xref: /openbmc/qemu/hw/intc/xive.c (revision cf36e5b3760df0a1fdd38970294cf7b0968fcc5c)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 
29 /*
30  * Convert a priority number to an Interrupt Pending Buffer (IPB)
31  * register, which indicates a pending interrupt at the priority
32  * corresponding to the bit number
33  */
34 static uint8_t priority_to_ipb(uint8_t priority)
35 {
36     return priority > XIVE_PRIORITY_MAX ?
37         0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 }
39 
40 /*
41  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42  * Interrupt Priority Register (PIPR), which contains the priority of
43  * the most favored pending notification.
44  */
45 static uint8_t ipb_to_pipr(uint8_t ibp)
46 {
47     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
48 }
49 
50 static uint8_t exception_mask(uint8_t ring)
51 {
52     switch (ring) {
53     case TM_QW1_OS:
54         return TM_QW1_NSR_EO;
55     case TM_QW3_HV_PHYS:
56         return TM_QW3_NSR_HE;
57     default:
58         g_assert_not_reached();
59     }
60 }
61 
62 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
63 {
64         switch (ring) {
65         case TM_QW0_USER:
66                 return 0; /* Not supported */
67         case TM_QW1_OS:
68                 return tctx->os_output;
69         case TM_QW2_HV_POOL:
70         case TM_QW3_HV_PHYS:
71                 return tctx->hv_output;
72         default:
73                 return 0;
74         }
75 }
76 
77 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
78 {
79     uint8_t *regs = &tctx->regs[ring];
80     uint8_t nsr = regs[TM_NSR];
81     uint8_t mask = exception_mask(ring);
82 
83     qemu_irq_lower(xive_tctx_output(tctx, ring));
84 
85     if (regs[TM_NSR] & mask) {
86         uint8_t cppr = regs[TM_PIPR];
87 
88         regs[TM_CPPR] = cppr;
89 
90         /* Reset the pending buffer bit */
91         regs[TM_IPB] &= ~priority_to_ipb(cppr);
92         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
93 
94         /* Drop Exception bit */
95         regs[TM_NSR] &= ~mask;
96     }
97 
98     return (nsr << 8) | regs[TM_CPPR];
99 }
100 
101 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
102 {
103     uint8_t *regs = &tctx->regs[ring];
104 
105     if (regs[TM_PIPR] < regs[TM_CPPR]) {
106         switch (ring) {
107         case TM_QW1_OS:
108             regs[TM_NSR] |= TM_QW1_NSR_EO;
109             break;
110         case TM_QW3_HV_PHYS:
111             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
112             break;
113         default:
114             g_assert_not_reached();
115         }
116         qemu_irq_raise(xive_tctx_output(tctx, ring));
117     }
118 }
119 
120 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
121 {
122     if (cppr > XIVE_PRIORITY_MAX) {
123         cppr = 0xff;
124     }
125 
126     tctx->regs[ring + TM_CPPR] = cppr;
127 
128     /* CPPR has changed, check if we need to raise a pending exception */
129     xive_tctx_notify(tctx, ring);
130 }
131 
132 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
133 {
134     uint8_t *regs = &tctx->regs[ring];
135 
136     regs[TM_IPB] |= ipb;
137     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
138     xive_tctx_notify(tctx, ring);
139 }
140 
141 static inline uint32_t xive_tctx_word2(uint8_t *ring)
142 {
143     return *((uint32_t *) &ring[TM_WORD2]);
144 }
145 
146 /*
147  * XIVE Thread Interrupt Management Area (TIMA)
148  */
149 
150 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
151                                 hwaddr offset, uint64_t value, unsigned size)
152 {
153     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
154 }
155 
156 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
157                                    hwaddr offset, unsigned size)
158 {
159     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
160 }
161 
162 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
163                                       hwaddr offset, unsigned size)
164 {
165     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
166     uint32_t qw2w2;
167 
168     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
169     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
170     return qw2w2;
171 }
172 
173 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
174                             uint64_t value, unsigned size)
175 {
176     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
177 }
178 
179 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
180                                 hwaddr offset, unsigned size)
181 {
182     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
183 }
184 
185 /*
186  * Define an access map for each page of the TIMA that we will use in
187  * the memory region ops to filter values when doing loads and stores
188  * of raw registers values
189  *
190  * Registers accessibility bits :
191  *
192  *    0x0 - no access
193  *    0x1 - write only
194  *    0x2 - read only
195  *    0x3 - read/write
196  */
197 
198 static const uint8_t xive_tm_hw_view[] = {
199     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
200     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
201     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
202     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
203 };
204 
205 static const uint8_t xive_tm_hv_view[] = {
206     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
207     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
208     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
209     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
210 };
211 
212 static const uint8_t xive_tm_os_view[] = {
213     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
214     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
215     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
216     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
217 };
218 
219 static const uint8_t xive_tm_user_view[] = {
220     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
221     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
222     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
223     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
224 };
225 
226 /*
227  * Overall TIMA access map for the thread interrupt management context
228  * registers
229  */
230 static const uint8_t *xive_tm_views[] = {
231     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
232     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
233     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
234     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
235 };
236 
237 /*
238  * Computes a register access mask for a given offset in the TIMA
239  */
240 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
241 {
242     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
243     uint8_t reg_offset = offset & 0x3F;
244     uint8_t reg_mask = write ? 0x1 : 0x2;
245     uint64_t mask = 0x0;
246     int i;
247 
248     for (i = 0; i < size; i++) {
249         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
250             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
251         }
252     }
253 
254     return mask;
255 }
256 
257 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
258                               unsigned size)
259 {
260     uint8_t ring_offset = offset & 0x30;
261     uint8_t reg_offset = offset & 0x3F;
262     uint64_t mask = xive_tm_mask(offset, size, true);
263     int i;
264 
265     /*
266      * Only 4 or 8 bytes stores are allowed and the User ring is
267      * excluded
268      */
269     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
270         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
271                       HWADDR_PRIx"\n", offset);
272         return;
273     }
274 
275     /*
276      * Use the register offset for the raw values and filter out
277      * reserved values
278      */
279     for (i = 0; i < size; i++) {
280         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
281         if (byte_mask) {
282             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
283                 byte_mask;
284         }
285     }
286 }
287 
288 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
289 {
290     uint8_t ring_offset = offset & 0x30;
291     uint8_t reg_offset = offset & 0x3F;
292     uint64_t mask = xive_tm_mask(offset, size, false);
293     uint64_t ret;
294     int i;
295 
296     /*
297      * Only 4 or 8 bytes loads are allowed and the User ring is
298      * excluded
299      */
300     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
301         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
302                       HWADDR_PRIx"\n", offset);
303         return -1;
304     }
305 
306     /* Use the register offset for the raw values */
307     ret = 0;
308     for (i = 0; i < size; i++) {
309         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
310     }
311 
312     /* filter out reserved values */
313     return ret & mask;
314 }
315 
316 /*
317  * The TM context is mapped twice within each page. Stores and loads
318  * to the first mapping below 2K write and read the specified values
319  * without modification. The second mapping above 2K performs specific
320  * state changes (side effects) in addition to setting/returning the
321  * interrupt management area context of the processor thread.
