1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qapi/error.h" 13 #include "target/ppc/cpu.h" 14 #include "sysemu/cpus.h" 15 #include "sysemu/dma.h" 16 #include "hw/qdev-properties.h" 17 #include "monitor/monitor.h" 18 #include "hw/ppc/xive.h" 19 #include "hw/ppc/xive_regs.h" 20 21 /* 22 * XIVE Thread Interrupt Management context 23 */ 24 25 /* 26 * Convert a priority number to an Interrupt Pending Buffer (IPB) 27 * register, which indicates a pending interrupt at the priority 28 * corresponding to the bit number 29 */ 30 static uint8_t priority_to_ipb(uint8_t priority) 31 { 32 return priority > XIVE_PRIORITY_MAX ? 33 0 : 1 << (XIVE_PRIORITY_MAX - priority); 34 } 35 36 /* 37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 38 * Interrupt Priority Register (PIPR), which contains the priority of 39 * the most favored pending notification. 40 */ 41 static uint8_t ipb_to_pipr(uint8_t ibp) 42 { 43 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 44 } 45 46 static void ipb_update(uint8_t *regs, uint8_t priority) 47 { 48 regs[TM_IPB] |= priority_to_ipb(priority); 49 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 50 } 51 52 static uint8_t exception_mask(uint8_t ring) 53 { 54 switch (ring) { 55 case TM_QW1_OS: 56 return TM_QW1_NSR_EO; 57 case TM_QW3_HV_PHYS: 58 return TM_QW3_NSR_HE; 59 default: 60 g_assert_not_reached(); 61 } 62 } 63 64 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 65 { 66 uint8_t *regs = &tctx->regs[ring]; 67 uint8_t nsr = regs[TM_NSR]; 68 uint8_t mask = exception_mask(ring); 69 70 qemu_irq_lower(tctx->output); 71 72 if (regs[TM_NSR] & mask) { 73 uint8_t cppr = regs[TM_PIPR]; 74 75 regs[TM_CPPR] = cppr; 76 77 /* Reset the pending buffer bit */ 78 regs[TM_IPB] &= ~priority_to_ipb(cppr); 79 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 80 81 /* Drop Exception bit */ 82 regs[TM_NSR] &= ~mask; 83 } 84 85 return (nsr << 8) | regs[TM_CPPR]; 86 } 87 88 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 89 { 90 uint8_t *regs = &tctx->regs[ring]; 91 92 if (regs[TM_PIPR] < regs[TM_CPPR]) { 93 switch (ring) { 94 case TM_QW1_OS: 95 regs[TM_NSR] |= TM_QW1_NSR_EO; 96 break; 97 case TM_QW3_HV_PHYS: 98 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 99 break; 100 default: 101 g_assert_not_reached(); 102 } 103 qemu_irq_raise(tctx->output); 104 } 105 } 106 107 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 108 { 109 if (cppr > XIVE_PRIORITY_MAX) { 110 cppr = 0xff; 111 } 112 113 tctx->regs[ring + TM_CPPR] = cppr; 114 115 /* CPPR has changed, check if we need to raise a pending exception */ 116 xive_tctx_notify(tctx, ring); 117 } 118 119 /* 120 * XIVE Thread Interrupt Management Area (TIMA) 121 */ 122 123 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset, 124 uint64_t value, unsigned size) 125 { 126 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 127 } 128 129 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) 130 { 131 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 132 } 133 134 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset, 135 unsigned size) 136 { 137 uint64_t ret; 138 139 ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM; 140 tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM; 141 return ret; 142 } 143 144 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset, 145 uint64_t value, unsigned size) 146 { 147 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 148 } 149 150 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size) 151 { 152 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 153 } 154 155 /* 156 * Define an access map for each page of the TIMA that we will use in 157 * the memory region ops to filter values when doing loads and stores 158 * of raw registers values 159 * 160 * Registers accessibility bits : 161 * 162 * 0x0 - no access 163 * 0x1 - write only 164 * 0x2 - read only 165 * 0x3 - read/write 166 */ 167 168 static const uint8_t xive_tm_hw_view[] = { 169 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 170 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 171 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 172 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0, 173 }; 174 175 static const uint8_t xive_tm_hv_view[] = { 176 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 177 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0, 178 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 179 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0, 180 }; 181 182 static const uint8_t xive_tm_os_view[] = { 183 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, 184 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 185 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 186 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 187 }; 188 189 static const uint8_t xive_tm_user_view[] = { 190 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 191 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 192 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 193 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 194 }; 195 196 /* 197 * Overall TIMA access map for the thread interrupt management context 198 * registers 199 */ 200 static const uint8_t *xive_tm_views[] = { 201 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 202 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 203 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 204 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 205 }; 206 207 /* 208 * Computes a register access mask for a given offset in the TIMA 209 */ 210 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 211 { 212 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 213 uint8_t reg_offset = offset & 0x3F; 214 uint8_t reg_mask = write ? 