xref: /openbmc/qemu/hw/intc/xive.c (revision e6e03dcf)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 
29 /*
30  * Convert a priority number to an Interrupt Pending Buffer (IPB)
31  * register, which indicates a pending interrupt at the priority
32  * corresponding to the bit number
33  */
34 static uint8_t priority_to_ipb(uint8_t priority)
35 {
36     return priority > XIVE_PRIORITY_MAX ?
37         0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 }
39 
40 /*
41  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42  * Interrupt Priority Register (PIPR), which contains the priority of
43  * the most favored pending notification.
44  */
45 static uint8_t ipb_to_pipr(uint8_t ibp)
46 {
47     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
48 }
49 
50 static void ipb_update(uint8_t *regs, uint8_t priority)
51 {
52     regs[TM_IPB] |= priority_to_ipb(priority);
53     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
54 }
55 
56 static uint8_t exception_mask(uint8_t ring)
57 {
58     switch (ring) {
59     case TM_QW1_OS:
60         return TM_QW1_NSR_EO;
61     case TM_QW3_HV_PHYS:
62         return TM_QW3_NSR_HE;
63     default:
64         g_assert_not_reached();
65     }
66 }
67 
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
69 {
70         switch (ring) {
71         case TM_QW0_USER:
72                 return 0; /* Not supported */
73         case TM_QW1_OS:
74                 return tctx->os_output;
75         case TM_QW2_HV_POOL:
76         case TM_QW3_HV_PHYS:
77                 return tctx->hv_output;
78         default:
79                 return 0;
80         }
81 }
82 
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
84 {
85     uint8_t *regs = &tctx->regs[ring];
86     uint8_t nsr = regs[TM_NSR];
87     uint8_t mask = exception_mask(ring);
88 
89     qemu_irq_lower(xive_tctx_output(tctx, ring));
90 
91     if (regs[TM_NSR] & mask) {
92         uint8_t cppr = regs[TM_PIPR];
93 
94         regs[TM_CPPR] = cppr;
95 
96         /* Reset the pending buffer bit */
97         regs[TM_IPB] &= ~priority_to_ipb(cppr);
98         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
99 
100         /* Drop Exception bit */
101         regs[TM_NSR] &= ~mask;
102     }
103 
104     return (nsr << 8) | regs[TM_CPPR];
105 }
106 
107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
108 {
109     uint8_t *regs = &tctx->regs[ring];
110 
111     if (regs[TM_PIPR] < regs[TM_CPPR]) {
112         switch (ring) {
113         case TM_QW1_OS:
114             regs[TM_NSR] |= TM_QW1_NSR_EO;
115             break;
116         case TM_QW3_HV_PHYS:
117             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
118             break;
119         default:
120             g_assert_not_reached();
121         }
122         qemu_irq_raise(xive_tctx_output(tctx, ring));
123     }
124 }
125 
126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
127 {
128     if (cppr > XIVE_PRIORITY_MAX) {
129         cppr = 0xff;
130     }
131 
132     tctx->regs[ring + TM_CPPR] = cppr;
133 
134     /* CPPR has changed, check if we need to raise a pending exception */
135     xive_tctx_notify(tctx, ring);
136 }
137 
138 static inline uint32_t xive_tctx_word2(uint8_t *ring)
139 {
140     return *((uint32_t *) &ring[TM_WORD2]);
141 }
142 
143 /*
144  * XIVE Thread Interrupt Management Area (TIMA)
145  */
146 
147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
148                                 uint64_t value, unsigned size)
149 {
150     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
151 }
152 
153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
154 {
155     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
156 }
157 
158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
159                                       unsigned size)
160 {
161     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
162     uint32_t qw2w2;
163 
164     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
165     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
166     return qw2w2;
167 }
168 
169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
170                             uint64_t value, unsigned size)
171 {
172     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
173 }
174 
175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
176 {
177     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
178 }
179 
180 /*
181  * Define an access map for each page of the TIMA that we will use in
182  * the memory region ops to filter values when doing loads and stores
183  * of raw registers values
184  *
185  * Registers accessibility bits :
186  *
187  *    0x0 - no access
188  *    0x1 - write only
189  *    0x2 - read only
190  *    0x3 - read/write
191  */
192 
193 static const uint8_t xive_tm_hw_view[] = {
194     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
195     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
196     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
197     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
198 };
199 
200 static const uint8_t xive_tm_hv_view[] = {
201     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
202     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
203     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
204     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
205 };
206 
207 static const uint8_t xive_tm_os_view[] = {
208     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
209     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
210     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
211     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
212 };
213 
214 static const uint8_t xive_tm_user_view[] = {
215     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
216     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
217     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
218     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
219 };
220 
221 /*
222  * Overall TIMA access map for the thread interrupt management context
223  * registers
224  */
225 static const uint8_t *xive_tm_views[] = {
226     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
227     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
228     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
229     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
230 };
231 
232 /*
233  * Computes a register access mask for a given offset in the TIMA
234  */
235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
236 {
237     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
238     uint8_t reg_offset = offset & 0x3F;
239     uint8_t reg_mask = write ? 0x1 : 0x2;
240     uint64_t mask = 0x0;
241     int i;
242 
243     for (i = 0; i < size; i++) {
244         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
245             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
246         }
247     }
248 
249     return mask;
250 }
251 
252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
253                               unsigned size)
254 {
255     uint8_t ring_offset = offset & 0x30;
256     uint8_t reg_offset = offset & 0x3F;
257     uint64_t mask = xive_tm_mask(offset, size, true);
258     int i;
259 
260     /*
261      * Only 4 or 8 bytes stores are allowed and the User ring is
262      * excluded
263      */
264     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
265         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
266                       HWADDR_PRIx"\n", offset);
267         return;
268     }
269 
270     /*
271      * Use the register offset for the raw values and filter out
272      * reserved values
273      */
274     for (i = 0; i < size; i++) {
275         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
276         if (byte_mask) {
277             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
278                 byte_mask;
279         }
280     }
281 }
282 
283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
284 {
285     uint8_t ring_offset = offset & 0x30;
286     uint8_t reg_offset = offset & 0x3F;
287     uint64_t mask = xive_tm_mask(offset, size, false);
288     uint64_t ret;
289     int i;
290 
291     /*
292      * Only 4 or 8 bytes loads are allowed and the User ring is
293      * excluded
294      */
295     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
296         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
297                       HWADDR_PRIx"\n", offset);
298         return -1;
299     }
300 
301     /* Use the register offset for the raw values */
302     ret = 0;
303     for (i = 0; i < size; i++) {
304         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
305     }
306 
307     /* filter out reserved values */
308     return ret & mask;
309 }
310 
311 /*
312  * The TM context is mapped twice within each page. Stores and loads
313  * to the first mapping below 2K write and read the specified values
314  * without modification. The second mapping above 2K performs specific
315  * state changes (side effects) in addition to setting/returning the
316  * interrupt management area context of the processor thread.