322  */
323 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
324                                    hwaddr offset, unsigned size)
325 {
326     return xive_tctx_accept(tctx, TM_QW1_OS);
327 }
328 
329 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
330                                 hwaddr offset, uint64_t value, unsigned size)
331 {
332     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
333 }
334 
335 /*
336  * Adjust the IPB to allow a CPU to process event queues of other
337  * priorities during one physical interrupt cycle.
338  */
339 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
340                                    hwaddr offset, uint64_t value, unsigned size)
341 {
342     xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff));
343 }
344 
345 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
346                                uint32_t *nvt_idx, bool *vo)
347 {
348     if (nvt_blk) {
349         *nvt_blk = xive_nvt_blk(cam);
350     }
351     if (nvt_idx) {
352         *nvt_idx = xive_nvt_idx(cam);
353     }
354     if (vo) {
355         *vo = !!(cam & TM_QW1W2_VO);
356     }
357 }
358 
359 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
360                                      uint32_t *nvt_idx, bool *vo)
361 {
362     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
363     uint32_t cam = be32_to_cpu(qw1w2);
364 
365     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
366     return qw1w2;
367 }
368 
369 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
370 {
371     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
372 }
373 
374 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
375                                     hwaddr offset, unsigned size)
376 {
377     uint32_t qw1w2;
378     uint32_t qw1w2_new;
379     uint8_t nvt_blk;
380     uint32_t nvt_idx;
381     bool vo;
382 
383     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
384 
385     if (!vo) {
386         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
387                       nvt_blk, nvt_idx);
388     }
389 
390     /* Invalidate CAM line */
391     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
392     xive_tctx_set_os_cam(tctx, qw1w2_new);
393     return qw1w2;
394 }
395 
396 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
397                                   uint8_t nvt_blk, uint32_t nvt_idx)
398 {
399     XiveNVT nvt;
400     uint8_t ipb;
401 
402     /*
403      * Grab the associated NVT to pull the pending bits, and merge
404      * them with the IPB of the thread interrupt context registers
405      */
406     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
407         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
408                           nvt_blk, nvt_idx);
409         return;
410     }
411 
412     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
413 
414     if (ipb) {
415         /* Reset the NVT value */
416         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
417         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
418 
419         /* Merge in current context */
420         xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
421     }
422 }
423 
424 /*
425  * Updating the OS CAM line can trigger a resend of interrupt
426  */
427 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
428                                 hwaddr offset, uint64_t value, unsigned size)
429 {
430     uint32_t cam = value;
431     uint32_t qw1w2 = cpu_to_be32(cam);
432     uint8_t nvt_blk;
433     uint32_t nvt_idx;
434     bool vo;
435 
436     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
437 
438     /* First update the registers */
439     xive_tctx_set_os_cam(tctx, qw1w2);
440 
441     /* Check the interrupt pending bits */
442     if (vo) {
443         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
444     }
445 }
446 
447 /*
448  * Define a mapping of "special" operations depending on the TIMA page
449  * offset and the size of the operation.
450  */
451 typedef struct XiveTmOp {
452     uint8_t  page_offset;
453     uint32_t op_offset;
454     unsigned size;
455     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
456                               hwaddr offset,
457                               uint64_t value, unsigned size);
458     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
459                              unsigned size);
460 } XiveTmOp;
461 
462 static const XiveTmOp xive_tm_operations[] = {
463     /*
464      * MMIOs below 2K : raw values and special operations without side
465      * effects
466      */
467     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
468     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
469     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
470     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
471     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
472 
473     /* MMIOs above 2K : special operations with side effects */
474     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
475     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
476     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
477     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
478     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
479     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
480     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
481 };
482 
483 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
484 {
485     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
486     uint32_t op_offset = offset & 0xFFF;
487     int i;
488 
489     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
490         const XiveTmOp *xto = &xive_tm_operations[i];
491 
492         /* Accesses done from a more privileged TIMA page is allowed */
493         if (xto->page_offset >= page_offset &&
494             xto->op_offset == op_offset &&
495             xto->size == size &&
496             ((write && xto->write_handler) || (!write && xto->read_handler))) {
497             return xto;
498         }
499     }
500     return NULL;
501 }
502 
503 /*
504  * TIMA MMIO handlers
505  */
506 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
507                         uint64_t value, unsigned size)
508 {
509     const XiveTmOp *xto;
510 
511     /*
512      * TODO: check V bit in Q[0-3]W2
513      */
514 
515     /*
516      * First, check for special operations in the 2K region
517      */
518     if (offset & 0x800) {
519         xto = xive_tm_find_op(offset, size, true);
520         if (!xto) {
521             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522                           "@%"HWADDR_PRIx"\n", offset);
523         } else {
524             xto->write_handler(xptr, tctx, offset, value, size);
525         }
526         return;
527     }
528 
529     /*
530      * Then, for special operations in the region below 2K.
531      */
532     xto = xive_tm_find_op(offset, size, true);
533     if (xto) {
534         xto->write_handler(xptr, tctx, offset, value, size);
535         return;
536     }
537 
538     /*
539      * Finish with raw access to the register values
540      */
541     xive_tm_raw_write(tctx, offset, value, size);
542 }
543 
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545                            unsigned size)
546 {
547     const XiveTmOp *xto;
548 
549     /*
550      * TODO: check V bit in Q[0-3]W2
551      */
552 
553     /*
554      * First, check for special operations in the 2K region
555      */
556     if (offset & 0x800) {
557         xto = xive_tm_find_op(offset, size, false);
558         if (!xto) {
559             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
560                           "@%"HWADDR_PRIx"\n", offset);
561             return -1;
562         }
563         return xto->read_handler(xptr, tctx, offset, size);
564     }
565 
566     /*
567      * Then, for special operations in the region below 2K.