0x1 : 0x2; 215 uint64_t mask = 0x0; 216 int i; 217 218 for (i = 0; i < size; i++) { 219 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 220 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 221 } 222 } 223 224 return mask; 225 } 226 227 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 228 unsigned size) 229 { 230 uint8_t ring_offset = offset & 0x30; 231 uint8_t reg_offset = offset & 0x3F; 232 uint64_t mask = xive_tm_mask(offset, size, true); 233 int i; 234 235 /* 236 * Only 4 or 8 bytes stores are allowed and the User ring is 237 * excluded 238 */ 239 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 240 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 241 HWADDR_PRIx"\n", offset); 242 return; 243 } 244 245 /* 246 * Use the register offset for the raw values and filter out 247 * reserved values 248 */ 249 for (i = 0; i < size; i++) { 250 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 251 if (byte_mask) { 252 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 253 byte_mask; 254 } 255 } 256 } 257 258 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 259 { 260 uint8_t ring_offset = offset & 0x30; 261 uint8_t reg_offset = offset & 0x3F; 262 uint64_t mask = xive_tm_mask(offset, size, false); 263 uint64_t ret; 264 int i; 265 266 /* 267 * Only 4 or 8 bytes loads are allowed and the User ring is 268 * excluded 269 */ 270 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 271 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 272 HWADDR_PRIx"\n", offset); 273 return -1; 274 } 275 276 /* Use the register offset for the raw values */ 277 ret = 0; 278 for (i = 0; i < size; i++) { 279 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 280 } 281 282 /* filter out reserved values */ 283 return ret & mask; 284 } 285 286 /* 287 * The TM context is mapped twice within each page. Stores and loads 288 * to the first mapping below 2K write and read the specified values 289 * without modification. The second mapping above 2K performs specific 290 * state changes (side effects) in addition to setting/returning the 291 * interrupt management area context of the processor thread. 292 */ 293 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size) 294 { 295 return xive_tctx_accept(tctx, TM_QW1_OS); 296 } 297 298 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset, 299 uint64_t value, unsigned size) 300 { 301 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 302 } 303 304 /* 305 * Adjust the IPB to allow a CPU to process event queues of other 306 * priorities during one physical interrupt cycle. 307 */ 308 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset, 309 uint64_t value, unsigned size) 310 { 311 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff); 312 xive_tctx_notify(tctx, TM_QW1_OS); 313 } 314 315 /* 316 * Define a mapping of "special" operations depending on the TIMA page 317 * offset and the size of the operation. 318 */ 319 typedef struct XiveTmOp { 320 uint8_t page_offset; 321 uint32_t op_offset; 322 unsigned size; 323 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value, 324 unsigned size); 325 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size); 326 } XiveTmOp; 327 328 static const XiveTmOp xive_tm_operations[] = { 329 /* 330 * MMIOs below 2K : raw values and special operations without side 331 * effects 332 */ 333 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 334 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 335 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 336 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 337 338 /* MMIOs above 2K : special operations with side effects */ 339 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 340 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 341 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 342 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 343 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 344 }; 345 346 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 347 { 348 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 349 uint32_t op_offset = offset & 0xFFF; 350 int i; 351 352 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 353 const XiveTmOp *xto = &xive_tm_operations[i]; 354 355 /* Accesses done from a more privileged TIMA page is allowed */ 356 if (xto->page_offset >= page_offset && 357 xto->op_offset == op_offset && 358 xto->size == size && 359 ((write && xto->write_handler) || (!write && xto->read_handler))) { 360 return xto; 361 } 362 } 363 return NULL; 364 } 365 366 /* 367 * TIMA MMIO handlers 368 */ 369 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 370 unsigned size) 371 { 372 const XiveTmOp *xto; 373 374 /* 375 * TODO: check V bit in Q[0-3]W2 376 */ 377 378 /* 379 * First, check for special operations in the 2K region 380 */ 381 if (offset & 0x800) { 382 xto = xive_tm_find_op(offset, size, true); 383 if (!xto) { 384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA" 385 "@%"HWADDR_PRIx"\n", offset); 386 } else { 387 xto->write_handler(tctx, offset, value, size); 388 } 389 return; 390 } 391 392 /* 393 * Then, for special operations in the region below 2K. 394 */ 395 xto = xive_tm_find_op(offset, size, true); 396 if (xto) { 397 xto->write_handler(tctx, offset, value, size); 