1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive_regs.h" 24 25 /* 26 * XIVE Thread Interrupt Management context 27 */ 28 29 /* 30 * Convert a priority number to an Interrupt Pending Buffer (IPB) 31 * register, which indicates a pending interrupt at the priority 32 * corresponding to the bit number 33 */ 34 static uint8_t priority_to_ipb(uint8_t priority) 35 { 36 return priority > XIVE_PRIORITY_MAX ? 37 0 : 1 << (XIVE_PRIORITY_MAX - priority); 38 } 39 40 /* 41 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 42 * Interrupt Priority Register (PIPR), which contains the priority of 43 * the most favored pending notification. 44 */ 45 static uint8_t ipb_to_pipr(uint8_t ibp) 46 { 47 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 48 } 49 50 static void ipb_update(uint8_t *regs, uint8_t priority) 51 { 52 regs[TM_IPB] |= priority_to_ipb(priority); 53 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 54 } 55 56 static uint8_t exception_mask(uint8_t ring) 57 { 58 switch (ring) { 59 case TM_QW1_OS: 60 return TM_QW1_NSR_EO; 61 case TM_QW3_HV_PHYS: 62 return TM_QW3_NSR_HE; 63 default: 64 g_assert_not_reached(); 65 } 66 } 67 68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 69 { 70 switch (ring) { 71 case TM_QW0_USER: 72 return 0; /* Not supported */ 73 case TM_QW1_OS: 74 return tctx->os_output; 75 case TM_QW2_HV_POOL: 76 case TM_QW3_HV_PHYS: 77 return tctx->hv_output; 78 default: 79 return 0; 80 } 81 } 82 83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 84 { 85 uint8_t *regs = &tctx->regs[ring]; 86 uint8_t nsr = regs[TM_NSR]; 87 uint8_t mask = exception_mask(ring); 88 89 qemu_irq_lower(xive_tctx_output(tctx, ring)); 90 91 if (regs[TM_NSR] & mask) { 92 uint8_t cppr = regs[TM_PIPR]; 93 94 regs[TM_CPPR] = cppr; 95 96 /* Reset the pending buffer bit */ 97 regs[TM_IPB] &= ~priority_to_ipb(cppr); 98 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 99 100 /* Drop Exception bit */ 101 regs[TM_NSR] &= ~mask; 102 } 103 104 return (nsr << 8) | regs[TM_CPPR]; 105 } 106 107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 108 { 109 uint8_t *regs = &tctx->regs[ring]; 110 111 if (regs[TM_PIPR] < regs[TM_CPPR]) { 112 switch (ring) { 113 case TM_QW1_OS: 114 regs[TM_NSR] |= TM_QW1_NSR_EO; 115 break; 116 case TM_QW3_HV_PHYS: 117 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 118 break; 119 default: 120 g_assert_not_reached(); 121 } 122 qemu_irq_raise(xive_tctx_output(tctx, ring)); 123 } 124 } 125 126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 127 { 128 if (cppr > XIVE_PRIORITY_MAX) { 129 cppr = 0xff; 130 } 131 132 tctx->regs[ring + TM_CPPR] = cppr; 133 134 /* CPPR has changed, check if we need to raise a pending exception */ 135 xive_tctx_notify(tctx, ring); 136 } 137 138 static inline uint32_t xive_tctx_word2(uint8_t *ring) 139 { 140 return *((uint32_t *) &ring[TM_WORD2]); 141 } 142 143 /* 144 * XIVE Thread Interrupt Management Area (TIMA) 145 */ 146 147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset, 148 uint64_t value, unsigned size) 149 { 150 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 151 } 152 153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) 154 { 155 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 156 } 157 158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset, 159 unsigned size) 160 { 161 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 162 uint32_t qw2w2; 163 164 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 165 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 166 return qw2w2; 167 } 168 169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset, 170 uint64_t value, unsigned size) 171 { 172 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 173 } 174 175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size) 176 { 177 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 178 } 179 180 /* 181 * Define an access map for each page of the TIMA that we will use in 182 * the memory region ops to filter values when doing loads and stores 183 * of raw registers values 184 * 185 * Registers accessibility bits : 186 * 187 * 0x0 - no access 188 * 0x1 - write only 189 * 0x2 - read only 190 * 0x3 - read/write 191 */ 192 193 static const uint8_t xive_tm_hw_view[] = { 194 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 195 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 196 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 197 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 198 }; 199 200 static const uint8_t xive_tm_hv_view[] = { 201 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 202 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 203 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 204 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 205 }; 206 207 static const uint8_t xive_tm_os_view[] = { 208 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 209 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 210 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 211 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 212 }; 213 214 static const uint8_t xive_tm_user_view[] = { 215 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 216 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 217 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 218 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 219 }; 220 221 /* 222 * Overall TIMA access map for the thread interrupt management context 223 * registers 224 */ 225 static const uint8_t *xive_tm_views[] = { 226 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 227 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 228 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 229 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 230 }; 231 232 /* 233 * Computes a register access mask for a given offset in the TIMA 234 */ 235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 236 { 237 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 238 uint8_t reg_offset = offset & 0x3F; 239 uint8_t reg_mask = write ? 