317  */
318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
319 {
320     return xive_tctx_accept(tctx, TM_QW1_OS);
321 }
322 
323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
324                                 uint64_t value, unsigned size)
325 {
326     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
327 }
328 
329 /*
330  * Adjust the IPB to allow a CPU to process event queues of other
331  * priorities during one physical interrupt cycle.
332  */
333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
334                                    uint64_t value, unsigned size)
335 {
336     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
337     xive_tctx_notify(tctx, TM_QW1_OS);
338 }
339 
340 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
341                                     unsigned size)
342 {
343     uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
344     uint32_t qw1w2;
345 
346     qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0);
347     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
348     return qw1w2;
349 }
350 
351 /*
352  * Define a mapping of "special" operations depending on the TIMA page
353  * offset and the size of the operation.
354  */
355 typedef struct XiveTmOp {
356     uint8_t  page_offset;
357     uint32_t op_offset;
358     unsigned size;
359     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
360                               unsigned size);
361     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
362 } XiveTmOp;
363 
364 static const XiveTmOp xive_tm_operations[] = {
365     /*
366      * MMIOs below 2K : raw values and special operations without side
367      * effects
368      */
369     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
370     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
371     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
372     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
373 
374     /* MMIOs above 2K : special operations with side effects */
375     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
376     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
377     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
378     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
379     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
380     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
381     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
382 };
383 
384 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
385 {
386     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
387     uint32_t op_offset = offset & 0xFFF;
388     int i;
389 
390     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
391         const XiveTmOp *xto = &xive_tm_operations[i];
392 
393         /* Accesses done from a more privileged TIMA page is allowed */
394         if (xto->page_offset >= page_offset &&
395             xto->op_offset == op_offset &&
396             xto->size == size &&
397             ((write && xto->write_handler) || (!write && xto->read_handler))) {
398             return xto;
399         }
400     }
401     return NULL;
402 }
403 
404 /*
405  * TIMA MMIO handlers
406  */
407 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
408                         unsigned size)
409 {
410     const XiveTmOp *xto;
411 
412     /*
413      * TODO: check V bit in Q[0-3]W2
414      */
415 
416     /*
417      * First, check for special operations in the 2K region
418      */
419     if (offset & 0x800) {
420         xto = xive_tm_find_op(offset, size, true);
421         if (!xto) {
422             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
423                           "@%"HWADDR_PRIx"\n", offset);
424         } else {
425             xto->write_handler(tctx, offset, value, size);
426         }
427         return;
428     }
429 
430     /*
431      * Then, for special operations in the region below 2K.
432      */
433     xto = xive_tm_find_op(offset, size, true);
434     if (xto) {
435         xto->write_handler(tctx, offset, value, size);
436         return;
437     }
438 
439     /*
440      * Finish with raw access to the register values
441      */
442     xive_tm_raw_write(tctx, offset, value, size);
443 }
444 
445 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
446 {
447     const XiveTmOp *xto;
448 
449     /*
450      * TODO: check V bit in Q[0-3]W2
451      */
452 
453     /*
454      * First, check for special operations in the 2K region
455      */
456     if (offset & 0x800) {
457         xto = xive_tm_find_op(offset, size, false);
458         if (!xto) {
459             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
460                           "@%"HWADDR_PRIx"\n", offset);
461             return -1;
462         }
463         return xto->read_handler(tctx, offset, size);
464     }
465 
466     /*
467      * Then, for special operations in the region below 2K.
468      */
469     xto = xive_tm_find_op(offset, size, false);
470     if (xto) {
471         return xto->read_handler(tctx, offset, size);
472     }
473 
474     /*
475      * Finish with raw access to the register values
476      */
477     return xive_tm_raw_read(tctx, offset, size);
478 }
479 
480 static void xive_tm_write(void *opaque, hwaddr offset,
481                           uint64_t value, unsigned size)
482 {
483     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
484 
485     xive_tctx_tm_write(tctx, offset, value, size);
486 }
487 
488 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
489 {
490     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
491 
492     return xive_tctx_tm_read(tctx, offset, size);
493 }
494 
495 const MemoryRegionOps xive_tm_ops = {
496     .read = xive_tm_read,
497     .write = xive_tm_write,
498     .endianness = DEVICE_BIG_ENDIAN,
499     .valid = {
500         .min_access_size = 1,
501         .max_access_size = 8,
502     },
503     .impl = {
504         .min_access_size = 1,
505         .max_access_size = 8,
506     },
507 };
508 
509 static char *xive_tctx_ring_print(uint8_t *ring)
510 {
511     uint32_t w2 = xive_tctx_word2(ring);
512 
513     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
514                    "%02x  %02x   %02x  %08x",
515                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
516                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
517                    be32_to_cpu(w2));
518 }
519 
520 static const char * const xive_tctx_ring_names[] = {
521     "USER", "OS", "POOL", "PHYS",
522 };
523 
524 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
525 {
526     int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
527     int i;
528 
529     if (kvm_irqchip_in_kernel()) {
530         Error *local_err = NULL;
531 
532         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
533         if (local_err) {
534             error_report_err(local_err);
535             return;
536         }
537     }
538 
539     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
540                    "  W2\n", cpu_index);
541 
542     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
543         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
544         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
545                        xive_tctx_ring_names[i], s);
546         g_free(s);
547     }
548 }
549 
550 void xive_tctx_reset(XiveTCTX *tctx)
551 {
552     memset(tctx->regs, 0, sizeof(tctx->regs));
553 
554     /* Set some defaults */
555     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
556     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
557     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
558 
559     /*
560      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
561      * CPPR is first set.