398 return; 399 } 400 401 /* 402 * Finish with raw access to the register values 403 */ 404 xive_tm_raw_write(tctx, offset, value, size); 405 } 406 407 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 408 { 409 const XiveTmOp *xto; 410 411 /* 412 * TODO: check V bit in Q[0-3]W2 413 */ 414 415 /* 416 * First, check for special operations in the 2K region 417 */ 418 if (offset & 0x800) { 419 xto = xive_tm_find_op(offset, size, false); 420 if (!xto) { 421 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 422 "@%"HWADDR_PRIx"\n", offset); 423 return -1; 424 } 425 return xto->read_handler(tctx, offset, size); 426 } 427 428 /* 429 * Then, for special operations in the region below 2K. 430 */ 431 xto = xive_tm_find_op(offset, size, false); 432 if (xto) { 433 return xto->read_handler(tctx, offset, size); 434 } 435 436 /* 437 * Finish with raw access to the register values 438 */ 439 return xive_tm_raw_read(tctx, offset, size); 440 } 441 442 static void xive_tm_write(void *opaque, hwaddr offset, 443 uint64_t value, unsigned size) 444 { 445 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); 446 447 xive_tctx_tm_write(tctx, offset, value, size); 448 } 449 450 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size) 451 { 452 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu); 453 454 return xive_tctx_tm_read(tctx, offset, size); 455 } 456 457 const MemoryRegionOps xive_tm_ops = { 458 .read = xive_tm_read, 459 .write = xive_tm_write, 460 .endianness = DEVICE_BIG_ENDIAN, 461 .valid = { 462 .min_access_size = 1, 463 .max_access_size = 8, 464 }, 465 .impl = { 466 .min_access_size = 1, 467 .max_access_size = 8, 468 }, 469 }; 470 471 static inline uint32_t xive_tctx_word2(uint8_t *ring) 472 { 473 return *((uint32_t *) &ring[TM_WORD2]); 474 } 475 476 static char *xive_tctx_ring_print(uint8_t *ring) 477 { 478 uint32_t w2 = xive_tctx_word2(ring); 479 480 return g_strdup_printf("%02x %02x %02x %02x %02x " 481 "%02x %02x %02x %08x", 482 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 483 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 484 be32_to_cpu(w2)); 485 } 486 487 static const char * const xive_tctx_ring_names[] = { 488 "USER", "OS", "POOL", "PHYS", 489 }; 490 491 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 492 { 493 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 494 int i; 495 496 if (kvm_irqchip_in_kernel()) { 497 Error *local_err = NULL; 498 499 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 500 if (local_err) { 501 error_report_err(local_err); 502 return; 503 } 504 } 505 506 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 507 " W2\n", cpu_index); 508 509 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 510 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 511 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 512 xive_tctx_ring_names[i], s); 513 g_free(s); 514 } 515 } 516 517 static void xive_tctx_reset(void *dev) 518 { 519 XiveTCTX *tctx = XIVE_TCTX(dev); 520 521 memset(tctx->regs, 0, sizeof(tctx->regs)); 522 523 /* Set some defaults */ 524 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 525 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 526 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 527 528 /* 529 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 530 * CPPR is first set. 531 */ 532 tctx->regs[TM_QW1_OS + TM_PIPR] = 533 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 534 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 535 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 536 } 537 538 static void xive_tctx_realize(DeviceState *dev, Error **errp) 539 { 540 XiveTCTX *tctx = XIVE_TCTX(dev); 541 PowerPCCPU *cpu; 542 CPUPPCState *env; 543 Object *obj; 544 Error *local_err = NULL; 545 546 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err); 547 if (!obj) { 548 error_propagate(errp, local_err); 549 error_prepend(errp, "required link 'cpu' not found: "); 550 return; 551 } 552 553 cpu = POWERPC_CPU(obj); 554 tctx->cs = CPU(obj); 555 556 env = &cpu->env; 557 switch (PPC_INPUT(env)) { 558 case PPC_FLAGS_INPUT_POWER9: 559 tctx->output = env->irq_inputs[POWER9_INPUT_INT]; 560 break; 561 562 default: 563 error_setg(errp, "XIVE interrupt controller does not support " 564 "this CPU bus model"); 565 return; 566 } 567 568 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 569 if (kvm_irqchip_in_kernel()) { 570 kvmppc_xive_cpu_connect(tctx, &local_err); 571 if (local_err) { 572 error_propagate(errp, local_err); 573 return; 574 } 575 } 576 577 qemu_register_reset(xive_tctx_reset, dev); 578 } 579 580 static void xive_tctx_unrealize(DeviceState *dev, Error **errp) 581 { 582 qemu_unregister_reset(xive_tctx_reset, dev); 583 } 584 585 static int vmstate_xive_tctx_pre_save(void *opaque) 586 { 587 Error *local_err = NULL; 588 589 if (kvm_irqchip_in_kernel()) { 590 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err); 591 if (local_err) { 592 error_report_err(local_err); 593 return -1; 594 } 595 } 596 597 return 0; 598 } 599 600 static const VMStateDescription vmstate_xive_tctx = { 601 .name = TYPE_XIVE_TCTX, 602 .version_id = 1, 603 .minimum_version_id = 1, 604 .pre_save = vmstate_xive_tctx_pre_save, 605 .post_load = NULL, /* handled by the sPAPRxive model */ 606 .fields = (VMStateField[]) { 607 VMSTATE_BUFFER(regs, XiveTCTX), 608 VMSTATE_END_OF_LIST() 609 }, 610 }; 611 612 static void xive_tctx_class_init(ObjectClass *klass, void *data) 613 { 614 DeviceClass *dc = DEVICE_CLASS(klass); 615 616 