0x1 : 0x2; 240 uint64_t mask = 0x0; 241 int i; 242 243 for (i = 0; i < size; i++) { 244 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 245 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 246 } 247 } 248 249 return mask; 250 } 251 252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 253 unsigned size) 254 { 255 uint8_t ring_offset = offset & 0x30; 256 uint8_t reg_offset = offset & 0x3F; 257 uint64_t mask = xive_tm_mask(offset, size, true); 258 int i; 259 260 /* 261 * Only 4 or 8 bytes stores are allowed and the User ring is 262 * excluded 263 */ 264 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 265 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 266 HWADDR_PRIx"\n", offset); 267 return; 268 } 269 270 /* 271 * Use the register offset for the raw values and filter out 272 * reserved values 273 */ 274 for (i = 0; i < size; i++) { 275 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 276 if (byte_mask) { 277 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 278 byte_mask; 279 } 280 } 281 } 282 283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 284 { 285 uint8_t ring_offset = offset & 0x30; 286 uint8_t reg_offset = offset & 0x3F; 287 uint64_t mask = xive_tm_mask(offset, size, false); 288 uint64_t ret; 289 int i; 290 291 /* 292 * Only 4 or 8 bytes loads are allowed and the User ring is 293 * excluded 294 */ 295 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 296 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 297 HWADDR_PRIx"\n", offset); 298 return -1; 299 } 300 301 /* Use the register offset for the raw values */ 302 ret = 0; 303 for (i = 0; i < size; i++) { 304 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 305 } 306 307 /* filter out reserved values */ 308 return ret & mask; 309 } 310 311 /* 312 * The TM context is mapped twice within each page. Stores and loads 313 * to the first mapping below 2K write and read the specified values 314 * without modification. The second mapping above 2K performs specific 315 * state changes (side effects) in addition to setting/returning the 316 * interrupt management area context of the processor thread. 317 */ 318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) 319 { 320 return xive_tctx_accept(tctx, TM_QW1_OS); 321 } 322 323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset, 324 uint64_t value, unsigned size) 325 { 326 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 327 } 328 329 /* 330 * Adjust the IPB to allow a CPU to process event queues of other 331 * priorities during one physical interrupt cycle. 332 */ 333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset, 334 uint64_t value, unsigned size) 335 { 336 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff); 337 xive_tctx_notify(tctx, TM_QW1_OS); 338 } 339 340 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset, 341 unsigned size) 342 { 343 uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 344 uint32_t qw1w2; 345 346 qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0); 347 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 348 return qw1w2; 349 } 350 351 /* 352 * Define a mapping of "special" operations depending on the TIMA page 353 * offset and the size of the operation. 354 */ 355 typedef struct XiveTmOp { 356 uint8_t page_offset; 357 uint32_t op_offset; 358 unsigned size; 359 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value, 360 unsigned size); 361 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size); 362 } XiveTmOp; 363 364 static const XiveTmOp xive_tm_operations[] = { 365 /* 366 * MMIOs below 2K : raw values and special operations without side 367 * effects 368 */ 369 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 370 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 371 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 372 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 373 374 /* MMIOs above 2K : special operations with side effects */ 375 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 376 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 377 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 378 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 379 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 380 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 381 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 382 }; 383 384 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 385 { 386 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 387 uint32_t op_offset = offset & 0xFFF; 388 int i; 389 390 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 391 const XiveTmOp *xto = &xive_tm_operations[i]; 392 393 /* Accesses done from a more privileged TIMA page is allowed */ 394 if (xto->page_offset >= page_offset && 395 xto->op_offset == op_offset && 396 xto->size == size && 397 ((write && xto->write_handler) || (!write && xto->read_handler))) { 398 return xto; 399 } 400 } 401 return NULL; 402 } 403 404 /* 405 * TIMA MMIO handlers 406 */ 407 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 408 unsigned size) 409 { 410 const XiveTmOp *xto; 411 412 /* 413 * TODO: check V bit in Q[0-3]W2 414 */ 415 416 /* 417 * First, check for special operations in the 2K region 418 */ 419 if (offset & 0x800) { 420 xto = xive_tm_find_op(offset, size, true); 421 if (!xto) { 422 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 423 "@%"HWADDR_PRIx"\n", offset); 424 } else { 425 xto->write_handler(tctx, offset, value, size); 426 } 427 return; 428 } 429 430 /* 431 * Then, for special operations in the region below 2K. 432 */ 433 xto = xive_tm_find_op(offset, size, true); 434 if (xto) { 435 xto->write_handler(tctx, offset, value, size); 436 return; 437 } 438 439 /* 440 * Finish with raw access to the register values 441 */ 442 xive_tm_raw_write(tctx, offset, value, size); 443 } 444 445 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 446 { 447 const XiveTmOp *xto; 448 449 /* 450 * TODO: check V bit in Q[0-3]W2 451 */ 452 453 /* 454 * First, check for special operations in the 2K region 455 */ 456 if (offset & 0x800) { 457 xto = xive_tm_find_op(offset, size, false); 458 if (!xto) { 459 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 460 "@%"HWADDR_PRIx"\n", offset); 461 return -1; 462 } 463 return xto->read_handler(tctx, offset, size); 464 } 465 466 /* 467 * Then, for special operations in the region below 2K. 468 */ 469 xto = xive_tm_find_op(offset, size, false); 470 if (xto) { 471 return xto->read_handler(tctx, offset, size); 472 } 473 474 /* 475 * Finish with raw access to the register values 476 */ 477 return xive_tm_raw_read(tctx, offset, size); 478 } 479 480 static void xive_tm_write(void *opaque, hwaddr offset, 481 uint64_t value, unsigned size) 482 { 483 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); 484 485 xive_tctx_tm_write(tctx, offset, value, size); 486 } 487 488 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size) 489 { 490 