562      */
563     tctx->regs[TM_QW1_OS + TM_PIPR] =
564         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
565     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
566         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
567 }
568 
569 static void xive_tctx_realize(DeviceState *dev, Error **errp)
570 {
571     XiveTCTX *tctx = XIVE_TCTX(dev);
572     PowerPCCPU *cpu;
573     CPUPPCState *env;
574     Object *obj;
575     Error *local_err = NULL;
576 
577     obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
578     if (!obj) {
579         error_propagate(errp, local_err);
580         error_prepend(errp, "required link 'cpu' not found: ");
581         return;
582     }
583 
584     cpu = POWERPC_CPU(obj);
585     tctx->cs = CPU(obj);
586 
587     env = &cpu->env;
588     switch (PPC_INPUT(env)) {
589     case PPC_FLAGS_INPUT_POWER9:
590         tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
591         tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
592         break;
593 
594     default:
595         error_setg(errp, "XIVE interrupt controller does not support "
596                    "this CPU bus model");
597         return;
598     }
599 
600     /* Connect the presenter to the VCPU (required for CPU hotplug) */
601     if (kvm_irqchip_in_kernel()) {
602         kvmppc_xive_cpu_connect(tctx, &local_err);
603         if (local_err) {
604             error_propagate(errp, local_err);
605             return;
606         }
607     }
608 }
609 
610 static int vmstate_xive_tctx_pre_save(void *opaque)
611 {
612     Error *local_err = NULL;
613 
614     if (kvm_irqchip_in_kernel()) {
615         kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
616         if (local_err) {
617             error_report_err(local_err);
618             return -1;
619         }
620     }
621 
622     return 0;
623 }
624 
625 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
626 {
627     Error *local_err = NULL;
628 
629     if (kvm_irqchip_in_kernel()) {
630         /*
631          * Required for hotplugged CPU, for which the state comes
632          * after all states of the machine.
633          */
634         kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
635         if (local_err) {
636             error_report_err(local_err);
637             return -1;
638         }
639     }
640 
641     return 0;
642 }
643 
644 static const VMStateDescription vmstate_xive_tctx = {
645     .name = TYPE_XIVE_TCTX,
646     .version_id = 1,
647     .minimum_version_id = 1,
648     .pre_save = vmstate_xive_tctx_pre_save,
649     .post_load = vmstate_xive_tctx_post_load,
650     .fields = (VMStateField[]) {
651         VMSTATE_BUFFER(regs, XiveTCTX),
652         VMSTATE_END_OF_LIST()
653     },
654 };
655 
656 static void xive_tctx_class_init(ObjectClass *klass, void *data)
657 {
658     DeviceClass *dc = DEVICE_CLASS(klass);
659 
660     dc->desc = "XIVE Interrupt Thread Context";
661     dc->realize = xive_tctx_realize;
662     dc->vmsd = &vmstate_xive_tctx;
663     /*
664      * Reason: part of XIVE interrupt controller, needs to be wired up
665      * by xive_tctx_create().
666      */
667     dc->user_creatable = false;
668 }
669 
670 static const TypeInfo xive_tctx_info = {
671     .name          = TYPE_XIVE_TCTX,
672     .parent        = TYPE_DEVICE,
673     .instance_size = sizeof(XiveTCTX),
674     .class_init    = xive_tctx_class_init,
675 };
676 
677 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
678 {
679     Error *local_err = NULL;
680     Object *obj;
681 
682     obj = object_new(TYPE_XIVE_TCTX);
683     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
684     object_unref(obj);
685     object_property_add_const_link(obj, "cpu", cpu, &error_abort);
686     object_property_set_bool(obj, true, "realized", &local_err);
687     if (local_err) {
688         goto error;
689     }
690 
691     return obj;
692 
693 error:
694     object_unparent(obj);
695     error_propagate(errp, local_err);
696     return NULL;
697 }
698 
699 /*
700  * XIVE ESB helpers
701  */
702 
703 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
704 {
705     uint8_t old_pq = *pq & 0x3;
706 
707     *pq &= ~0x3;
708     *pq |= value & 0x3;
709 
710     return old_pq;
711 }
712 
713 static bool xive_esb_trigger(uint8_t *pq)
714 {
715     uint8_t old_pq = *pq & 0x3;
716 
717     switch (old_pq) {
718     case XIVE_ESB_RESET:
719         xive_esb_set(pq, XIVE_ESB_PENDING);
720         return true;
721     case XIVE_ESB_PENDING:
722     case XIVE_ESB_QUEUED:
723         xive_esb_set(pq, XIVE_ESB_QUEUED);
724         return false;
725     case XIVE_ESB_OFF:
726         xive_esb_set(pq, XIVE_ESB_OFF);
727         return false;
728     default:
729          g_assert_not_reached();
730     }
731 }
732 
733 static bool xive_esb_eoi(uint8_t *pq)
734 {
735     uint8_t old_pq = *pq & 0x3;
736 
737     switch (old_pq) {
738     case XIVE_ESB_RESET:
739     case XIVE_ESB_PENDING:
740         xive_esb_set(pq, XIVE_ESB_RESET);
741         return false;
742     case XIVE_ESB_QUEUED:
743         xive_esb_set(pq, XIVE_ESB_PENDING);
744         return true;
745     case XIVE_ESB_OFF:
746         xive_esb_set(pq, XIVE_ESB_OFF);
747         return false;
748     default:
749          g_assert_not_reached();
750     }
751 }
752 
753 /*
754  * XIVE Interrupt Source (or IVSE)
755  */
756 
757 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
758 {
759     assert(srcno < xsrc->nr_irqs);
760 
761     return xsrc->status[srcno] & 0x3;
762 }
763 
764 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
765 {
766     assert(srcno < xsrc->nr_irqs);
767 
768     return xive_esb_set(&xsrc->status[srcno], pq);
769 }
770 
771 /*
772  * Returns whether the event notification should be forwarded.