568      */
569     xto = xive_tm_find_op(offset, size, false);
570     if (xto) {
571         return xto->read_handler(xptr, tctx, offset, size);
572     }
573 
574     /*
575      * Finish with raw access to the register values
576      */
577     return xive_tm_raw_read(tctx, offset, size);
578 }
579 
580 static char *xive_tctx_ring_print(uint8_t *ring)
581 {
582     uint32_t w2 = xive_tctx_word2(ring);
583 
584     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
585                    "%02x  %02x   %02x  %08x",
586                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
587                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
588                    be32_to_cpu(w2));
589 }
590 
591 static const char * const xive_tctx_ring_names[] = {
592     "USER", "OS", "POOL", "PHYS",
593 };
594 
595 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
596 {
597     int cpu_index;
598     int i;
599 
600     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
601      * are hot plugged or unplugged.
602      */
603     if (!tctx) {
604         return;
605     }
606 
607     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
608 
609     if (kvm_irqchip_in_kernel()) {
610         Error *local_err = NULL;
611 
612         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
613         if (local_err) {
614             error_report_err(local_err);
615             return;
616         }
617     }
618 
619     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
620                    "  W2\n", cpu_index);
621 
622     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
623         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
624         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
625                        xive_tctx_ring_names[i], s);
626         g_free(s);
627     }
628 }
629 
630 void xive_tctx_reset(XiveTCTX *tctx)
631 {
632     memset(tctx->regs, 0, sizeof(tctx->regs));
633 
634     /* Set some defaults */
635     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
636     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
637     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
638 
639     /*
640      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
641      * CPPR is first set.
642      */
643     tctx->regs[TM_QW1_OS + TM_PIPR] =
644         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
645     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
646         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
647 }
648 
649 static void xive_tctx_realize(DeviceState *dev, Error **errp)
650 {
651     XiveTCTX *tctx = XIVE_TCTX(dev);
652     PowerPCCPU *cpu;
653     CPUPPCState *env;
654     Error *local_err = NULL;
655 
656     assert(tctx->cs);
657     assert(tctx->xptr);
658 
659     cpu = POWERPC_CPU(tctx->cs);
660     env = &cpu->env;
661     switch (PPC_INPUT(env)) {
662     case PPC_FLAGS_INPUT_POWER9:
663         tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
664         tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
665         break;
666 
667     default:
668         error_setg(errp, "XIVE interrupt controller does not support "
669                    "this CPU bus model");
670         return;
671     }
672 
673     /* Connect the presenter to the VCPU (required for CPU hotplug) */
674     if (kvm_irqchip_in_kernel()) {
675         kvmppc_xive_cpu_connect(tctx, &local_err);
676         if (local_err) {
677             error_propagate(errp, local_err);
678             return;
679         }
680     }
681 }
682 
683 static int vmstate_xive_tctx_pre_save(void *opaque)
684 {
685     Error *local_err = NULL;
686 
687     if (kvm_irqchip_in_kernel()) {
688         kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
689         if (local_err) {
690             error_report_err(local_err);
691             return -1;
692         }
693     }
694 
695     return 0;
696 }
697 
698 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
699 {
700     Error *local_err = NULL;
701 
702     if (kvm_irqchip_in_kernel()) {
703         /*
704          * Required for hotplugged CPU, for which the state comes
705          * after all states of the machine.
706          */
707         kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
708         if (local_err) {
709             error_report_err(local_err);
710             return -1;
711         }
712     }
713 
714     return 0;
715 }
716 
717 static const VMStateDescription vmstate_xive_tctx = {
718     .name = TYPE_XIVE_TCTX,
719     .version_id = 1,
720     .minimum_version_id = 1,
721     .pre_save = vmstate_xive_tctx_pre_save,
722     .post_load = vmstate_xive_tctx_post_load,
723     .fields = (VMStateField[]) {
724         VMSTATE_BUFFER(regs, XiveTCTX),
725         VMSTATE_END_OF_LIST()
726     },
727 };
728 
729 static Property xive_tctx_properties[] = {
730     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
731     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
732                      XivePresenter *),
733     DEFINE_PROP_END_OF_LIST(),
734 };
735 
736 static void xive_tctx_class_init(ObjectClass *klass, void *data)
737 {
738     DeviceClass *dc = DEVICE_CLASS(klass);
739 
740     dc->desc = "XIVE Interrupt Thread Context";
741     dc->realize = xive_tctx_realize;
742     dc->vmsd = &vmstate_xive_tctx;
743     device_class_set_props(dc, xive_tctx_properties);
744     /*
745      * Reason: part of XIVE interrupt controller, needs to be wired up
746      * by xive_tctx_create().