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); 491 492 return xive_tctx_tm_read(tctx, offset, size); 493 } 494 495 const MemoryRegionOps xive_tm_ops = { 496 .read = xive_tm_read, 497 .write = xive_tm_write, 498 .endianness = DEVICE_BIG_ENDIAN, 499 .valid = { 500 .min_access_size = 1, 501 .max_access_size = 8, 502 }, 503 .impl = { 504 .min_access_size = 1, 505 .max_access_size = 8, 506 }, 507 }; 508 509 static char *xive_tctx_ring_print(uint8_t *ring) 510 { 511 uint32_t w2 = xive_tctx_word2(ring); 512 513 return g_strdup_printf("%02x %02x %02x %02x %02x " 514 "%02x %02x %02x %08x", 515 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 516 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 517 be32_to_cpu(w2)); 518 } 519 520 static const char * const xive_tctx_ring_names[] = { 521 "USER", "OS", "POOL", "PHYS", 522 }; 523 524 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 525 { 526 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 527 int i; 528 529 if (kvm_irqchip_in_kernel()) { 530 Error *local_err = NULL; 531 532 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 533 if (local_err) { 534 error_report_err(local_err); 535 return; 536 } 537 } 538 539 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 540 " W2\n", cpu_index); 541 542 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 543 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 544 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 545 xive_tctx_ring_names[i], s); 546 g_free(s); 547 } 548 } 549 550 static void xive_tctx_reset(void *dev) 551 { 552 XiveTCTX *tctx = XIVE_TCTX(dev); 553 554 memset(tctx->regs, 0, sizeof(tctx->regs)); 555 556 /* Set some defaults */ 557 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 558 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 559 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 560 561 /* 562 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 563 * CPPR is first set. 564 */ 565 tctx->regs[TM_QW1_OS + TM_PIPR] = 566 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 567 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 568 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 569 } 570 571 static void xive_tctx_realize(DeviceState *dev, Error **errp) 572 { 573 XiveTCTX *tctx = XIVE_TCTX(dev); 574 PowerPCCPU *cpu; 575 CPUPPCState *env; 576 Object *obj; 577 Error *local_err = NULL; 578 579 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err); 580 if (!obj) { 581 error_propagate(errp, local_err); 582 error_prepend(errp, "required link 'cpu' not found: "); 583 return; 584 } 585 586 cpu = POWERPC_CPU(obj); 587 tctx->cs = CPU(obj); 588 589 env = &cpu->env; 590 switch (PPC_INPUT(env)) { 591 case PPC_FLAGS_INPUT_POWER9: 592 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT]; 593 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT]; 594 break; 595 596 default: 597 error_setg(errp, "XIVE interrupt controller does not support " 598 "this CPU bus model"); 599 return; 600 } 601 602 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 603 if (kvm_irqchip_in_kernel()) { 604 kvmppc_xive_cpu_connect(tctx, &local_err); 605 if (local_err) { 606 error_propagate(errp, local_err); 607 return; 608 } 609 } 610 611 qemu_register_reset(xive_tctx_reset, dev); 612 } 613 614 static void xive_tctx_unrealize(DeviceState *dev, Error **errp) 615 { 616 qemu_unregister_reset(xive_tctx_reset, dev); 617 } 618 619 static int vmstate_xive_tctx_pre_save(void *opaque) 620 { 621 Error *local_err = NULL; 622 623 if (kvm_irqchip_in_kernel()) { 624 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err); 625 if (local_err) { 626 error_report_err(local_err); 627 return -1; 628 } 629 } 630 631 return 0; 632 } 633 634 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 635 { 636 Error *local_err = NULL; 637 638 if (kvm_irqchip_in_kernel()) { 639 /* 640 * Required for hotplugged CPU, for which the state comes 641 * after all states of the machine. 642 */ 643 kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err); 644 if (local_err) { 645 error_report_err(local_err); 646 return -1; 647 } 648 } 649 650 return 0; 651 } 652 653 static const VMStateDescription vmstate_xive_tctx = { 654 .name = TYPE_XIVE_TCTX, 655 .version_id = 1, 656 .minimum_version_id = 1, 657 .pre_save = vmstate_xive_tctx_pre_save, 658 .post_load = vmstate_xive_tctx_post_load, 659 .fields = (VMStateField[]) { 660 VMSTATE_BUFFER(regs, XiveTCTX), 661 VMSTATE_END_OF_LIST() 662 }, 663 }; 664 665 static void xive_tctx_class_init(ObjectClass *klass, void *data) 666 { 667 DeviceClass *dc = DEVICE_CLASS(klass); 668 669 dc->desc = "XIVE Interrupt Thread Context"; 670 dc->realize = xive_tctx_realize; 671 dc->unrealize = xive_tctx_unrealize; 672 dc->vmsd = &vmstate_xive_tctx; 673 } 674 675 static const TypeInfo xive_tctx_info = { 676 .name = TYPE_XIVE_TCTX, 677 .parent = TYPE_DEVICE, 678 .instance_size = sizeof(XiveTCTX), 679 .class_init = xive_tctx_class_init, 680 }; 681 682 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp) 683 { 684 Error *local_err = NULL; 685 Object *obj; 686 687 obj = object_new(TYPE_XIVE_TCTX); 688 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort); 689 object_unref(obj); 690 object_property_add_const_link(obj, "cpu", cpu, &error_abort); 691 object_property_set_bool(obj, true, "realized", &local_err); 692 if (local_err) { 693 goto error; 694 } 695 696 return obj; 697 698 error: 699 object_unparent(obj); 700 error_propagate(errp, local_err); 701 return NULL; 702 } 703 704 /* 705 * XIVE ESB helpers 706 */ 707 708 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 709 { 710 uint8_t old_pq = *pq & 0x3; 711 712 *pq &= ~0x3; 713 *pq |= value & 0x3; 714 715 return old_pq; 716 } 717 718 static bool xive_esb_trigger(uint8_t *pq) 719 { 720 uint8_t old_pq = *pq & 0x3; 721 722 switch (old_pq) { 723 case XIVE_ESB_RESET: 724 xive_esb_set(pq, XIVE_ESB_PENDING); 725 return true; 726 case XIVE_ESB_PENDING: 727 case XIVE_ESB_QUEUED: 728 xive_esb_set(pq, XIVE_ESB_QUEUED); 729 return false; 730 case XIVE_ESB_OFF: 731 xive_esb_set(pq, XIVE_ESB_OFF); 732 return false; 733 default: 734 g_assert_not_reached(); 735 } 736 } 737 738 static bool xive_esb_eoi(uint8_t *pq) 739 { 740 uint8_t old_pq = *pq & 0x3; 741 742 switch (old_pq) { 743 case XIVE_ESB_RESET: 744 case XIVE_ESB_PENDING: 745 xive_esb_set(pq, XIVE_ESB_RESET); 746 return false; 747 case XIVE_ESB_QUEUED: 748 xive_esb_set(pq, XIVE_ESB_PENDING); 749 return true; 750 case XIVE_ESB_OFF: 751 xive_esb_set(pq, XIVE_ESB_OFF); 752 return false; 753 default: 754 g_assert_not_reached(); 755 } 756 } 757 758 /* 759 * XIVE Interrupt Source (or IVSE) 760 */ 761 762 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 763 { 764 assert(srcno < xsrc->nr_irqs); 765 766 return xsrc->status[srcno] & 0x3; 767 } 768 769 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 770 { 771 assert(srcno < xsrc->nr_irqs); 772 773 return xive_esb_set(&xsrc->status[srcno], pq); 774 } 775 776 /* 777 * Returns whether the event notification should be forwarded. 