dc->desc = "XIVE Interrupt Thread Context"; 617 dc->realize = xive_tctx_realize; 618 dc->unrealize = xive_tctx_unrealize; 619 dc->vmsd = &vmstate_xive_tctx; 620 } 621 622 static const TypeInfo xive_tctx_info = { 623 .name = TYPE_XIVE_TCTX, 624 .parent = TYPE_DEVICE, 625 .instance_size = sizeof(XiveTCTX), 626 .class_init = xive_tctx_class_init, 627 }; 628 629 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp) 630 { 631 Error *local_err = NULL; 632 Object *obj; 633 634 obj = object_new(TYPE_XIVE_TCTX); 635 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort); 636 object_unref(obj); 637 object_property_add_const_link(obj, "cpu", cpu, &error_abort); 638 object_property_set_bool(obj, true, "realized", &local_err); 639 if (local_err) { 640 goto error; 641 } 642 643 return obj; 644 645 error: 646 object_unparent(obj); 647 error_propagate(errp, local_err); 648 return NULL; 649 } 650 651 /* 652 * XIVE ESB helpers 653 */ 654 655 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 656 { 657 uint8_t old_pq = *pq & 0x3; 658 659 *pq &= ~0x3; 660 *pq |= value & 0x3; 661 662 return old_pq; 663 } 664 665 static bool xive_esb_trigger(uint8_t *pq) 666 { 667 uint8_t old_pq = *pq & 0x3; 668 669 switch (old_pq) { 670 case XIVE_ESB_RESET: 671 xive_esb_set(pq, XIVE_ESB_PENDING); 672 return true; 673 case XIVE_ESB_PENDING: 674 case XIVE_ESB_QUEUED: 675 xive_esb_set(pq, XIVE_ESB_QUEUED); 676 return false; 677 case XIVE_ESB_OFF: 678 xive_esb_set(pq, XIVE_ESB_OFF); 679 return false; 680 default: 681 g_assert_not_reached(); 682 } 683 } 684 685 static bool xive_esb_eoi(uint8_t *pq) 686 { 687 uint8_t old_pq = *pq & 0x3; 688 689 switch (old_pq) { 690 case XIVE_ESB_RESET: 691 case XIVE_ESB_PENDING: 692 xive_esb_set(pq, XIVE_ESB_RESET); 693 return false; 694 case XIVE_ESB_QUEUED: 695 xive_esb_set(pq, XIVE_ESB_PENDING); 696 return true; 697 case XIVE_ESB_OFF: 698 xive_esb_set(pq, XIVE_ESB_OFF); 699 return false; 700 default: 701 g_assert_not_reached(); 702 } 703 } 704 705 /* 706 * XIVE Interrupt Source (or IVSE) 707 */ 708 709 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 710 { 711 assert(srcno < xsrc->nr_irqs); 712 713 return xsrc->status[srcno] & 0x3; 714 } 715 716 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 717 { 718 assert(srcno < xsrc->nr_irqs); 719 720 return xive_esb_set(&xsrc->status[srcno], pq); 721 } 722 723 /* 724 * Returns whether the event notification should be forwarded. 725 */ 726 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 727 { 728 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 729 730 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 731 732 switch (old_pq) { 733 case XIVE_ESB_RESET: 734 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 735 return true; 736 default: 737 return false; 738 } 739 } 740 741 /* 742 * Returns whether the event notification should be forwarded. 743 */ 744 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 745 { 746 bool ret; 747 748 assert(srcno < xsrc->nr_irqs); 749 750 ret = xive_esb_trigger(&xsrc->status[srcno]); 751 752 if (xive_source_irq_is_lsi(xsrc, srcno) && 753 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 754 qemu_log_mask(LOG_GUEST_ERROR, 755 "XIVE: queued an event on LSI IRQ %d\n", srcno); 756 } 757 758 return ret; 759 } 760 761 /* 762 * Returns whether the event notification should be forwarded. 763 */ 764 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 765 { 766 bool ret; 767 768 assert(srcno < xsrc->nr_irqs); 769 770 ret = xive_esb_eoi(&xsrc->status[srcno]); 771 772 /* 773 * LSI sources do not set the Q bit but they can still be 774 * asserted, in which case we should forward a new event 775 * notification 776 */ 777 if (xive_source_irq_is_lsi(xsrc, srcno) && 778 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 779 ret = xive_source_lsi_trigger(xsrc, srcno); 780 } 781 782 return ret; 783 } 784 785 /* 786 * Forward the source event notification to the Router 787 */ 788 static void xive_source_notify(XiveSource *xsrc, int srcno) 789 { 790 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 791 792 if (xnc->notify) { 793 xnc->notify(xsrc->xive, srcno); 794 } 795 } 796 797 /* 798 * In a two pages ESB MMIO setting, even page is the trigger page, odd 799 * page is for management 800 */ 801 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 802 { 803 return !((addr >> shift) & 1); 804 } 805 806 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 807 { 808 return xive_source_esb_has_2page(xsrc) && 809 addr_is_even(addr, xsrc->esb_shift - 1); 810 } 811 812 /* 813 * ESB MMIO loads 814 * Trigger page Management/EOI page 815 * 816 * ESB MMIO setting 2 pages 1 or 2 pages 817 * 818 * 0x000 .. 0x3FF -1 EOI and return 0|1 819 * 0x400 .. 0x7FF -1 EOI and return 0|1 820 * 0x800 .. 