747      */
748     dc->user_creatable = false;
749 }
750 
751 static const TypeInfo xive_tctx_info = {
752     .name          = TYPE_XIVE_TCTX,
753     .parent        = TYPE_DEVICE,
754     .instance_size = sizeof(XiveTCTX),
755     .class_init    = xive_tctx_class_init,
756 };
757 
758 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
759 {
760     Object *obj;
761 
762     obj = object_new(TYPE_XIVE_TCTX);
763     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
764     object_unref(obj);
765     object_property_set_link(obj, "cpu", cpu, &error_abort);
766     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
767     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
768         object_unparent(obj);
769         return NULL;
770     }
771     return obj;
772 }
773 
774 void xive_tctx_destroy(XiveTCTX *tctx)
775 {
776     Object *obj = OBJECT(tctx);
777 
778     object_unparent(obj);
779 }
780 
781 /*
782  * XIVE ESB helpers
783  */
784 
785 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
786 {
787     uint8_t old_pq = *pq & 0x3;
788 
789     *pq &= ~0x3;
790     *pq |= value & 0x3;
791 
792     return old_pq;
793 }
794 
795 static bool xive_esb_trigger(uint8_t *pq)
796 {
797     uint8_t old_pq = *pq & 0x3;
798 
799     switch (old_pq) {
800     case XIVE_ESB_RESET:
801         xive_esb_set(pq, XIVE_ESB_PENDING);
802         return true;
803     case XIVE_ESB_PENDING:
804     case XIVE_ESB_QUEUED:
805         xive_esb_set(pq, XIVE_ESB_QUEUED);
806         return false;
807     case XIVE_ESB_OFF:
808         xive_esb_set(pq, XIVE_ESB_OFF);
809         return false;
810     default:
811          g_assert_not_reached();
812     }
813 }
814 
815 static bool xive_esb_eoi(uint8_t *pq)
816 {
817     uint8_t old_pq = *pq & 0x3;
818 
819     switch (old_pq) {
820     case XIVE_ESB_RESET:
821     case XIVE_ESB_PENDING:
822         xive_esb_set(pq, XIVE_ESB_RESET);
823         return false;
824     case XIVE_ESB_QUEUED:
825         xive_esb_set(pq, XIVE_ESB_PENDING);
826         return true;
827     case XIVE_ESB_OFF:
828         xive_esb_set(pq, XIVE_ESB_OFF);
829         return false;
830     default:
831          g_assert_not_reached();
832     }
833 }
834 
835 /*
836  * XIVE Interrupt Source (or IVSE)
837  */
838 
839 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
840 {
841     assert(srcno < xsrc->nr_irqs);
842 
843     return xsrc->status[srcno] & 0x3;
844 }
845 
846 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
847 {
848     assert(srcno < xsrc->nr_irqs);
849 
850     return xive_esb_set(&xsrc->status[srcno], pq);
851 }
852 
853 /*
854  * Returns whether the event notification should be forwarded.
855  */
856 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
857 {
858     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
859 
860     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
861 
862     switch (old_pq) {
863     case XIVE_ESB_RESET:
864         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
865         return true;
866     default:
867         return false;
868     }
869 }
870 
871 /*
872  * Returns whether the event notification should be forwarded.
873  */
874 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
875 {
876     bool ret;
877 
878     assert(srcno < xsrc->nr_irqs);
879 
880     ret = xive_esb_trigger(&xsrc->status[srcno]);
881 
882     if (xive_source_irq_is_lsi(xsrc, srcno) &&
883         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
884         qemu_log_mask(LOG_GUEST_ERROR,
885                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
886     }
887 
888     return ret;
889 }
890 
891 /*
892  * Returns whether the event notification should be forwarded.
893  */
894 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
895 {
896     bool ret;
897 
898     assert(srcno < xsrc->nr_irqs);
899 
900     ret = xive_esb_eoi(&xsrc->status[srcno]);
901 
902     /*
903      * LSI sources do not set the Q bit but they can still be
904      * asserted, in which case we should forward a new event
905      * notification
906      */
907     if (xive_source_irq_is_lsi(xsrc, srcno) &&
908         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
909         ret = xive_source_lsi_trigger(xsrc, srcno);
910     }
911 
912     return ret;
913 }
914 
915 /*
916  * Forward the source event notification to the Router
917  */
918 static void xive_source_notify(XiveSource *xsrc, int srcno)
919 {
920     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
921 
922     if (xnc->notify) {
923         xnc->notify(xsrc->xive, srcno);
924     }
925 }
926 
927 /*
928  * In a two pages ESB MMIO setting, even page is the trigger page, odd
929  * page is for management
930  */
931 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
932 {
933     return !((addr >> shift) & 1);
934 }
935 
936 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
937 {
938     return xive_source_esb_has_2page(xsrc) &&
939         addr_is_even(addr, xsrc->esb_shift - 1);
940 }
941 
942 /*
943  * ESB MMIO loads
944  *                      Trigger page    Management/EOI page
945  *
946  * ESB MMIO setting     2 pages         1 or 2 pages
947  *
948  * 0x000 .. 0x3FF       -1              EOI and return 0|1
949  * 0x400 .. 0x7FF       -1              EOI and return 0|1
950  * 0x800 .. 0xBFF       -1              return PQ
951  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
952  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
953  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
954  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
955  */
956 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
957 {
958     XiveSource *xsrc = XIVE_SOURCE(opaque);
959     uint32_t offset = addr & 0xFFF;
960     uint32_t srcno = addr >> xsrc->esb_shift;
961     uint64_t ret = -1;
962 
963     /* In a two pages ESB MMIO setting, trigger page should not be read */
964     if (xive_source_is_trigger_page(xsrc, addr)) {
965         qemu_log_mask(LOG_GUEST_ERROR,
966                       "XIVE: invalid load on IRQ %d trigger page at "
967                       "0x%"HWADDR_PRIx"\n", srcno, addr);
968         return -1;
969     }
970 
971     switch (offset) {
972     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
973         ret = xive_source_esb_eoi(xsrc, srcno);
974 
975         /* Forward the source event notification for routing */
976         if (ret) {
977             xive_source_notify(xsrc, srcno);
978         }
979         break;
980 
981     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
982         ret = xive_source_esb_get(xsrc, srcno);
983         break;
984 
985     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
986     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
987     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
988     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
989         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
990         break;
991     default:
992         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
993                       offset);
994     }
995 
996     return ret;
997 }
998 
999 /*
1000  * ESB MMIO stores
1001  *                      Trigger page    Management/EOI page
1002  *
1003  * ESB MMIO setting     2 pages         1 or 2 pages
1004  *
1005  * 0x000 .. 0x3FF       Trigger         Trigger
1006  * 0x400 .. 0x7FF       Trigger         EOI
1007  * 0x800 .. 0xBFF       Trigger         undefined
1008  * 0xC00 .. 0xCFF       Trigger         PQ=00
1009  * 0xD00 .. 0xDFF       Trigger         PQ=01
1010  * 0xE00 .. 0xDFF       Trigger         PQ=10
1011  * 0xF00 .. 0xDFF       Trigger         PQ=11
1012  */
1013 static void xive_source_esb_write(void *opaque, hwaddr addr,
1014                                   uint64_t value, unsigned size)
1015 {
1016     XiveSource *xsrc = XIVE_SOURCE(opaque);
1017     uint32_t offset = addr & 0xFFF;
1018     uint32_t srcno = addr >> xsrc->esb_shift;
1019     bool notify = false;
1020 
1021     /* In a two pages ESB MMIO setting, trigger page only triggers */
1022     if (xive_source_is_trigger_page(xsrc, addr)) {
1023         notify = xive_source_esb_trigger(xsrc, srcno);
1024         goto out;
1025     }
1026 
1027     switch (offset) {
1028     case 0 ... 0x3FF:
1029         notify = xive_source_esb_trigger(xsrc, srcno);
1030         break;
1031 
1032     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1033         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1034             qemu_log_mask(LOG_GUEST_ERROR,
1035                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1036             return;
1037         }
1038 
1039         notify = xive_source_esb_eoi(xsrc, srcno);
1040         break;
1041 
1042     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1043     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1044     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1045     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1046         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1047         break;
1048 
1049     default:
1050         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1051                       offset);
1052         return;
1053     }
1054 
1055 out:
1056     /* Forward the source event notification for routing */
1057     if (notify) {
1058         xive_source_notify(xsrc, srcno);
1059     }
1060 }
1061 
1062 static const MemoryRegionOps xive_source_esb_ops = {
1063     .read = xive_source_esb_read,
1064     .write = xive_source_esb_write,
1065     .endianness = DEVICE_BIG_ENDIAN,
1066     .valid = {
1067         .min_access_size = 8,
1068         .max_access_size = 8,
1069     },
1070     .impl = {
1071         .min_access_size = 8,
1072         .max_access_size = 8,
1073     },
1074 };
1075 
1076 void xive_source_set_irq(void *opaque, int srcno, int val)
1077 {
1078     XiveSource *xsrc = XIVE_SOURCE(opaque);
1079     bool notify = false;
1080 
1081     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1082         if (val) {
1083             notify = xive_source_lsi_trigger(xsrc, srcno);
1084         } else {
1085             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1086         }
1087     } else {
1088         if (val) {
1089             notify = xive_source_esb_trigger(xsrc, srcno);
1090         }
1091     }
1092 
1093     /* Forward the source event notification for routing */
1094     if (notify) {
1095         xive_source_notify(xsrc, srcno);
1096     }
1097 }
1098 
1099 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1100 {
1101     int i;
1102 
1103     for (i = 0; i < xsrc->nr_irqs; i++) {
1104         uint8_t pq = xive_source_esb_get(xsrc, i);
1105 
1106         if (pq == XIVE_ESB_OFF) {
1107             continue;
1108         }
1109 
1110         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1111                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1112                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1113                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1114                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1115     }
1116 }
1117 
1118 static void xive_source_reset(void *dev)
1119 {
1120     XiveSource *xsrc = XIVE_SOURCE(dev);
1121 
1122     /* Do not clear the LSI bitmap */
1123 
1124     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1125     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1126 }
1127 
1128 static void xive_source_realize(DeviceState *dev, Error **errp)
1129 {
1130     XiveSource *xsrc = XIVE_SOURCE(dev);
1131     size_t esb_len = xive_source_esb_len(xsrc);
1132 
1133     assert(xsrc->xive);
1134 
1135     if (!xsrc->nr_irqs) {
1136         error_setg(errp, "Number of interrupt needs to be greater than 0");
1137         return;
1138     }
1139 
1140     if (xsrc->esb_shift != XIVE_ESB_4K &&
1141         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1142         xsrc->esb_shift != XIVE_ESB_64K &&
1143         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1144         error_setg(errp, "Invalid ESB shift setting");
1145         return;
1146     }
1147 
1148     xsrc->status = g_malloc0(xsrc->nr_irqs);
1149     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1150 
1151     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1152     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1153                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1154                           esb_len);
1155     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1156 
1157     qemu_register_reset(xive_source_reset, dev);
1158 }
1159 
1160 static const VMStateDescription vmstate_xive_source = {
1161     .name = TYPE_XIVE_SOURCE,
1162     .version_id = 1,
1163     .minimum_version_id = 1,
1164     .fields = (VMStateField[]) {
1165         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1166         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1167         VMSTATE_END_OF_LIST()
1168     },
1169 };
1170 
1171 /*
1172  * The default XIVE interrupt source setting for the ESB MMIOs is two
1173  * 64k pages without Store EOI, to be in sync with KVM.
1174  */
1175 static Property xive_source_properties[] = {
1176     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1177     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1178     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1179     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1180                      XiveNotifier *),
1181     DEFINE_PROP_END_OF_LIST(),
1182 };
1183 
1184 static void xive_source_class_init(ObjectClass *klass, void *data)
1185 {
1186     DeviceClass *dc = DEVICE_CLASS(klass);
1187 
1188     dc->desc    = "XIVE Interrupt Source";
1189     device_class_set_props(dc, xive_source_properties);
1190     dc->realize = xive_source_realize;
1191     dc->vmsd    = &vmstate_xive_source;
1192     /*
1193      * Reason: part of XIVE interrupt controller, needs to be wired up,
1194      * e.g. by spapr_xive_instance_init().