778 */ 779 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 780 { 781 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 782 783 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 784 785 switch (old_pq) { 786 case XIVE_ESB_RESET: 787 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 788 return true; 789 default: 790 return false; 791 } 792 } 793 794 /* 795 * Returns whether the event notification should be forwarded. 796 */ 797 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 798 { 799 bool ret; 800 801 assert(srcno < xsrc->nr_irqs); 802 803 ret = xive_esb_trigger(&xsrc->status[srcno]); 804 805 if (xive_source_irq_is_lsi(xsrc, srcno) && 806 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 807 qemu_log_mask(LOG_GUEST_ERROR, 808 "XIVE: queued an event on LSI IRQ %d\n", srcno); 809 } 810 811 return ret; 812 } 813 814 /* 815 * Returns whether the event notification should be forwarded. 816 */ 817 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 818 { 819 bool ret; 820 821 assert(srcno < xsrc->nr_irqs); 822 823 ret = xive_esb_eoi(&xsrc->status[srcno]); 824 825 /* 826 * LSI sources do not set the Q bit but they can still be 827 * asserted, in which case we should forward a new event 828 * notification 829 */ 830 if (xive_source_irq_is_lsi(xsrc, srcno) && 831 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 832 ret = xive_source_lsi_trigger(xsrc, srcno); 833 } 834 835 return ret; 836 } 837 838 /* 839 * Forward the source event notification to the Router 840 */ 841 static void xive_source_notify(XiveSource *xsrc, int srcno) 842 { 843 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 844 845 if (xnc->notify) { 846 xnc->notify(xsrc->xive, srcno); 847 } 848 } 849 850 /* 851 * In a two pages ESB MMIO setting, even page is the trigger page, odd 852 * page is for management 853 */ 854 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 855 { 856 return !((addr >> shift) & 1); 857 } 858 859 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 860 { 861 return xive_source_esb_has_2page(xsrc) && 862 addr_is_even(addr, xsrc->esb_shift - 1); 863 } 864 865 /* 866 * ESB MMIO loads 867 * Trigger page Management/EOI page 868 * 869 * ESB MMIO setting 2 pages 1 or 2 pages 870 * 871 * 0x000 .. 0x3FF -1 EOI and return 0|1 872 * 0x400 .. 0x7FF -1 EOI and return 0|1 873 * 0x800 .. 0xBFF -1 return PQ 874 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 875 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 876 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 877 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 878 */ 879 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 880 { 881 XiveSource *xsrc = XIVE_SOURCE(opaque); 882 uint32_t offset = addr & 0xFFF; 883 uint32_t srcno = addr >> xsrc->esb_shift; 884 uint64_t ret = -1; 885 886 /* In a two pages ESB MMIO setting, trigger page should not be read */ 887 if (xive_source_is_trigger_page(xsrc, addr)) { 888 qemu_log_mask(LOG_GUEST_ERROR, 889 "XIVE: invalid load on IRQ %d trigger page at " 890 "0x%"HWADDR_PRIx"\n", srcno, addr); 891 return -1; 892 } 893 894 switch (offset) { 895 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 896 ret = xive_source_esb_eoi(xsrc, srcno); 897 898 /* Forward the source event notification for routing */ 899 if (ret) { 900 xive_source_notify(xsrc, srcno); 901 } 902 break; 903 904 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 905 ret = xive_source_esb_get(xsrc, srcno); 906 break; 907 908 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 909 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 910 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 911 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 912 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 913 break; 914 default: 915 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 916 offset); 917 } 918 919 return ret; 920 } 921 922 /* 923 * ESB MMIO stores 924 * Trigger page Management/EOI page 925 * 926 * ESB MMIO setting 2 pages 1 or 2 pages 927 * 928 * 0x000 .. 0x3FF Trigger Trigger 929 * 0x400 .. 0x7FF Trigger EOI 930 * 0x800 .. 0xBFF Trigger undefined 931 * 0xC00 .. 0xCFF Trigger PQ=00 932 * 0xD00 .. 0xDFF Trigger PQ=01 933 * 0xE00 .. 0xDFF Trigger PQ=10 934 * 0xF00 .. 0xDFF Trigger PQ=11 935 */ 936 static void xive_source_esb_write(void *opaque, hwaddr addr, 937 uint64_t value, unsigned size) 938 { 939 XiveSource *xsrc = XIVE_SOURCE(opaque); 940 uint32_t offset = addr & 0xFFF; 941 uint32_t srcno = addr >> xsrc->esb_shift; 942 bool notify = false; 943 944 /* In a two pages ESB MMIO setting, trigger page only triggers */ 945 if (xive_source_is_trigger_page(xsrc, addr)) { 946 notify = xive_source_esb_trigger(xsrc, srcno); 947 goto out; 948 } 949 950 switch (offset) { 951 case 0 ... 0x3FF: 952 notify = xive_source_esb_trigger(xsrc, srcno); 953 break; 954 955 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 956 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 957 qemu_log_mask(LOG_GUEST_ERROR, 958 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 959 return; 960 } 961 962 notify = xive_source_esb_eoi(xsrc, srcno); 963 break; 964 965 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 966 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 967 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 968 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 969 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 970 break; 971 972 default: 973 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 974 offset); 975 return; 976 } 977 978 out: 979 /* Forward the source event notification for routing */ 980 if (notify) { 981 xive_source_notify(xsrc, srcno); 982 } 983 } 984 985 static const MemoryRegionOps xive_source_esb_ops = { 986 .read = xive_source_esb_read, 987 .write = xive_source_esb_write, 988 .endianness = DEVICE_BIG_ENDIAN, 989 .valid = { 990 .min_access_size = 8, 991 .max_access_size = 8, 992 }, 993 .impl = { 994 .min_access_size = 8, 995 .max_access_size = 8, 996 }, 997 }; 998 999 void xive_source_set_irq(void *opaque, int srcno, int val) 1000 { 1001 XiveSource *xsrc = XIVE_SOURCE(opaque); 1002 bool notify = false; 1003 1004 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1005 if (val) { 1006 notify = xive_source_lsi_trigger(xsrc, srcno); 1007 } else { 1008 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 1009 } 1010 } else { 1011 if (val) { 1012 notify = xive_source_esb_trigger(xsrc, srcno); 1013 } 1014 } 1015 1016 /* Forward the source event notification for routing */ 1017 if (notify) { 1018 xive_source_notify(xsrc, srcno); 1019 } 1020 } 1021 1022 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1023 { 1024 int i; 1025 1026 for (i = 0; i < xsrc->nr_irqs; i++) { 1027 uint8_t pq = xive_source_esb_get(xsrc, i); 1028 1029 if (pq == XIVE_ESB_OFF) { 1030 continue; 1031 } 1032 1033 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1034 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1035 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1036 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1037 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' '); 1038 } 1039 } 1040 1041 static void xive_source_reset(void *dev) 1042 { 1043 XiveSource *xsrc = XIVE_SOURCE(dev); 1044 1045 /* Do not clear the LSI bitmap */ 1046 1047 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 1048 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 1049 } 1050 1051 static void xive_source_realize(DeviceState *dev, Error **errp) 1052 { 1053 XiveSource *xsrc = XIVE_SOURCE(dev); 1054 Object *obj; 1055 Error *local_err = NULL; 1056 1057 obj = object_property_get_link(OBJECT(dev), "xive", &local_err); 1058 if (!obj) { 1059 error_propagate(errp, local_err); 1060 error_prepend(errp, "required link 'xive' not found: "); 1061 return; 1062 } 1063 1064 xsrc->xive = XIVE_NOTIFIER(obj); 1065 1066 if (!xsrc->nr_irqs) { 1067 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1068 return; 1069 } 1070 1071 if (xsrc->esb_shift != XIVE_ESB_4K && 1072 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1073 xsrc->esb_shift != XIVE_ESB_64K && 1074 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1075 error_setg(errp, "Invalid ESB shift setting"); 1076 return; 1077 } 1078 1079 xsrc->status = g_malloc0(xsrc->nr_irqs); 1080 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1081 1082 if (!kvm_irqchip_in_kernel()) { 1083 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1084 &xive_source_esb_ops, xsrc, "xive.esb", 1085 (1ull << xsrc->esb_shift) * xsrc->nr_irqs); 1086 } 1087 1088 qemu_register_reset(xive_source_reset, dev); 1089 } 1090 1091 static const VMStateDescription vmstate_xive_source = { 1092 .name = TYPE_XIVE_SOURCE, 1093 .version_id = 1, 1094 .minimum_version_id = 1, 1095 .fields = (VMStateField[]) { 1096 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1097 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1098 VMSTATE_END_OF_LIST() 1099 }, 1100 }; 1101 1102 /* 1103 * The default XIVE interrupt source setting for the ESB MMIOs is two 1104 * 64k pages without Store EOI, to be in sync with KVM. 1105 */ 1106 static Property xive_source_properties[] = { 1107 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1108 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1109 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1110 DEFINE_PROP_END_OF_LIST(), 1111 }; 1112 1113 static void xive_source_class_init(ObjectClass *klass, void *data) 1114 { 1115 DeviceClass *dc = DEVICE_CLASS(klass); 1116 1117 dc->desc = "XIVE Interrupt Source"; 1118 dc->props = xive_source_properties; 1119 dc->realize = xive_source_realize; 1120 dc->vmsd = &vmstate_xive_source; 1121 } 1122 1123 static const TypeInfo xive_source_info = { 1124 .name = TYPE_XIVE_SOURCE, 1125 .parent = TYPE_DEVICE, 1126 .instance_size = sizeof(XiveSource), 1127 .class_init = xive_source_class_init, 1128 }; 1129 1130 /* 1131 * XiveEND helpers 1132 */ 1133 1134 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1135 { 1136 uint64_t qaddr_base = xive_end_qaddr(end); 1137 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1138 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1139 uint32_t qentries = 1 << (qsize + 10); 1140 int i; 1141 1142 /* 1143 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1144 */ 1145 monitor_printf(mon, " [ "); 1146 qindex = (qindex - (width - 1)) & (qentries - 1); 1147 for (i = 0; i < width; i++) { 1148 uint64_t qaddr = qaddr_base + (qindex << 2); 1149 uint32_t qdata = -1; 1150 1151 if (dma_memory_read(&address_space_memory, qaddr, &qdata, 1152 sizeof(qdata))) { 1153 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1154 HWADDR_PRIx "\n", qaddr); 1155 return; 1156 } 1157 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1158 be32_to_cpu(qdata)); 1159 qindex = (qindex + 1) & (qentries - 1); 1160 } 1161 monitor_printf(mon, "]"); 1162 } 1163 1164 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1165 { 1166 uint64_t qaddr_base = xive_end_qaddr(end); 1167 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1168 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1169 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1170 uint32_t qentries = 1 << (qsize + 10); 1171 1172 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1173 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1174 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1175 uint8_t pq; 1176 1177 if (!xive_end_is_valid(end)) { 1178 return; 1179 } 1180 1181 pq = xive_get_field32(END_W1_ESn, end->w1); 1182 1183 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1184 end_idx, 1185 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1186 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1187 xive_end_is_valid(end) ? 'v' : '-', 1188 xive_end_is_enqueue(end) ? 'q' : '-', 1189 xive_end_is_notify(end) ? 'n' : '-', 1190 xive_end_is_backlog(end) ? 'b' : '-', 1191 xive_end_is_escalate(end) ? 'e' : '-', 1192 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1193 xive_end_is_silent_escalation(end) ? 