773  */
774 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
775 {
776     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
777 
778     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
779 
780     switch (old_pq) {
781     case XIVE_ESB_RESET:
782         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
783         return true;
784     default:
785         return false;
786     }
787 }
788 
789 /*
790  * Returns whether the event notification should be forwarded.
791  */
792 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
793 {
794     bool ret;
795 
796     assert(srcno < xsrc->nr_irqs);
797 
798     ret = xive_esb_trigger(&xsrc->status[srcno]);
799 
800     if (xive_source_irq_is_lsi(xsrc, srcno) &&
801         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
802         qemu_log_mask(LOG_GUEST_ERROR,
803                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
804     }
805 
806     return ret;
807 }
808 
809 /*
810  * Returns whether the event notification should be forwarded.
811  */
812 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
813 {
814     bool ret;
815 
816     assert(srcno < xsrc->nr_irqs);
817 
818     ret = xive_esb_eoi(&xsrc->status[srcno]);
819 
820     /*
821      * LSI sources do not set the Q bit but they can still be
822      * asserted, in which case we should forward a new event
823      * notification
824      */
825     if (xive_source_irq_is_lsi(xsrc, srcno) &&
826         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
827         ret = xive_source_lsi_trigger(xsrc, srcno);
828     }
829 
830     return ret;
831 }
832 
833 /*
834  * Forward the source event notification to the Router
835  */
836 static void xive_source_notify(XiveSource *xsrc, int srcno)
837 {
838     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
839 
840     if (xnc->notify) {
841         xnc->notify(xsrc->xive, srcno);
842     }
843 }
844 
845 /*
846  * In a two pages ESB MMIO setting, even page is the trigger page, odd
847  * page is for management
848  */
849 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
850 {
851     return !((addr >> shift) & 1);
852 }
853 
854 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
855 {
856     return xive_source_esb_has_2page(xsrc) &&
857         addr_is_even(addr, xsrc->esb_shift - 1);
858 }
859 
860 /*
861  * ESB MMIO loads
862  *                      Trigger page    Management/EOI page
863  *
864  * ESB MMIO setting     2 pages         1 or 2 pages
865  *
866  * 0x000 .. 0x3FF       -1              EOI and return 0|1
867  * 0x400 .. 0x7FF       -1              EOI and return 0|1
868  * 0x800 .. 0xBFF       -1              return PQ
869  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
870  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
871  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
872  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
873  */
874 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
875 {
876     XiveSource *xsrc = XIVE_SOURCE(opaque);
877     uint32_t offset = addr & 0xFFF;
878     uint32_t srcno = addr >> xsrc->esb_shift;
879     uint64_t ret = -1;
880 
881     /* In a two pages ESB MMIO setting, trigger page should not be read */
882     if (xive_source_is_trigger_page(xsrc, addr)) {
883         qemu_log_mask(LOG_GUEST_ERROR,
884                       "XIVE: invalid load on IRQ %d trigger page at "
885                       "0x%"HWADDR_PRIx"\n", srcno, addr);
886         return -1;
887     }
888 
889     switch (offset) {
890     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
891         ret = xive_source_esb_eoi(xsrc, srcno);
892 
893         /* Forward the source event notification for routing */
894         if (ret) {
895             xive_source_notify(xsrc, srcno);
896         }
897         break;
898 
899     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
900         ret = xive_source_esb_get(xsrc, srcno);
901         break;
902 
903     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
904     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
905     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
906     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
907         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
908         break;
909     default:
910         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
911                       offset);
912     }
913 
914     return ret;
915 }
916 
917 /*
918  * ESB MMIO stores
919  *                      Trigger page    Management/EOI page
920  *
921  * ESB MMIO setting     2 pages         1 or 2 pages
922  *
923  * 0x000 .. 0x3FF       Trigger         Trigger
924  * 0x400 .. 0x7FF       Trigger         EOI
925  * 0x800 .. 0xBFF       Trigger         undefined
926  * 0xC00 .. 0xCFF       Trigger         PQ=00
927  * 0xD00 .. 0xDFF       Trigger         PQ=01
928  * 0xE00 .. 0xDFF       Trigger         PQ=10
929  * 0xF00 .. 0xDFF       Trigger         PQ=11
930  */
931 static void xive_source_esb_write(void *opaque, hwaddr addr,
932                                   uint64_t value, unsigned size)
933 {
934     XiveSource *xsrc = XIVE_SOURCE(opaque);
935     uint32_t offset = addr & 0xFFF;
936     uint32_t srcno = addr >> xsrc->esb_shift;
937     bool notify = false;
938 
939     /* In a two pages ESB MMIO setting, trigger page only triggers */
940     if (xive_source_is_trigger_page(xsrc, addr)) {
941         notify = xive_source_esb_trigger(xsrc, srcno);
942         goto out;
943     }
944 
945     switch (offset) {
946     case 0 ... 0x3FF:
947         notify = xive_source_esb_trigger(xsrc, srcno);
948         break;
949 
950     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
951         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
952             qemu_log_mask(LOG_GUEST_ERROR,
953                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
954             return;
955         }
956 
957         notify = xive_source_esb_eoi(xsrc, srcno);
958         break;
959 
960     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
961     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
962     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
963     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
964         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
965         break;
966 
967     default:
968         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
969                       offset);
970         return;
971     }
972 
973 out:
974     /* Forward the source event notification for routing */
975     if (notify) {
976         xive_source_notify(xsrc, srcno);
977     }
978 }
979 
980 static const MemoryRegionOps xive_source_esb_ops = {
981     .read = xive_source_esb_read,
982     .write = xive_source_esb_write,
983     .endianness = DEVICE_BIG_ENDIAN,
984     .valid = {
985         .min_access_size = 8,
986         .max_access_size = 8,
987     },
988     .impl = {
989         .min_access_size = 8,
990         .max_access_size = 8,
991     },
992 };
993 
994 void xive_source_set_irq(void *opaque, int srcno, int val)
995 {
996     XiveSource *xsrc = XIVE_SOURCE(opaque);
997     bool notify = false;
998 
999     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1000         if (val) {
1001             notify = xive_source_lsi_trigger(xsrc, srcno);
1002         } else {
1003             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1004         }
1005     } else {
1006         if (val) {
1007             notify = xive_source_esb_trigger(xsrc, srcno);
1008         }
1009     }
1010 
1011     /* Forward the source event notification for routing */
1012     if (notify) {
1013         xive_source_notify(xsrc, srcno);
1014     }
1015 }
1016 
1017 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1018 {
1019     int i;
1020 
1021     for (i = 0; i < xsrc->nr_irqs; i++) {