0xBFF -1 return PQ 821 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 822 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 823 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 824 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 825 */ 826 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 827 { 828 XiveSource *xsrc = XIVE_SOURCE(opaque); 829 uint32_t offset = addr & 0xFFF; 830 uint32_t srcno = addr >> xsrc->esb_shift; 831 uint64_t ret = -1; 832 833 /* In a two pages ESB MMIO setting, trigger page should not be read */ 834 if (xive_source_is_trigger_page(xsrc, addr)) { 835 qemu_log_mask(LOG_GUEST_ERROR, 836 "XIVE: invalid load on IRQ %d trigger page at " 837 "0x%"HWADDR_PRIx"\n", srcno, addr); 838 return -1; 839 } 840 841 switch (offset) { 842 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 843 ret = xive_source_esb_eoi(xsrc, srcno); 844 845 /* Forward the source event notification for routing */ 846 if (ret) { 847 xive_source_notify(xsrc, srcno); 848 } 849 break; 850 851 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 852 ret = xive_source_esb_get(xsrc, srcno); 853 break; 854 855 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 856 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 857 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 858 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 859 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 860 break; 861 default: 862 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 863 offset); 864 } 865 866 return ret; 867 } 868 869 /* 870 * ESB MMIO stores 871 * Trigger page Management/EOI page 872 * 873 * ESB MMIO setting 2 pages 1 or 2 pages 874 * 875 * 0x000 .. 0x3FF Trigger Trigger 876 * 0x400 .. 0x7FF Trigger EOI 877 * 0x800 .. 0xBFF Trigger undefined 878 * 0xC00 .. 0xCFF Trigger PQ=00 879 * 0xD00 .. 0xDFF Trigger PQ=01 880 * 0xE00 .. 0xDFF Trigger PQ=10 881 * 0xF00 .. 0xDFF Trigger PQ=11 882 */ 883 static void xive_source_esb_write(void *opaque, hwaddr addr, 884 uint64_t value, unsigned size) 885 { 886 XiveSource *xsrc = XIVE_SOURCE(opaque); 887 uint32_t offset = addr & 0xFFF; 888 uint32_t srcno = addr >> xsrc->esb_shift; 889 bool notify = false; 890 891 /* In a two pages ESB MMIO setting, trigger page only triggers */ 892 if (xive_source_is_trigger_page(xsrc, addr)) { 893 notify = xive_source_esb_trigger(xsrc, srcno); 894 goto out; 895 } 896 897 switch (offset) { 898 case 0 ... 0x3FF: 899 notify = xive_source_esb_trigger(xsrc, srcno); 900 break; 901 902 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 903 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 904 qemu_log_mask(LOG_GUEST_ERROR, 905 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 906 return; 907 } 908 909 notify = xive_source_esb_eoi(xsrc, srcno); 910 break; 911 912 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 913 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 914 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 915 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 916 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 917 break; 918 919 default: 920 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 921 offset); 922 return; 923 } 924 925 out: 926 /* Forward the source event notification for routing */ 927 if (notify) { 928 xive_source_notify(xsrc, srcno); 929 } 930 } 931 932 static const MemoryRegionOps xive_source_esb_ops = { 933 .read = xive_source_esb_read, 934 .write = xive_source_esb_write, 935 .endianness = DEVICE_BIG_ENDIAN, 936 .valid = { 937 .min_access_size = 8, 938 .max_access_size = 8, 939 }, 940 .impl = { 941 .min_access_size = 8, 942 .max_access_size = 8, 943 }, 944 }; 945 946 void xive_source_set_irq(void *opaque, int srcno, int val) 947 { 948 XiveSource *xsrc = XIVE_SOURCE(opaque); 949 bool notify = false; 950 951 if (xive_source_irq_is_lsi(xsrc, srcno)) { 952 if (val) { 953 notify = xive_source_lsi_trigger(xsrc, srcno); 954 } else { 955 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 956 } 957 } else { 958 if (val) { 959 notify = xive_source_esb_trigger(xsrc, srcno); 960 } 961 } 962 963 /* Forward the source event notification for routing */ 964 if (notify) { 965 xive_source_notify(xsrc, srcno); 966 } 967 } 968 969 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 970 { 971 int i; 972 973 for (i = 0; i < xsrc->nr_irqs; i++) { 974 uint8_t pq = xive_source_esb_get(xsrc, i); 975 976 if (pq == XIVE_ESB_OFF) { 977 continue; 978 } 979 980 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 981 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 982 pq & XIVE_ESB_VAL_P ? 'P' : '-', 983 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 984 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' '); 985 } 986 } 987 988 static void xive_source_reset(void *dev) 989 { 990 XiveSource *xsrc = XIVE_SOURCE(dev); 991 992 /* Do not clear the LSI bitmap */ 993 994 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 995 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 996 } 997 998 static void xive_source_realize(DeviceState *dev, Error **errp) 999 { 1000 XiveSource *xsrc = XIVE_SOURCE(dev); 1001 Object *obj; 1002 Error *local_err = NULL; 1003 1004 obj = object_property_get_link(OBJECT(dev), "xive", &local_err); 1005 if (!obj) { 1006 error_propagate(errp, local_err); 1007 error_prepend(errp, "required link 'xive' not found: "); 1008 return; 1009 } 1010 1011 xsrc->xive = XIVE_NOTIFIER(obj); 1012 1013 if (!xsrc->nr_irqs) { 1014 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1015 return; 1016 } 1017 1018 if (xsrc->esb_shift != XIVE_ESB_4K && 1019 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1020 xsrc->esb_shift != XIVE_ESB_64K && 1021 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1022 error_setg(errp, "Invalid ESB shift setting"); 1023 return; 1024 } 1025 1026 xsrc->status = g_malloc0(xsrc->nr_irqs); 1027 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1028 1029 if (!kvm_irqchip_in_kernel()) { 1030 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1031 &xive_source_esb_ops, xsrc, "xive.esb", 1032 (1ull << xsrc->esb_shift) * xsrc->nr_irqs); 1033 } 1034 1035 qemu_register_reset(xive_source_reset, dev); 1036 } 1037 1038 static const VMStateDescription