's' : '-', 1194 priority, nvt_blk, nvt_idx); 1195 1196 if (qaddr_base) { 1197 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1198 qaddr_base, qindex, qentries, qgen); 1199 xive_end_queue_pic_print_info(end, 6, mon); 1200 } 1201 monitor_printf(mon, "\n"); 1202 } 1203 1204 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1205 { 1206 uint64_t qaddr_base = xive_end_qaddr(end); 1207 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1208 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1209 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1210 1211 uint64_t qaddr = qaddr_base + (qindex << 2); 1212 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1213 uint32_t qentries = 1 << (qsize + 10); 1214 1215 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { 1216 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1217 HWADDR_PRIx "\n", qaddr); 1218 return; 1219 } 1220 1221 qindex = (qindex + 1) & (qentries - 1); 1222 if (qindex == 0) { 1223 qgen ^= 1; 1224 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1225 } 1226 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1227 } 1228 1229 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1230 Monitor *mon) 1231 { 1232 XiveEAS *eas = (XiveEAS *) &end->w4; 1233 uint8_t pq; 1234 1235 if (!xive_end_is_escalate(end)) { 1236 return; 1237 } 1238 1239 pq = xive_get_field32(END_W1_ESe, end->w1); 1240 1241 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1242 end_idx, 1243 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1244 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1245 xive_eas_is_valid(eas) ? 'V' : ' ', 1246 xive_eas_is_masked(eas) ? 'M' : ' ', 1247 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1248 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1249 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1250 } 1251 1252 /* 1253 * XIVE Router (aka. Virtualization Controller or IVRE) 1254 */ 1255 1256 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1257 XiveEAS *eas) 1258 { 1259 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1260 1261 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1262 } 1263 1264 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1265 XiveEND *end) 1266 { 1267 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1268 1269 return xrc->get_end(xrtr, end_blk, end_idx, end); 1270 } 1271 1272 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1273 XiveEND *end, uint8_t word_number) 1274 { 1275 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1276 1277 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1278 } 1279 1280 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1281 XiveNVT *nvt) 1282 { 1283 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1284 1285 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1286 } 1287 1288 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1289 XiveNVT *nvt, uint8_t word_number) 1290 { 1291 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1292 1293 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1294 } 1295 1296 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs) 1297 { 1298 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1299 1300 return xrc->get_tctx(xrtr, cs); 1301 } 1302 1303 /* 1304 * Encode the HW CAM line in the block group mode format : 1305 * 1306 * chip << 19 | 0000000 0 0001 thread (7Bit) 1307 */ 1308 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx) 1309 { 1310 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1311 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1312 1313 return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f)); 1314 } 1315 1316 /* 1317 * The thread context register words are in big-endian format. 1318 */ 1319 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format, 1320 uint8_t nvt_blk, uint32_t nvt_idx, 1321 bool cam_ignore, uint32_t logic_serv) 1322 { 1323 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1324 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1325 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1326 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1327 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1328 1329 /* 1330 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1331 * identifier are ignored in the "CAM" match. 1332 */ 1333 1334 if (format == 0) { 1335 if (cam_ignore == true) { 1336 /* 1337 * F=0 & i=1: Logical server notification (bits ignored at 1338 * the end of the NVT identifier) 1339 */ 1340 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1341 nvt_blk, nvt_idx); 1342 return -1; 1343 } 1344 1345 /* F=0 & i=0: Specific NVT notification */ 1346 1347 /* PHYS ring */ 1348 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1349 cam == xive_tctx_hw_cam_line(tctx)) { 1350 return TM_QW3_HV_PHYS; 1351 } 1352 1353 /* HV POOL ring */ 1354 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1355 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1356 return TM_QW2_HV_POOL; 1357 } 1358 1359 /* OS ring */ 1360 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1361 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1362 return TM_QW1_OS; 1363 } 1364 } else { 1365 /* F=1 : User level Event-Based Branch (EBB) notification */ 1366 1367 /* USER ring */ 1368 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1369 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1370 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1371 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1372 return TM_QW0_USER; 1373 } 1374 } 1375 return -1; 1376 } 1377 1378 typedef struct XiveTCTXMatch { 1379 XiveTCTX *tctx; 1380 uint8_t ring; 1381 } XiveTCTXMatch; 1382 1383 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format, 1384 uint8_t nvt_blk, uint32_t nvt_idx, 1385 bool cam_ignore, uint8_t priority, 1386 uint32_t logic_serv, XiveTCTXMatch *match) 1387 { 1388 CPUState *cs; 1389 1390 /* 1391 * TODO (PowerNV): handle chip_id overwrite of block field for 1392 * hardwired CAM compares 1393 */ 1394 1395 CPU_FOREACH(cs) { 1396 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs); 1397 int ring; 1398 1399 /* 1400 * HW checks that the CPU is enabled in the Physical Thread 1401 * Enable Register (PTER). 1402 */ 1403 1404 /* 1405 * Check the thread context CAM lines and record matches. We 1406 * will handle CPU exception delivery later 1407 */ 1408 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx, 1409 cam_ignore, logic_serv); 1410 /* 1411 * Save the context and follow on to catch duplicates, that we 1412 * don't support yet. 1413 */ 1414 if (ring != -1) { 1415 if (match->tctx) { 1416 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " 1417 "context NVT %x/%x\n", nvt_blk, nvt_idx); 1418 return false; 1419 } 1420 1421 match->ring = ring; 1422 match->tctx = tctx; 1423 } 1424 } 1425 1426 if (!match->tctx) { 1427 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n", 1428 nvt_blk, nvt_idx); 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 /* 1436 * This is our simple Xive Presenter Engine model. It is merged in the 1437 * Router as it does not require an extra object. 