1195      */
1196     dc->user_creatable = false;
1197 }
1198 
1199 static const TypeInfo xive_source_info = {
1200     .name          = TYPE_XIVE_SOURCE,
1201     .parent        = TYPE_DEVICE,
1202     .instance_size = sizeof(XiveSource),
1203     .class_init    = xive_source_class_init,
1204 };
1205 
1206 /*
1207  * XiveEND helpers
1208  */
1209 
1210 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1211 {
1212     uint64_t qaddr_base = xive_end_qaddr(end);
1213     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1214     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1215     uint32_t qentries = 1 << (qsize + 10);
1216     int i;
1217 
1218     /*
1219      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1220      */
1221     monitor_printf(mon, " [ ");
1222     qindex = (qindex - (width - 1)) & (qentries - 1);
1223     for (i = 0; i < width; i++) {
1224         uint64_t qaddr = qaddr_base + (qindex << 2);
1225         uint32_t qdata = -1;
1226 
1227         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1228                             sizeof(qdata))) {
1229             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1230                           HWADDR_PRIx "\n", qaddr);
1231             return;
1232         }
1233         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1234                        be32_to_cpu(qdata));
1235         qindex = (qindex + 1) & (qentries - 1);
1236     }
1237     monitor_printf(mon, "]");
1238 }
1239 
1240 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1241 {
1242     uint64_t qaddr_base = xive_end_qaddr(end);
1243     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1244     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1245     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1246     uint32_t qentries = 1 << (qsize + 10);
1247 
1248     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1249     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1250     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1251     uint8_t pq;
1252 
1253     if (!xive_end_is_valid(end)) {
1254         return;
1255     }
1256 
1257     pq = xive_get_field32(END_W1_ESn, end->w1);
1258 
1259     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1260                    end_idx,
1261                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1262                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1263                    xive_end_is_valid(end)    ? 'v' : '-',
1264                    xive_end_is_enqueue(end)  ? 'q' : '-',
1265                    xive_end_is_notify(end)   ? 'n' : '-',
1266                    xive_end_is_backlog(end)  ? 'b' : '-',
1267                    xive_end_is_escalate(end) ? 'e' : '-',
1268                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1269                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1270                    priority, nvt_blk, nvt_idx);
1271 
1272     if (qaddr_base) {
1273         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1274                        qaddr_base, qindex, qentries, qgen);
1275         xive_end_queue_pic_print_info(end, 6, mon);
1276     }
1277     monitor_printf(mon, "\n");
1278 }
1279 
1280 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1281 {
1282     uint64_t qaddr_base = xive_end_qaddr(end);
1283     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1284     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1285     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1286 
1287     uint64_t qaddr = qaddr_base + (qindex << 2);
1288     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1289     uint32_t qentries = 1 << (qsize + 10);
1290 
1291     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1292         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1293                       HWADDR_PRIx "\n", qaddr);
1294         return;
1295     }
1296 
1297     qindex = (qindex + 1) & (qentries - 1);
1298     if (qindex == 0) {
1299         qgen ^= 1;
1300         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1301     }
1302     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1303 }
1304 
1305 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1306                                    Monitor *mon)
1307 {
1308     XiveEAS *eas = (XiveEAS *) &end->w4;
1309     uint8_t pq;
1310 
1311     if (!xive_end_is_escalate(end)) {
1312         return;
1313     }
1314 
1315     pq = xive_get_field32(END_W1_ESe, end->w1);
1316 
1317     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1318                    end_idx,
1319                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1320                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1321                    xive_eas_is_valid(eas) ? 'V' : ' ',
1322                    xive_eas_is_masked(eas) ? 'M' : ' ',
1323                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1324                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1325                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1326 }
1327 
1328 /*
1329  * XIVE Router (aka. Virtualization Controller or IVRE)
1330  */
1331 
1332 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1333                         XiveEAS *eas)
1334 {
1335     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1336 
1337     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1338 }
1339 
1340 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1341                         XiveEND *end)
1342 {
1343    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1344 
1345    return xrc->get_end(xrtr, end_blk, end_idx, end);
1346 }
1347 
1348 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1349                           XiveEND *end, uint8_t word_number)
1350 {
1351    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1352 
1353    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1354 }
1355 
1356 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1357                         XiveNVT *nvt)
1358 {
1359    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1360 
1361    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1362 }
1363 
1364 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1365                         XiveNVT *nvt, uint8_t word_number)
1366 {
1367    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1368 
1369    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1370 }
1371 
1372 static int xive_router_get_block_id(XiveRouter *xrtr)
1373 {
1374    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1375 
1376    return xrc->get_block_id(xrtr);
1377 }
1378 
1379 static void xive_router_realize(DeviceState *dev, Error **errp)
1380 {
1381     XiveRouter *xrtr = XIVE_ROUTER(dev);
1382 
1383     assert(xrtr->xfb);
1384 }
1385 
1386 /*
1387  * Encode the HW CAM line in the block group mode format :
1388  *
1389  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1390  */
1391 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1392 {
1393     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1394     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1395     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1396 
1397     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1398 }
1399 
1400 /*
1401  * The thread context register words are in big-endian format.
1402  */
1403 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1404                               uint8_t format,
1405                               uint8_t nvt_blk, uint32_t nvt_idx,
1406                               bool cam_ignore, uint32_t logic_serv)
1407 {
1408     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1409     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1410     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1411     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1412     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1413 
1414     /*
1415      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1416      * identifier are ignored in the "CAM" match.
1417      */
1418 
1419     if (format == 0) {
1420         if (cam_ignore == true) {
1421             /*
1422              * F=0 & i=1: Logical server notification (bits ignored at
1423              * the end of the NVT identifier)
1424              */
1425             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1426                           nvt_blk, nvt_idx);
1427              return -1;
1428         }
1429 
1430         /* F=0 & i=0: Specific NVT notification */
1431 
1432         /* PHYS ring */
1433         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1434             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1435             return TM_QW3_HV_PHYS;
1436         }
1437 
1438         /* HV POOL ring */
1439         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1440             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1441             return TM_QW2_HV_POOL;
1442         }
1443 
1444         /* OS ring */
1445         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1446             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1447             return TM_QW1_OS;
1448         }
1449     } else {
1450         /* F=1 : User level Event-Based Branch (EBB) notification */
1451 
1452         /* USER ring */
1453         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1454              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1455              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1456              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1457             return TM_QW0_USER;
1458         }
1459     }
1460     return -1;
1461 }
1462 
1463 /*
1464  * This is our simple Xive Presenter Engine model. It is merged in the
1465  * Router as it does not require an extra object.
1466  *
1467  * It receives notification requests sent by the IVRE to find one
1468  * matching NVT (or more) dispatched on the processor threads. In case
1469  * of a single NVT notification, the process is abreviated and the
1470  * thread is signaled if a match is found. In case of a logical server
1471  * notification (bits ignored at the end of the NVT identifier), the
1472  * IVPE and IVRE select a winning thread using different filters. This
1473  * involves 2 or 3 exchanges on the PowerBus that the model does not
1474  * support.
1475  *
1476  * The parameters represent what is sent on the PowerBus
1477  */
1478 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1479                                   uint8_t nvt_blk, uint32_t nvt_idx,
1480                                   bool cam_ignore, uint8_t priority,
1481                                   uint32_t logic_serv)
1482 {
1483     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1484     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1485     int count;
1486 
1487     /*
1488      * Ask the machine to scan the interrupt controllers for a match
1489      */
1490     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1491                            priority, logic_serv, &match);
1492     if (count < 0) {
1493         return false;
1494     }
1495 
1496     /* handle CPU exception delivery */
1497     if (count) {
1498         xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority));
1499     }
1500 
1501     return !!count;
1502 }
1503 
1504 /*
1505  * Notification using the END ESe/ESn bit (Event State Buffer for
1506  * escalation and notification). Provide further coalescing in the
1507  * Router.