vmstate_xive_source = { 1039 .name = TYPE_XIVE_SOURCE, 1040 .version_id = 1, 1041 .minimum_version_id = 1, 1042 .fields = (VMStateField[]) { 1043 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1044 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1045 VMSTATE_END_OF_LIST() 1046 }, 1047 }; 1048 1049 /* 1050 * The default XIVE interrupt source setting for the ESB MMIOs is two 1051 * 64k pages without Store EOI, to be in sync with KVM. 1052 */ 1053 static Property xive_source_properties[] = { 1054 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1055 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1056 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1057 DEFINE_PROP_END_OF_LIST(), 1058 }; 1059 1060 static void xive_source_class_init(ObjectClass *klass, void *data) 1061 { 1062 DeviceClass *dc = DEVICE_CLASS(klass); 1063 1064 dc->desc = "XIVE Interrupt Source"; 1065 dc->props = xive_source_properties; 1066 dc->realize = xive_source_realize; 1067 dc->vmsd = &vmstate_xive_source; 1068 } 1069 1070 static const TypeInfo xive_source_info = { 1071 .name = TYPE_XIVE_SOURCE, 1072 .parent = TYPE_DEVICE, 1073 .instance_size = sizeof(XiveSource), 1074 .class_init = xive_source_class_init, 1075 }; 1076 1077 /* 1078 * XiveEND helpers 1079 */ 1080 1081 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1082 { 1083 uint64_t qaddr_base = xive_end_qaddr(end); 1084 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1085 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1086 uint32_t qentries = 1 << (qsize + 10); 1087 int i; 1088 1089 /* 1090 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1091 */ 1092 monitor_printf(mon, " [ "); 1093 qindex = (qindex - (width - 1)) & (qentries - 1); 1094 for (i = 0; i < width; i++) { 1095 uint64_t qaddr = qaddr_base + (qindex << 2); 1096 uint32_t qdata = -1; 1097 1098 if (dma_memory_read(&address_space_memory, qaddr, &qdata, 1099 sizeof(qdata))) { 1100 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1101 HWADDR_PRIx "\n", qaddr); 1102 return; 1103 } 1104 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1105 be32_to_cpu(qdata)); 1106 qindex = (qindex + 1) & (qentries - 1); 1107 } 1108 } 1109 1110 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1111 { 1112 uint64_t qaddr_base = xive_end_qaddr(end); 1113 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1114 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1115 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1116 uint32_t qentries = 1 << (qsize + 10); 1117 1118 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1119 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1120 1121 if (!xive_end_is_valid(end)) { 1122 return; 1123 } 1124 1125 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64 1126 "% 6d/%5d ^%d", end_idx, 1127 xive_end_is_valid(end) ? 'v' : '-', 1128 xive_end_is_enqueue(end) ? 'q' : '-', 1129 xive_end_is_notify(end) ? 'n' : '-', 1130 xive_end_is_backlog(end) ? 'b' : '-', 1131 xive_end_is_escalate(end) ? 'e' : '-', 1132 priority, nvt, qaddr_base, qindex, qentries, qgen); 1133 1134 xive_end_queue_pic_print_info(end, 6, mon); 1135 monitor_printf(mon, "]\n"); 1136 } 1137 1138 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1139 { 1140 uint64_t qaddr_base = xive_end_qaddr(end); 1141 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1142 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1143 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1144 1145 uint64_t qaddr = qaddr_base + (qindex << 2); 1146 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1147 uint32_t qentries = 1 << (qsize + 10); 1148 1149 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { 1150 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1151 HWADDR_PRIx "\n", qaddr); 1152 return; 1153 } 1154 1155 qindex = (qindex + 1) & (qentries - 1); 1156 if (qindex == 0) { 1157 qgen ^= 1; 1158 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1159 } 1160 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1161 } 1162 1163 /* 1164 * XIVE Router (aka. Virtualization Controller or IVRE) 1165 */ 1166 1167 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1168 XiveEAS *eas) 1169 { 1170 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1171 1172 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1173 } 1174 1175 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1176 XiveEND *end) 1177 { 1178 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1179 1180 return xrc->get_end(xrtr, end_blk, end_idx, end); 1181 } 1182 1183 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1184 XiveEND *end, uint8_t word_number) 1185 { 1186 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1187 1188 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1189 } 1190 1191 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1192 XiveNVT *nvt) 1193 { 1194 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1195 1196 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1197 } 1198 1199 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1200 XiveNVT *nvt, uint8_t word_number) 1201 { 1202 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1203 1204 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1205 } 1206 1207 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs) 1208 { 1209 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1210 1211 return xrc->get_tctx(xrtr, cs); 1212 } 1213 1214 /* 1215 * By default on P9, the HW CAM line (23bits) is hardwired to : 1216 * 1217 * 0x000||0b1||4Bit chip number||7Bit Thread number. 