1438 * 1439 * It receives notification requests sent by the IVRE to find one 1440 * matching NVT (or more) dispatched on the processor threads. In case 1441 * of a single NVT notification, the process is abreviated and the 1442 * thread is signaled if a match is found. In case of a logical server 1443 * notification (bits ignored at the end of the NVT identifier), the 1444 * IVPE and IVRE select a winning thread using different filters. This 1445 * involves 2 or 3 exchanges on the PowerBus that the model does not 1446 * support. 1447 * 1448 * The parameters represent what is sent on the PowerBus 1449 */ 1450 static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format, 1451 uint8_t nvt_blk, uint32_t nvt_idx, 1452 bool cam_ignore, uint8_t priority, 1453 uint32_t logic_serv) 1454 { 1455 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1456 bool found; 1457 1458 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore, 1459 priority, logic_serv, &match); 1460 if (found) { 1461 ipb_update(&match.tctx->regs[match.ring], priority); 1462 xive_tctx_notify(match.tctx, match.ring); 1463 } 1464 1465 return found; 1466 } 1467 1468 /* 1469 * Notification using the END ESe/ESn bit (Event State Buffer for 1470 * escalation and notification). Profide futher coalescing in the 1471 * Router. 1472 */ 1473 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1474 uint32_t end_idx, XiveEND *end, 1475 uint32_t end_esmask) 1476 { 1477 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1478 bool notify = xive_esb_trigger(&pq); 1479 1480 if (pq != xive_get_field32(end_esmask, end->w1)) { 1481 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1482 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1483 } 1484 1485 /* ESe/n[Q]=1 : end of notification */ 1486 return notify; 1487 } 1488 1489 /* 1490 * An END trigger can come from an event trigger (IPI or HW) or from 1491 * another chip. We don't model the PowerBus but the END trigger 1492 * message has the same parameters than in the function below. 1493 */ 1494 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1495 uint32_t end_idx, uint32_t end_data) 1496 { 1497 XiveEND end; 1498 uint8_t priority; 1499 uint8_t format; 1500 uint8_t nvt_blk; 1501 uint32_t nvt_idx; 1502 XiveNVT nvt; 1503 bool found; 1504 1505 /* END cache lookup */ 1506 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1507 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1508 end_idx); 1509 return; 1510 } 1511 1512 if (!xive_end_is_valid(&end)) { 1513 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1514 end_blk, end_idx); 1515 return; 1516 } 1517 1518 if (xive_end_is_enqueue(&end)) { 1519 xive_end_enqueue(&end, end_data); 1520 /* Enqueuing event data modifies the EQ toggle and index */ 1521 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1522 } 1523 1524 /* 1525 * When the END is silent, we skip the notification part. 1526 */ 1527 if (xive_end_is_silent_escalation(&end)) { 1528 goto do_escalation; 1529 } 1530 1531 /* 1532 * The W7 format depends on the F bit in W6. It defines the type 1533 * of the notification : 1534 * 1535 * F=0 : single or multiple NVT notification 1536 * F=1 : User level Event-Based Branch (EBB) notification, no 1537 * priority 1538 */ 1539 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1540 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1541 1542 /* The END is masked */ 1543 if (format == 0 && priority == 0xff) { 1544 return; 1545 } 1546 1547 /* 1548 * Check the END ESn (Event State Buffer for notification) for 1549 * even futher coalescing in the Router 1550 */ 1551 if (!xive_end_is_notify(&end)) { 1552 /* ESn[Q]=1 : end of notification */ 1553 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1554 &end, END_W1_ESn)) { 1555 return; 1556 } 1557 } 1558 1559 /* 1560 * Follows IVPE notification 1561 */ 1562 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1563 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1564 1565 /* NVT cache lookup */ 1566 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1567 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1568 nvt_blk, nvt_idx); 1569 return; 1570 } 1571 1572 if (!xive_nvt_is_valid(&nvt)) { 1573 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1574 nvt_blk, nvt_idx); 1575 return; 1576 } 1577 1578 found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx, 1579 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1580 priority, 1581 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1582 1583 /* TODO: Auto EOI. */ 1584 1585 if (found) { 1586 return; 1587 } 1588 1589 /* 1590 * If no matching NVT is dispatched on a HW thread : 1591 * - specific VP: update the NVT structure if backlog is activated 1592 * - logical server : forward request to IVPE (not supported) 1593 */ 1594 if (xive_end_is_backlog(&end)) { 1595 if (format == 1) { 1596 qemu_log_mask(LOG_GUEST_ERROR, 1597 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1598 end_blk, end_idx); 1599 return; 1600 } 1601 /* Record the IPB in the associated NVT structure */ 1602 ipb_update((uint8_t *) &nvt.w4, priority); 1603 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1604 1605 /* 1606 * On HW, follows a "Broadcast Backlog" to IVPEs 1607 */ 1608 } 1609 1610 do_escalation: 1611 /* 1612 * If activated, escalate notification using the ESe PQ bits and 1613 * the EAS in w4-5 1614 */ 1615 if (!xive_end_is_escalate(&end)) { 1616 return; 1617 } 1618 1619 /* 1620 * Check the END ESe (Event State Buffer for escalation) for even 1621 * futher coalescing in the Router 1622 */ 1623 if (!xive_end_is_uncond_escalation(&end)) { 1624 /* ESe[Q]=1 : end of notification */ 1625 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1626 &end, END_W1_ESe)) { 1627 return; 1628 } 1629 } 1630 1631 /* 1632 * The END trigger becomes an Escalation trigger 1633 */ 1634 xive_router_end_notify(xrtr, 1635 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1636 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1637 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1638 } 1639 1640 void xive_router_notify(XiveNotifier *xn, uint32_t lisn) 1641 { 1642 XiveRouter *xrtr = XIVE_ROUTER(xn); 1643 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn); 1644 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn); 1645 XiveEAS eas; 1646 1647 /* EAS cache lookup */ 1648 