1022         uint8_t pq = xive_source_esb_get(xsrc, i);
1023 
1024         if (pq == XIVE_ESB_OFF) {
1025             continue;
1026         }
1027 
1028         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1029                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1030                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1031                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1032                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1033     }
1034 }
1035 
1036 static void xive_source_reset(void *dev)
1037 {
1038     XiveSource *xsrc = XIVE_SOURCE(dev);
1039 
1040     /* Do not clear the LSI bitmap */
1041 
1042     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1043     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1044 }
1045 
1046 static void xive_source_realize(DeviceState *dev, Error **errp)
1047 {
1048     XiveSource *xsrc = XIVE_SOURCE(dev);
1049     Object *obj;
1050     Error *local_err = NULL;
1051 
1052     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1053     if (!obj) {
1054         error_propagate(errp, local_err);
1055         error_prepend(errp, "required link 'xive' not found: ");
1056         return;
1057     }
1058 
1059     xsrc->xive = XIVE_NOTIFIER(obj);
1060 
1061     if (!xsrc->nr_irqs) {
1062         error_setg(errp, "Number of interrupt needs to be greater than 0");
1063         return;
1064     }
1065 
1066     if (xsrc->esb_shift != XIVE_ESB_4K &&
1067         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1068         xsrc->esb_shift != XIVE_ESB_64K &&
1069         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1070         error_setg(errp, "Invalid ESB shift setting");
1071         return;
1072     }
1073 
1074     xsrc->status = g_malloc0(xsrc->nr_irqs);
1075     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1076 
1077     if (!kvm_irqchip_in_kernel()) {
1078         memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1079                               &xive_source_esb_ops, xsrc, "xive.esb",
1080                               (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1081     }
1082 
1083     qemu_register_reset(xive_source_reset, dev);
1084 }
1085 
1086 static const VMStateDescription vmstate_xive_source = {
1087     .name = TYPE_XIVE_SOURCE,
1088     .version_id = 1,
1089     .minimum_version_id = 1,
1090     .fields = (VMStateField[]) {
1091         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1092         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1093         VMSTATE_END_OF_LIST()
1094     },
1095 };
1096 
1097 /*
1098  * The default XIVE interrupt source setting for the ESB MMIOs is two
1099  * 64k pages without Store EOI, to be in sync with KVM.
1100  */
1101 static Property xive_source_properties[] = {
1102     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1103     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1104     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1105     DEFINE_PROP_END_OF_LIST(),
1106 };
1107 
1108 static void xive_source_class_init(ObjectClass *klass, void *data)
1109 {
1110     DeviceClass *dc = DEVICE_CLASS(klass);
1111 
1112     dc->desc    = "XIVE Interrupt Source";
1113     dc->props   = xive_source_properties;
1114     dc->realize = xive_source_realize;
1115     dc->vmsd    = &vmstate_xive_source;
1116     /*
1117      * Reason: part of XIVE interrupt controller, needs to be wired up,
1118      * e.g. by spapr_xive_instance_init().
1119      */
1120     dc->user_creatable = false;
1121 }
1122 
1123 static const TypeInfo xive_source_info = {
1124     .name          = TYPE_XIVE_SOURCE,
1125     .parent        = TYPE_DEVICE,
1126     .instance_size = sizeof(XiveSource),
1127     .class_init    = xive_source_class_init,
1128 };
1129 
1130 /*
1131  * XiveEND helpers
1132  */
1133 
1134 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1135 {
1136     uint64_t qaddr_base = xive_end_qaddr(end);
1137     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1138     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1139     uint32_t qentries = 1 << (qsize + 10);
1140     int i;
1141 
1142     /*
1143      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1144      */
1145     monitor_printf(mon, " [ ");
1146     qindex = (qindex - (width - 1)) & (qentries - 1);
1147     for (i = 0; i < width; i++) {
1148         uint64_t qaddr = qaddr_base + (qindex << 2);
1149         uint32_t qdata = -1;
1150 
1151         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1152                             sizeof(qdata))) {
1153             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1154                           HWADDR_PRIx "\n", qaddr);
1155             return;
1156         }
1157         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1158                        be32_to_cpu(qdata));
1159         qindex = (qindex + 1) & (qentries - 1);
1160     }
1161     monitor_printf(mon, "]");
1162 }
1163 
1164 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1165 {
1166     uint64_t qaddr_base = xive_end_qaddr(end);
1167     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1168     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1169     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1170     uint32_t qentries = 1 << (qsize + 10);
1171 
1172     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1173     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1174     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1175     uint8_t pq;
1176 
1177     if (!xive_end_is_valid(end)) {
1178         return;
1179     }
1180 
1181     pq = xive_get_field32(END_W1_ESn, end->w1);
1182 
1183     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1184                    end_idx,
1185                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1186                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1187                    xive_end_is_valid(end)    ? 'v' : '-',
1188                    xive_end_is_enqueue(end)  ? 'q' : '-',
1189                    xive_end_is_notify(end)   ? 'n' : '-',
1190                    xive_end_is_backlog(end)  ? 'b' : '-',
1191                    xive_end_is_escalate(end) ? 'e' : '-',
1192                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1193                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1194                    priority, nvt_blk, nvt_idx);
1195 
1196     if (qaddr_base) {
1197         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1198                        qaddr_base, qindex, qentries, qgen);
1199         xive_end_queue_pic_print_info(end, 6, mon);
1200     }
1201     monitor_printf(mon, "\n");
1202 }
1203 
1204 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1205 {
1206     uint64_t qaddr_base = xive_end_qaddr(end);
1207     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1208     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1209     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1210 
1211     uint64_t qaddr = qaddr_base + (qindex << 2);
1212     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1213     uint32_t qentries = 1 << (qsize + 10);
1214 
1215     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1216         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1217                       HWADDR_PRIx "\n", qaddr);
1218         return;
1219     }
1220 
1221     qindex = (qindex + 1) & (qentries - 1);
1222     if (qindex == 0) {
1223         qgen ^= 1;
1224         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1225     }
1226     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1227 }
1228 
1229 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1230                                    Monitor *mon)
1231 {
1232     XiveEAS *eas = (XiveEAS *) &end->w4;
1233     uint8_t pq;