1218 * 1219 * When the block grouping is enabled, the CAM line is changed to : 1220 * 1221 * 4Bit chip number||0x001||7Bit Thread number. 1222 */ 1223 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid) 1224 { 1225 return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f); 1226 } 1227 1228 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx, 1229 uint8_t nvt_blk, uint32_t nvt_idx) 1230 { 1231 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1232 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1233 1234 return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) == 1235 hw_cam_line(nvt_blk, nvt_idx); 1236 } 1237 1238 /* 1239 * The thread context register words are in big-endian format. 1240 */ 1241 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format, 1242 uint8_t nvt_blk, uint32_t nvt_idx, 1243 bool cam_ignore, uint32_t logic_serv) 1244 { 1245 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1246 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1247 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1248 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1249 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1250 1251 /* 1252 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1253 * identifier are ignored in the "CAM" match. 1254 */ 1255 1256 if (format == 0) { 1257 if (cam_ignore == true) { 1258 /* 1259 * F=0 & i=1: Logical server notification (bits ignored at 1260 * the end of the NVT identifier) 1261 */ 1262 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1263 nvt_blk, nvt_idx); 1264 return -1; 1265 } 1266 1267 /* F=0 & i=0: Specific NVT notification */ 1268 1269 /* PHYS ring */ 1270 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1271 xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) { 1272 return TM_QW3_HV_PHYS; 1273 } 1274 1275 /* HV POOL ring */ 1276 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1277 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1278 return TM_QW2_HV_POOL; 1279 } 1280 1281 /* OS ring */ 1282 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1283 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1284 return TM_QW1_OS; 1285 } 1286 } else { 1287 /* F=1 : User level Event-Based Branch (EBB) notification */ 1288 1289 /* USER ring */ 1290 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1291 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1292 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1293 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1294 return TM_QW0_USER; 1295 } 1296 } 1297 return -1; 1298 } 1299 1300 typedef struct XiveTCTXMatch { 1301 XiveTCTX *tctx; 1302 uint8_t ring; 1303 } XiveTCTXMatch; 1304 1305 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format, 1306 uint8_t nvt_blk, uint32_t nvt_idx, 1307 bool cam_ignore, uint8_t priority, 1308 uint32_t logic_serv, XiveTCTXMatch *match) 1309 { 1310 CPUState *cs; 1311 1312 /* 1313 * TODO (PowerNV): handle chip_id overwrite of block field for 1314 * hardwired CAM compares 1315 */ 1316 1317 CPU_FOREACH(cs) { 1318 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs); 1319 int ring; 1320 1321 /* 1322 * HW checks that the CPU is enabled in the Physical Thread 1323 * Enable Register (PTER). 1324 */ 1325 1326 /* 1327 * Check the thread context CAM lines and record matches. We 1328 * will handle CPU exception delivery later 1329 */ 1330 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx, 1331 cam_ignore, logic_serv); 1332 /* 1333 * Save the context and follow on to catch duplicates, that we 1334 * don't support yet. 1335 */ 1336 if (ring != -1) { 1337 if (match->tctx) { 1338 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread " 1339 "context NVT %x/%x\n", nvt_blk, nvt_idx); 1340 return false; 1341 } 1342 1343 match->ring = ring; 1344 match->tctx = tctx; 1345 } 1346 } 1347 1348 if (!match->tctx) { 1349 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n", 1350 nvt_blk, nvt_idx); 1351 return false; 1352 } 1353 1354 return true; 1355 } 1356 1357 /* 1358 * This is our simple Xive Presenter Engine model. It is merged in the 1359 * Router as it does not require an extra object. 1360 * 1361 * It receives notification requests sent by the IVRE to find one 1362 * matching NVT (or more) dispatched on the processor threads. In case 1363 * of a single NVT notification, the process is abreviated and the 1364 * thread is signaled if a match is found. In case of a logical server 1365 * notification (bits ignored at the end of the NVT identifier), the 1366 * IVPE and IVRE select a winning thread using different filters. This 1367 * involves 2 or 3 exchanges on the PowerBus that the model does not 1368 * support. 1369 * 1370 * The parameters represent what is sent on the PowerBus 1371 */ 1372 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format, 1373 uint8_t nvt_blk, uint32_t nvt_idx, 1374 bool cam_ignore, uint8_t priority, 1375 uint32_t logic_serv) 1376 { 1377 XiveNVT nvt; 1378 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1379 bool found; 1380 1381 /* NVT cache lookup */ 1382 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1383 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1384 nvt_blk, nvt_idx); 1385 return; 1386 } 1387 1388 if (!xive_nvt_is_valid(&nvt)) { 1389 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1390 nvt_blk, nvt_idx); 1391 return; 1392 } 1393 1394 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore, 1395 priority, logic_serv, &match); 1396 if (found) { 1397 ipb_update(&match.tctx->regs[match.ring], priority); 1398 xive_tctx_notify(match.tctx, match.ring); 1399 return; 1400 } 1401 1402 /* Record the IPB in the associated NVT structure */ 1403 ipb_update((uint8_t *) &nvt.w4, priority); 1404 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1405 1406 /* 1407 * If no matching NVT is dispatched on a HW thread : 1408 * - update the NVT structure if backlog is activated 1409 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is 1410 * activated 1411 */ 1412 } 1413 1414 /* 1415 * An END trigger can come from an event trigger (IPI or HW) or from 1416 * another chip. We don't model the PowerBus but the END trigger 1417 * message has the same parameters than in the function below. 