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1649 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1650 return; 1651 } 1652 1653 /* 1654 * The IVRE checks the State Bit Cache at this point. We skip the 1655 * SBC lookup because the state bits of the sources are modeled 1656 * internally in QEMU. 1657 */ 1658 1659 if (!xive_eas_is_valid(&eas)) { 1660 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1661 return; 1662 } 1663 1664 if (xive_eas_is_masked(&eas)) { 1665 /* Notification completed */ 1666 return; 1667 } 1668 1669 /* 1670 * The event trigger becomes an END trigger 1671 */ 1672 xive_router_end_notify(xrtr, 1673 xive_get_field64(EAS_END_BLOCK, eas.w), 1674 xive_get_field64(EAS_END_INDEX, eas.w), 1675 xive_get_field64(EAS_END_DATA, eas.w)); 1676 } 1677 1678 static void xive_router_class_init(ObjectClass *klass, void *data) 1679 { 1680 DeviceClass *dc = DEVICE_CLASS(klass); 1681 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1682 1683 dc->desc = "XIVE Router Engine"; 1684 xnc->notify = xive_router_notify; 1685 } 1686 1687 static const TypeInfo xive_router_info = { 1688 .name = TYPE_XIVE_ROUTER, 1689 .parent = TYPE_SYS_BUS_DEVICE, 1690 .abstract = true, 1691 .class_size = sizeof(XiveRouterClass), 1692 .class_init = xive_router_class_init, 1693 .interfaces = (InterfaceInfo[]) { 1694 { TYPE_XIVE_NOTIFIER }, 1695 { } 1696 } 1697 }; 1698 1699 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1700 { 1701 if (!xive_eas_is_valid(eas)) { 1702 return; 1703 } 1704 1705 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1706 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1707 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1708 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1709 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1710 } 1711 1712 /* 1713 * END ESB MMIO loads 1714 */ 1715 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1716 { 1717 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1718 uint32_t offset = addr & 0xFFF; 1719 uint8_t end_blk; 1720 uint32_t end_idx; 1721 XiveEND end; 1722 uint32_t end_esmask; 1723 uint8_t pq; 1724 uint64_t ret = -1; 1725 1726 end_blk = xsrc->block_id; 1727 end_idx = addr >> (xsrc->esb_shift + 1); 1728 1729 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1730 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1731 end_idx); 1732 return -1; 1733 } 1734 1735 if (!xive_end_is_valid(&end)) { 1736 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1737 end_blk, end_idx); 1738 return -1; 1739 } 1740 1741 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1742 pq = xive_get_field32(end_esmask, end.w1); 1743 1744 switch (offset) { 1745 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1746 ret = xive_esb_eoi(&pq); 1747 1748 /* Forward the source event notification for routing ?? */ 1749 break; 1750 1751 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1752 ret = pq; 1753 break; 1754 1755 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1756 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1757 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1758 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1759 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1760 break; 1761 default: 1762 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1763 offset); 1764 return -1; 1765 } 1766 1767 if (pq != xive_get_field32(end_esmask, end.w1)) { 1768 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1769 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1770 } 1771 1772 return ret; 1773 } 1774 1775 /* 1776 * END ESB MMIO stores are invalid 1777 */ 1778 static void xive_end_source_write(void *opaque, hwaddr addr, 1779 uint64_t value, unsigned size) 1780 { 1781 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1782 HWADDR_PRIx"\n", addr); 1783 } 1784 1785 static const MemoryRegionOps xive_end_source_ops = { 1786 .read = xive_end_source_read, 1787 .write = xive_end_source_write, 1788 .endianness = DEVICE_BIG_ENDIAN, 1789 .valid = { 1790 .min_access_size = 8, 1791 .max_access_size = 8, 1792 }, 1793 .impl = { 1794 .min_access_size = 8, 1795 .max_access_size = 8, 1796 }, 1797 }; 1798 1799 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1800 { 1801 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1802 Object *obj; 1803 Error *local_err = NULL; 1804 1805 obj = object_property_get_link(OBJECT(dev), "xive", &local_err); 1806 if (!obj) { 1807 error_propagate(errp, local_err); 1808 error_prepend(errp, "required link 'xive' not found: "); 1809 return; 1810 } 1811 1812 xsrc->xrtr = XIVE_ROUTER(obj); 1813 1814 if (!xsrc->nr_ends) { 1815 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1816 return; 1817 } 1818 1819 if (xsrc->esb_shift != XIVE_ESB_4K && 1820 xsrc->esb_shift != XIVE_ESB_64K) { 1821 error_setg(errp, "Invalid ESB shift setting"); 1822 return; 1823 } 1824 1825 /* 1826 * Each END is assigned an even/odd pair of MMIO pages, the even page 1827 * manages the ESn field while the odd page manages the ESe field. 1828 */ 1829 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1830 &xive_end_source_ops, xsrc, "xive.end", 1831 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1832 } 1833 1834 static Property xive_end_source_properties[] = { 1835 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0), 1836 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 1837 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 1838 DEFINE_PROP_END_OF_LIST(), 1839 }; 1840 1841 static void xive_end_source_class_init(ObjectClass *klass, void *data) 1842 { 1843 DeviceClass *dc = DEVICE_CLASS(klass); 1844 1845 dc->desc = "XIVE END Source"; 1846 dc->props = xive_end_source_properties; 1847 dc->realize = xive_end_source_realize; 1848 } 1849 1850 static const TypeInfo xive_end_source_info = { 1851 .name = TYPE_XIVE_END_SOURCE, 1852 .parent = TYPE_DEVICE, 1853 .instance_size = sizeof(XiveENDSource), 1854 .class_init = xive_end_source_class_init, 1855 }; 1856 1857 /* 1858 * XIVE Notifier 1859 */ 1860 static const TypeInfo xive_notifier_info = { 1861 .name = TYPE_XIVE_NOTIFIER, 1862 .parent = TYPE_INTERFACE, 1863 .class_size = sizeof(XiveNotifierClass), 1864 }; 1865 1866 static void xive_register_types(void) 1867 { 1868 type_register_static(&xive_source_info); 1869 type_register_static(&xive_notifier_info); 1870 type_register_static(&xive_router_info); 1871 type_register_static(&xive_end_source_info); 1872 type_register_static(&xive_tctx_info); 1873 } 1874 1875 type_init(xive_register_types) 1876