1234 
1235     if (!xive_end_is_escalate(end)) {
1236         return;
1237     }
1238 
1239     pq = xive_get_field32(END_W1_ESe, end->w1);
1240 
1241     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1242                    end_idx,
1243                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1244                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1245                    xive_eas_is_valid(eas) ? 'V' : ' ',
1246                    xive_eas_is_masked(eas) ? 'M' : ' ',
1247                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1248                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1249                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1250 }
1251 
1252 /*
1253  * XIVE Router (aka. Virtualization Controller or IVRE)
1254  */
1255 
1256 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1257                         XiveEAS *eas)
1258 {
1259     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1260 
1261     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1262 }
1263 
1264 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1265                         XiveEND *end)
1266 {
1267    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1268 
1269    return xrc->get_end(xrtr, end_blk, end_idx, end);
1270 }
1271 
1272 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1273                           XiveEND *end, uint8_t word_number)
1274 {
1275    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1276 
1277    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1278 }
1279 
1280 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1281                         XiveNVT *nvt)
1282 {
1283    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1284 
1285    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1286 }
1287 
1288 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1289                         XiveNVT *nvt, uint8_t word_number)
1290 {
1291    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1292 
1293    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1294 }
1295 
1296 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1297 {
1298     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1299 
1300     return xrc->get_tctx(xrtr, cs);
1301 }
1302 
1303 /*
1304  * Encode the HW CAM line in the block group mode format :
1305  *
1306  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1307  */
1308 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1309 {
1310     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1311     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1312 
1313     return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1314 }
1315 
1316 /*
1317  * The thread context register words are in big-endian format.
1318  */
1319 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1320                                      uint8_t nvt_blk, uint32_t nvt_idx,
1321                                      bool cam_ignore, uint32_t logic_serv)
1322 {
1323     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1324     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1325     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1326     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1327     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1328 
1329     /*
1330      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1331      * identifier are ignored in the "CAM" match.
1332      */
1333 
1334     if (format == 0) {
1335         if (cam_ignore == true) {
1336             /*
1337              * F=0 & i=1: Logical server notification (bits ignored at
1338              * the end of the NVT identifier)
1339              */
1340             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1341                           nvt_blk, nvt_idx);
1342              return -1;
1343         }
1344 
1345         /* F=0 & i=0: Specific NVT notification */
1346 
1347         /* PHYS ring */
1348         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1349             cam == xive_tctx_hw_cam_line(tctx)) {
1350             return TM_QW3_HV_PHYS;
1351         }
1352 
1353         /* HV POOL ring */
1354         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1355             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1356             return TM_QW2_HV_POOL;
1357         }
1358 
1359         /* OS ring */
1360         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1361             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1362             return TM_QW1_OS;
1363         }
1364     } else {
1365         /* F=1 : User level Event-Based Branch (EBB) notification */
1366 
1367         /* USER ring */
1368         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1369              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1370              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1371              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1372             return TM_QW0_USER;
1373         }
1374     }
1375     return -1;
1376 }
1377 
1378 typedef struct XiveTCTXMatch {
1379     XiveTCTX *tctx;
1380     uint8_t ring;
1381 } XiveTCTXMatch;
1382 
1383 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1384                                  uint8_t nvt_blk, uint32_t nvt_idx,
1385                                  bool cam_ignore, uint8_t priority,
1386                                  uint32_t logic_serv, XiveTCTXMatch *match)
1387 {
1388     CPUState *cs;
1389 
1390     /*
1391      * TODO (PowerNV): handle chip_id overwrite of block field for
1392      * hardwired CAM compares
1393      */
1394 
1395     CPU_FOREACH(cs) {
1396         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1397         int ring;
1398 
1399         /*
1400          * Skip partially initialized vCPUs. This can happen when
1401          * vCPUs are hotplugged.
1402          */
1403         if (!tctx) {
1404             continue;
1405         }
1406 
1407         /*
1408          * HW checks that the CPU is enabled in the Physical Thread
1409          * Enable Register (PTER).
1410          */
1411 
1412         /*
1413          * Check the thread context CAM lines and record matches. We
1414          * will handle CPU exception delivery later
1415          */
1416         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1417                                          cam_ignore, logic_serv);
1418         /*
1419          * Save the context and follow on to catch duplicates, that we
1420          * don't support yet.
1421          */
1422         if (ring != -1) {
1423             if (match->tctx) {
1424                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1425                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1426                 return false;
1427             }
1428 
1429             match->ring = ring;
1430             match->tctx = tctx;
1431         }
1432     }
1433 
1434     if (!match->tctx) {
1435         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1436                       nvt_blk, nvt_idx);
1437         return false;
1438     }
1439 
1440     return true;
1441 }
1442 
1443 /*
1444  * This is our simple Xive Presenter Engine model. It is merged in the
1445  * Router as it does not require an extra object.
1446  *
1447  * It receives notification requests sent by the IVRE to find one
1448  * matching NVT (or more) dispatched on the processor threads. In case
1449  * of a single NVT notification, the process is abreviated and the
1450  * thread is signaled if a match is found. In case of a logical server
1451  * notification (bits ignored at the end of the NVT identifier), the
1452  * IVPE and IVRE select a winning thread using different filters. This
1453  * involves 2 or 3 exchanges on the PowerBus that the model does not
1454  * support.
