1986 error_setg(errp, "Invalid ESB shift setting"); 1987 return; 1988 } 1989 1990 /* 1991 * Each END is assigned an even/odd pair of MMIO pages, the even page 1992 * manages the ESn field while the odd page manages the ESe field. 1993 */ 1994 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1995 &xive_end_source_ops, xsrc, "xive.end", 1996 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1997 } 1998 1999 static Property xive_end_source_properties[] = { 2000 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 2001 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 2002 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 2003 XiveRouter *), 2004 DEFINE_PROP_END_OF_LIST(), 2005 }; 2006 2007 static void xive_end_source_class_init(ObjectClass *klass, void *data) 2008 { 2009 DeviceClass *dc = DEVICE_CLASS(klass); 2010 2011 dc->desc = "XIVE END Source"; 2012 device_class_set_props(dc, xive_end_source_properties); 2013 dc->realize = xive_end_source_realize; 2014 /* 2015 * Reason: part of XIVE interrupt controller, needs to be wired up, 2016 * e.g. by spapr_xive_instance_init(). 2017 */ 2018 dc->user_creatable = false; 2019 } 2020 2021 static const TypeInfo xive_end_source_info = { 2022 .name = TYPE_XIVE_END_SOURCE, 2023 .parent = TYPE_DEVICE, 2024 .instance_size = sizeof(XiveENDSource), 2025 .class_init = xive_end_source_class_init, 2026 }; 2027 2028 /* 2029 * XIVE Notifier 2030 */ 2031 static const TypeInfo xive_notifier_info = { 2032 .name = TYPE_XIVE_NOTIFIER, 2033 .parent = TYPE_INTERFACE, 2034 .class_size = sizeof(XiveNotifierClass), 2035 }; 2036 2037 /* 2038 * XIVE Presenter 2039 */ 2040 static const TypeInfo xive_presenter_info = { 2041 .name = TYPE_XIVE_PRESENTER, 2042 .parent = TYPE_INTERFACE, 2043 .class_size = sizeof(XivePresenterClass), 2044 }; 2045 2046 /* 2047 * XIVE Fabric 2048 */ 2049 static const TypeInfo xive_fabric_info = { 2050 .name = TYPE_XIVE_FABRIC, 2051 .parent = TYPE_INTERFACE, 2052 .class_size = sizeof(XiveFabricClass), 2053 }; 2054 2055 static void xive_register_types(void) 2056 { 2057 type_register_static(&xive_fabric_info); 2058 type_register_static(&xive_source_info); 2059 type_register_static(&xive_notifier_info); 2060 type_register_static(&xive_presenter_info); 2061 type_register_static(&xive_router_info); 2062 type_register_static(&xive_end_source_info); 2063 type_register_static(&xive_tctx_info); 2064 } 2065 2066 type_init(xive_register_types) 2067