1508  */
1509 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1510                                       uint32_t end_idx, XiveEND *end,
1511                                       uint32_t end_esmask)
1512 {
1513     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1514     bool notify = xive_esb_trigger(&pq);
1515 
1516     if (pq != xive_get_field32(end_esmask, end->w1)) {
1517         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1518         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1519     }
1520 
1521     /* ESe/n[Q]=1 : end of notification */
1522     return notify;
1523 }
1524 
1525 /*
1526  * An END trigger can come from an event trigger (IPI or HW) or from
1527  * another chip. We don't model the PowerBus but the END trigger
1528  * message has the same parameters than in the function below.
1529  */
1530 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1531                                    uint32_t end_idx, uint32_t end_data)
1532 {
1533     XiveEND end;
1534     uint8_t priority;
1535     uint8_t format;
1536     uint8_t nvt_blk;
1537     uint32_t nvt_idx;
1538     XiveNVT nvt;
1539     bool found;
1540 
1541     /* END cache lookup */
1542     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1543         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1544                       end_idx);
1545         return;
1546     }
1547 
1548     if (!xive_end_is_valid(&end)) {
1549         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1550                       end_blk, end_idx);
1551         return;
1552     }
1553 
1554     if (xive_end_is_enqueue(&end)) {
1555         xive_end_enqueue(&end, end_data);
1556         /* Enqueuing event data modifies the EQ toggle and index */
1557         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1558     }
1559 
1560     /*
1561      * When the END is silent, we skip the notification part.
1562      */
1563     if (xive_end_is_silent_escalation(&end)) {
1564         goto do_escalation;
1565     }
1566 
1567     /*
1568      * The W7 format depends on the F bit in W6. It defines the type
1569      * of the notification :
1570      *
1571      *   F=0 : single or multiple NVT notification
1572      *   F=1 : User level Event-Based Branch (EBB) notification, no
1573      *         priority
1574      */
1575     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1576     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1577 
1578     /* The END is masked */
1579     if (format == 0 && priority == 0xff) {
1580         return;
1581     }
1582 
1583     /*
1584      * Check the END ESn (Event State Buffer for notification) for
1585      * even further coalescing in the Router
1586      */
1587     if (!xive_end_is_notify(&end)) {
1588         /* ESn[Q]=1 : end of notification */
1589         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1590                                        &end, END_W1_ESn)) {
1591             return;
1592         }
1593     }
1594 
1595     /*
1596      * Follows IVPE notification
1597      */
1598     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1599     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1600 
1601     /* NVT cache lookup */
1602     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1603         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1604                       nvt_blk, nvt_idx);
1605         return;
1606     }
1607 
1608     if (!xive_nvt_is_valid(&nvt)) {
1609         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1610                       nvt_blk, nvt_idx);
1611         return;
1612     }
1613 
1614     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1615                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1616                           priority,
1617                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1618 
1619     /* TODO: Auto EOI. */
1620 
1621     if (found) {
1622         return;
1623     }
1624 
1625     /*
1626      * If no matching NVT is dispatched on a HW thread :
1627      * - specific VP: update the NVT structure if backlog is activated
1628      * - logical server : forward request to IVPE (not supported)
1629      */
1630     if (xive_end_is_backlog(&end)) {
1631         uint8_t ipb;
1632 
1633         if (format == 1) {
1634             qemu_log_mask(LOG_GUEST_ERROR,
1635                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1636                           end_blk, end_idx);
1637             return;
1638         }
1639         /*
1640          * Record the IPB in the associated NVT structure for later
1641          * use. The presenter will resend the interrupt when the vCPU
1642          * is dispatched again on a HW thread.
1643          */
1644         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1645         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1646         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1647 
1648         /*
1649          * On HW, follows a "Broadcast Backlog" to IVPEs
1650          */
1651     }
1652 
1653 do_escalation:
1654     /*
1655      * If activated, escalate notification using the ESe PQ bits and
1656      * the EAS in w4-5
1657      */
1658     if (!xive_end_is_escalate(&end)) {
1659         return;
1660     }
1661 
1662     /*
1663      * Check the END ESe (Event State Buffer for escalation) for even
1664      * further coalescing in the Router
1665      */
1666     if (!xive_end_is_uncond_escalation(&end)) {
1667         /* ESe[Q]=1 : end of notification */
1668         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1669                                        &end, END_W1_ESe)) {
1670             return;
1671         }
1672     }
1673 
1674     /*
1675      * The END trigger becomes an Escalation trigger
1676      */
1677     xive_router_end_notify(xrtr,
1678                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1679                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1680                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1681 }
1682 
1683 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1684 {
1685     XiveRouter *xrtr = XIVE_ROUTER(xn);
1686     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1687     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1688     XiveEAS eas;
1689 
1690     /* EAS cache lookup */
1691     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1692         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1693         return;
1694     }
1695 
1696     /*
1697      * The IVRE checks the State Bit Cache at this point. We skip the
1698      * SBC lookup because the state bits of the sources are modeled
1699      * internally in QEMU.