1455  *
1456  * The parameters represent what is sent on the PowerBus
1457  */
1458 static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1459                                   uint8_t nvt_blk, uint32_t nvt_idx,
1460                                   bool cam_ignore, uint8_t priority,
1461                                   uint32_t logic_serv)
1462 {
1463     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1464     bool found;
1465 
1466     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1467                                  priority, logic_serv, &match);
1468     if (found) {
1469         ipb_update(&match.tctx->regs[match.ring], priority);
1470         xive_tctx_notify(match.tctx, match.ring);
1471     }
1472 
1473     return found;
1474 }
1475 
1476 /*
1477  * Notification using the END ESe/ESn bit (Event State Buffer for
1478  * escalation and notification). Profide futher coalescing in the
1479  * Router.
1480  */
1481 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1482                                       uint32_t end_idx, XiveEND *end,
1483                                       uint32_t end_esmask)
1484 {
1485     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1486     bool notify = xive_esb_trigger(&pq);
1487 
1488     if (pq != xive_get_field32(end_esmask, end->w1)) {
1489         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1490         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1491     }
1492 
1493     /* ESe/n[Q]=1 : end of notification */
1494     return notify;
1495 }
1496 
1497 /*
1498  * An END trigger can come from an event trigger (IPI or HW) or from
1499  * another chip. We don't model the PowerBus but the END trigger
1500  * message has the same parameters than in the function below.
1501  */
1502 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1503                                    uint32_t end_idx, uint32_t end_data)
1504 {
1505     XiveEND end;
1506     uint8_t priority;
1507     uint8_t format;
1508     uint8_t nvt_blk;
1509     uint32_t nvt_idx;
1510     XiveNVT nvt;
1511     bool found;
1512 
1513     /* END cache lookup */
1514     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1515         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1516                       end_idx);
1517         return;
1518     }
1519 
1520     if (!xive_end_is_valid(&end)) {
1521         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1522                       end_blk, end_idx);
1523         return;
1524     }
1525 
1526     if (xive_end_is_enqueue(&end)) {
1527         xive_end_enqueue(&end, end_data);
1528         /* Enqueuing event data modifies the EQ toggle and index */
1529         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1530     }
1531 
1532     /*
1533      * When the END is silent, we skip the notification part.
1534      */
1535     if (xive_end_is_silent_escalation(&end)) {
1536         goto do_escalation;
1537     }
1538 
1539     /*
1540      * The W7 format depends on the F bit in W6. It defines the type
1541      * of the notification :
1542      *
1543      *   F=0 : single or multiple NVT notification
1544      *   F=1 : User level Event-Based Branch (EBB) notification, no
1545      *         priority
1546      */
1547     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1548     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1549 
1550     /* The END is masked */
1551     if (format == 0 && priority == 0xff) {
1552         return;
1553     }
1554 
1555     /*
1556      * Check the END ESn (Event State Buffer for notification) for
1557      * even futher coalescing in the Router
1558      */
1559     if (!xive_end_is_notify(&end)) {
1560         /* ESn[Q]=1 : end of notification */
1561         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1562                                        &end, END_W1_ESn)) {
1563             return;
1564         }
1565     }
1566 
1567     /*
1568      * Follows IVPE notification
1569      */
1570     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1571     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1572 
1573     /* NVT cache lookup */
1574     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1575         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1576                       nvt_blk, nvt_idx);
1577         return;
1578     }
1579 
1580     if (!xive_nvt_is_valid(&nvt)) {
1581         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1582                       nvt_blk, nvt_idx);
1583         return;
1584     }
1585 
1586     found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx,
1587                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1588                           priority,
1589                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1590 
1591     /* TODO: Auto EOI. */
1592 
1593     if (found) {
1594         return;
1595     }
1596 
1597     /*
1598      * If no matching NVT is dispatched on a HW thread :
1599      * - specific VP: update the NVT structure if backlog is activated
1600      * - logical server : forward request to IVPE (not supported)
1601      */
1602     if (xive_end_is_backlog(&end)) {
1603         if (format == 1) {
1604             qemu_log_mask(LOG_GUEST_ERROR,
1605                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1606                           end_blk, end_idx);
1607             return;
1608         }
1609         /* Record the IPB in the associated NVT structure */
1610         ipb_update((uint8_t *) &nvt.w4, priority);
1611         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1612 
1613         /*
1614          * On HW, follows a "Broadcast Backlog" to IVPEs
1615          */
1616     }
1617 
1618 do_escalation:
1619     /*
1620      * If activated, escalate notification using the ESe PQ bits and
1621      * the EAS in w4-5
1622      */
1623     if (!xive_end_is_escalate(&end)) {
1624         return;
1625     }
1626 
1627     /*
1628      * Check the END ESe (Event State Buffer for escalation) for even
1629      * futher coalescing in the Router
1630      */
1631     if (!xive_end_is_uncond_escalation(&end)) {
1632         /* ESe[Q]=1 : end of notification */
1633         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1634                                        &end, END_W1_ESe)) {
1635             return;
1636         }
1637     }
1638 
1639     /*
1640      * The END trigger becomes an Escalation trigger
1641      */
1642     xive_router_end_notify(xrtr,
1643                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1644                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1645                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1646 }
1647 
1648 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1649 {
1650     XiveRouter *xrtr = XIVE_ROUTER(xn);
1651     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1652     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1653     XiveEAS eas;
1654 
1655     /* EAS cache lookup */
1656     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1657         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1658         return;
1659     }
1660 
1661     /*
1662      * The IVRE checks the State Bit Cache at this point. We skip the
1663      * SBC lookup because the state bits of the sources are modeled
1664      * internally in QEMU.