1700      */
1701 
1702     if (!xive_eas_is_valid(&eas)) {
1703         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1704         return;
1705     }
1706 
1707     if (xive_eas_is_masked(&eas)) {
1708         /* Notification completed */
1709         return;
1710     }
1711 
1712     /*
1713      * The event trigger becomes an END trigger
1714      */
1715     xive_router_end_notify(xrtr,
1716                            xive_get_field64(EAS_END_BLOCK, eas.w),
1717                            xive_get_field64(EAS_END_INDEX, eas.w),
1718                            xive_get_field64(EAS_END_DATA,  eas.w));
1719 }
1720 
1721 static Property xive_router_properties[] = {
1722     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1723                      TYPE_XIVE_FABRIC, XiveFabric *),
1724     DEFINE_PROP_END_OF_LIST(),
1725 };
1726 
1727 static void xive_router_class_init(ObjectClass *klass, void *data)
1728 {
1729     DeviceClass *dc = DEVICE_CLASS(klass);
1730     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1731 
1732     dc->desc    = "XIVE Router Engine";
1733     device_class_set_props(dc, xive_router_properties);
1734     /* Parent is SysBusDeviceClass. No need to call its realize hook */
1735     dc->realize = xive_router_realize;
1736     xnc->notify = xive_router_notify;
1737 }
1738 
1739 static const TypeInfo xive_router_info = {
1740     .name          = TYPE_XIVE_ROUTER,
1741     .parent        = TYPE_SYS_BUS_DEVICE,
1742     .abstract      = true,
1743     .instance_size = sizeof(XiveRouter),
1744     .class_size    = sizeof(XiveRouterClass),
1745     .class_init    = xive_router_class_init,
1746     .interfaces    = (InterfaceInfo[]) {
1747         { TYPE_XIVE_NOTIFIER },
1748         { TYPE_XIVE_PRESENTER },
1749         { }
1750     }
1751 };
1752 
1753 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1754 {
1755     if (!xive_eas_is_valid(eas)) {
1756         return;
1757     }
1758 
1759     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1760                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1761                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1762                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1763                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1764 }
1765 
1766 /*
1767  * END ESB MMIO loads
1768  */
1769 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1770 {
1771     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1772     uint32_t offset = addr & 0xFFF;
1773     uint8_t end_blk;
1774     uint32_t end_idx;
1775     XiveEND end;
1776     uint32_t end_esmask;
1777     uint8_t pq;
1778     uint64_t ret = -1;
1779 
1780     /*
1781      * The block id should be deduced from the load address on the END
1782      * ESB MMIO but our model only supports a single block per XIVE chip.
1783      */
1784     end_blk = xive_router_get_block_id(xsrc->xrtr);
1785     end_idx = addr >> (xsrc->esb_shift + 1);
1786 
1787     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1788         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1789                       end_idx);
1790         return -1;
1791     }
1792 
1793     if (!xive_end_is_valid(&end)) {
1794         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1795                       end_blk, end_idx);
1796         return -1;
1797     }
1798 
1799     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1800     pq = xive_get_field32(end_esmask, end.w1);
1801 
1802     switch (offset) {
1803     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1804         ret = xive_esb_eoi(&pq);
1805 
1806         /* Forward the source event notification for routing ?? */
1807         break;
1808 
1809     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1810         ret = pq;
1811         break;
1812 
1813     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1814     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1815     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1816     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1817         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1818         break;
1819     default:
1820         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1821                       offset);
1822         return -1;
1823     }
1824 
1825     if (pq != xive_get_field32(end_esmask, end.w1)) {
1826         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1827         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1828     }
1829 
1830     return ret;
1831 }
1832 
1833 /*
1834  * END ESB MMIO stores are invalid
1835  */
1836 static void xive_end_source_write(void *opaque, hwaddr addr,
1837                                   uint64_t value, unsigned size)
1838 {
1839     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1840                   HWADDR_PRIx"\n", addr);
1841 }
1842 
1843 static const MemoryRegionOps xive_end_source_ops = {
1844     .read = xive_end_source_read,
1845     .write = xive_end_source_write,
1846     .endianness = DEVICE_BIG_ENDIAN,
1847     .valid = {
1848         .min_access_size = 8,
1849         .max_access_size = 8,
1850     },
1851     .impl = {
1852         .min_access_size = 8,
1853         .max_access_size = 8,
1854     },
1855 };
1856 
1857 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1858 {
1859     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1860 
1861     assert(xsrc->xrtr);
1862 
1863     if (!xsrc->nr_ends) {
1864         error_setg(errp, "Number of interrupt needs to be greater than 0");
1865         return;
1866     }
1867 
1868     if (xsrc->esb_shift != XIVE_ESB_4K &&
1869         xsrc->esb_shift != XIVE_ESB_64K) {
1870         error_setg(errp, "Invalid ESB shift setting");
1871         return;
1872     }
1873 
1874     /*
1875      * Each END is assigned an even/odd pair of MMIO pages, the even page
1876      * manages the ESn field while the odd page manages the ESe field.
1877      */
1878     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1879                           &xive_end_source_ops, xsrc, "xive.end",
1880                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1881 }
1882 
1883 static Property xive_end_source_properties[] = {
1884     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1885     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1886     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1887                      XiveRouter *),
1888     DEFINE_PROP_END_OF_LIST(),
1889 };
1890 
1891 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1892 {
1893     DeviceClass *dc = DEVICE_CLASS(klass);
1894 
1895     dc->desc    = "XIVE END Source";
1896     device_class_set_props(dc, xive_end_source_properties);
1897     dc->realize = xive_end_source_realize;
1898     /*
1899      * Reason: part of XIVE interrupt controller, needs to be wired up,
1900      * e.g. by spapr_xive_instance_init().
1901      */
1902     dc->user_creatable = false;
1903 }
1904 
1905 static const TypeInfo xive_end_source_info = {
1906     .name          = TYPE_XIVE_END_SOURCE,
1907     .parent        = TYPE_DEVICE,
1908     .instance_size = sizeof(XiveENDSource),
1909     .class_init    = xive_end_source_class_init,
1910 };
1911 
1912 /*
1913  * XIVE Notifier
1914  */
1915 static const TypeInfo xive_notifier_info = {
1916     .name = TYPE_XIVE_NOTIFIER,
1917     .parent = TYPE_INTERFACE,
1918     .class_size = sizeof(XiveNotifierClass),
1919 };
1920 
1921 /*
1922  * XIVE Presenter
1923  */
1924 static const TypeInfo xive_presenter_info = {
1925     .name = TYPE_XIVE_PRESENTER,
1926     .parent = TYPE_INTERFACE,
1927     .class_size = sizeof(XivePresenterClass),
1928 };
1929 
1930 /*
1931  * XIVE Fabric
1932  */
1933 static const TypeInfo xive_fabric_info = {
1934     .name = TYPE_XIVE_FABRIC,
1935     .parent = TYPE_INTERFACE,
1936     .class_size = sizeof(XiveFabricClass),
1937 };
1938 
1939 static void xive_register_types(void)
1940 {
1941     type_register_static(&xive_fabric_info);
1942     type_register_static(&xive_source_info);
1943     type_register_static(&xive_notifier_info);
1944     type_register_static(&xive_presenter_info);
1945     type_register_static(&xive_router_info);
1946     type_register_static(&xive_end_source_info);
1947     type_register_static(&xive_tctx_info);
1948 }
1949 
1950 type_init(xive_register_types)
1951