1665      */
1666 
1667     if (!xive_eas_is_valid(&eas)) {
1668         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1669         return;
1670     }
1671 
1672     if (xive_eas_is_masked(&eas)) {
1673         /* Notification completed */
1674         return;
1675     }
1676 
1677     /*
1678      * The event trigger becomes an END trigger
1679      */
1680     xive_router_end_notify(xrtr,
1681                            xive_get_field64(EAS_END_BLOCK, eas.w),
1682                            xive_get_field64(EAS_END_INDEX, eas.w),
1683                            xive_get_field64(EAS_END_DATA,  eas.w));
1684 }
1685 
1686 static void xive_router_class_init(ObjectClass *klass, void *data)
1687 {
1688     DeviceClass *dc = DEVICE_CLASS(klass);
1689     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1690 
1691     dc->desc    = "XIVE Router Engine";
1692     xnc->notify = xive_router_notify;
1693 }
1694 
1695 static const TypeInfo xive_router_info = {
1696     .name          = TYPE_XIVE_ROUTER,
1697     .parent        = TYPE_SYS_BUS_DEVICE,
1698     .abstract      = true,
1699     .class_size    = sizeof(XiveRouterClass),
1700     .class_init    = xive_router_class_init,
1701     .interfaces    = (InterfaceInfo[]) {
1702         { TYPE_XIVE_NOTIFIER },
1703         { }
1704     }
1705 };
1706 
1707 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1708 {
1709     if (!xive_eas_is_valid(eas)) {
1710         return;
1711     }
1712 
1713     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1714                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1715                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1716                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1717                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1718 }
1719 
1720 /*
1721  * END ESB MMIO loads
1722  */
1723 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1724 {
1725     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1726     uint32_t offset = addr & 0xFFF;
1727     uint8_t end_blk;
1728     uint32_t end_idx;
1729     XiveEND end;
1730     uint32_t end_esmask;
1731     uint8_t pq;
1732     uint64_t ret = -1;
1733 
1734     end_blk = xsrc->block_id;
1735     end_idx = addr >> (xsrc->esb_shift + 1);
1736 
1737     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1738         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1739                       end_idx);
1740         return -1;
1741     }
1742 
1743     if (!xive_end_is_valid(&end)) {
1744         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1745                       end_blk, end_idx);
1746         return -1;
1747     }
1748 
1749     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1750     pq = xive_get_field32(end_esmask, end.w1);
1751 
1752     switch (offset) {
1753     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1754         ret = xive_esb_eoi(&pq);
1755 
1756         /* Forward the source event notification for routing ?? */
1757         break;
1758 
1759     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1760         ret = pq;
1761         break;
1762 
1763     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1764     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1765     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1766     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1767         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1768         break;
1769     default:
1770         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1771                       offset);
1772         return -1;
1773     }
1774 
1775     if (pq != xive_get_field32(end_esmask, end.w1)) {
1776         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1777         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1778     }
1779 
1780     return ret;
1781 }
1782 
1783 /*
1784  * END ESB MMIO stores are invalid
1785  */
1786 static void xive_end_source_write(void *opaque, hwaddr addr,
1787                                   uint64_t value, unsigned size)
1788 {
1789     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1790                   HWADDR_PRIx"\n", addr);
1791 }
1792 
1793 static const MemoryRegionOps xive_end_source_ops = {
1794     .read = xive_end_source_read,
1795     .write = xive_end_source_write,
1796     .endianness = DEVICE_BIG_ENDIAN,
1797     .valid = {
1798         .min_access_size = 8,
1799         .max_access_size = 8,
1800     },
1801     .impl = {
1802         .min_access_size = 8,
1803         .max_access_size = 8,
1804     },
1805 };
1806 
1807 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1808 {
1809     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1810     Object *obj;
1811     Error *local_err = NULL;
1812 
1813     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1814     if (!obj) {
1815         error_propagate(errp, local_err);
1816         error_prepend(errp, "required link 'xive' not found: ");
1817         return;
1818     }
1819 
1820     xsrc->xrtr = XIVE_ROUTER(obj);
1821 
1822     if (!xsrc->nr_ends) {
1823         error_setg(errp, "Number of interrupt needs to be greater than 0");
1824         return;
1825     }
1826 
1827     if (xsrc->esb_shift != XIVE_ESB_4K &&
1828         xsrc->esb_shift != XIVE_ESB_64K) {
1829         error_setg(errp, "Invalid ESB shift setting");
1830         return;
1831     }
1832 
1833     /*
1834      * Each END is assigned an even/odd pair of MMIO pages, the even page
1835      * manages the ESn field while the odd page manages the ESe field.
1836      */
1837     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1838                           &xive_end_source_ops, xsrc, "xive.end",
1839                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1840 }
1841 
1842 static Property xive_end_source_properties[] = {
1843     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1844     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1845     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1846     DEFINE_PROP_END_OF_LIST(),
1847 };
1848 
1849 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1850 {
1851     DeviceClass *dc = DEVICE_CLASS(klass);
1852 
1853     dc->desc    = "XIVE END Source";
1854     dc->props   = xive_end_source_properties;
1855     dc->realize = xive_end_source_realize;
1856     /*
1857      * Reason: part of XIVE interrupt controller, needs to be wired up,
1858      * e.g. by spapr_xive_instance_init().
1859      */
1860     dc->user_creatable = false;
1861 }
1862 
1863 static const TypeInfo xive_end_source_info = {
1864     .name          = TYPE_XIVE_END_SOURCE,
1865     .parent        = TYPE_DEVICE,
1866     .instance_size = sizeof(XiveENDSource),
1867     .class_init    = xive_end_source_class_init,
1868 };
1869 
1870 /*
1871  * XIVE Notifier
1872  */
1873 static const TypeInfo xive_notifier_info = {
1874     .name = TYPE_XIVE_NOTIFIER,
1875     .parent = TYPE_INTERFACE,
1876     .class_size = sizeof(XiveNotifierClass),
1877 };
1878 
1879 static void xive_register_types(void)
1880 {
1881     type_register_static(&xive_source_info);
1882     type_register_static(&xive_notifier_info);
1883     type_register_static(&xive_router_info);
1884     type_register_static(&xive_end_source_info);
1885     type_register_static(&xive_tctx_info);
1886 }
1887 
1888 type_init(xive_register_types)
1889