1418 */ 1419 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1420 uint32_t end_idx, uint32_t end_data) 1421 { 1422 XiveEND end; 1423 uint8_t priority; 1424 uint8_t format; 1425 1426 /* END cache lookup */ 1427 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1428 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1429 end_idx); 1430 return; 1431 } 1432 1433 if (!xive_end_is_valid(&end)) { 1434 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1435 end_blk, end_idx); 1436 return; 1437 } 1438 1439 if (xive_end_is_enqueue(&end)) { 1440 xive_end_enqueue(&end, end_data); 1441 /* Enqueuing event data modifies the EQ toggle and index */ 1442 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1443 } 1444 1445 /* 1446 * The W7 format depends on the F bit in W6. It defines the type 1447 * of the notification : 1448 * 1449 * F=0 : single or multiple NVT notification 1450 * F=1 : User level Event-Based Branch (EBB) notification, no 1451 * priority 1452 */ 1453 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1454 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1455 1456 /* The END is masked */ 1457 if (format == 0 && priority == 0xff) { 1458 return; 1459 } 1460 1461 /* 1462 * Check the END ESn (Event State Buffer for notification) for 1463 * even futher coalescing in the Router 1464 */ 1465 if (!xive_end_is_notify(&end)) { 1466 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1); 1467 bool notify = xive_esb_trigger(&pq); 1468 1469 if (pq != xive_get_field32(END_W1_ESn, end.w1)) { 1470 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq); 1471 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1472 } 1473 1474 /* ESn[Q]=1 : end of notification */ 1475 if (!notify) { 1476 return; 1477 } 1478 } 1479 1480 /* 1481 * Follows IVPE notification 1482 */ 1483 xive_presenter_notify(xrtr, format, 1484 xive_get_field32(END_W6_NVT_BLOCK, end.w6), 1485 xive_get_field32(END_W6_NVT_INDEX, end.w6), 1486 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1487 priority, 1488 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1489 1490 /* TODO: Auto EOI. */ 1491 } 1492 1493 void xive_router_notify(XiveNotifier *xn, uint32_t lisn) 1494 { 1495 XiveRouter *xrtr = XIVE_ROUTER(xn); 1496 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn); 1497 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn); 1498 XiveEAS eas; 1499 1500 /* EAS cache lookup */ 1501 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1502 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1503 return; 1504 } 1505 1506 /* 1507 * The IVRE checks the State Bit Cache at this point. We skip the 1508 * SBC lookup because the state bits of the sources are modeled 1509 * internally in QEMU. 1510 */ 1511 1512 if (!xive_eas_is_valid(&eas)) { 1513 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1514 return; 1515 } 1516 1517 if (xive_eas_is_masked(&eas)) { 1518 /* Notification completed */ 1519 return; 1520 } 1521 1522 /* 1523 * The event trigger becomes an END trigger 1524 */ 1525 xive_router_end_notify(xrtr, 1526 xive_get_field64(EAS_END_BLOCK, eas.w), 1527 xive_get_field64(EAS_END_INDEX, eas.w), 1528 xive_get_field64(EAS_END_DATA, eas.w)); 1529 } 1530 1531 static void xive_router_class_init(ObjectClass *klass, void *data) 1532 { 1533 DeviceClass *dc = DEVICE_CLASS(klass); 1534 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1535 1536 dc->desc = "XIVE Router Engine"; 1537 xnc->notify = xive_router_notify; 1538 } 1539 1540 static const TypeInfo xive_router_info = { 1541 .name = TYPE_XIVE_ROUTER, 1542 .parent = TYPE_SYS_BUS_DEVICE, 1543 .abstract = true, 1544 .class_size = sizeof(XiveRouterClass), 1545 .class_init = xive_router_class_init, 1546 .interfaces = (InterfaceInfo[]) { 1547 { TYPE_XIVE_NOTIFIER }, 1548 { } 1549 } 1550 }; 1551 1552 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1553 { 1554 if (!xive_eas_is_valid(eas)) { 1555 return; 1556 } 1557 1558 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1559 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1560 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1561 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1562 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1563 } 1564 1565 /* 1566 * END ESB MMIO loads 1567 */ 1568 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1569 { 1570 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1571 uint32_t offset = addr & 0xFFF; 1572 uint8_t end_blk; 1573 uint32_t end_idx; 1574 XiveEND end; 1575 uint32_t end_esmask; 1576 uint8_t pq; 1577 uint64_t ret = -1; 1578 1579 end_blk = xsrc->block_id; 1580 end_idx = addr >> (xsrc->esb_shift + 1); 1581 1582 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1583 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1584 end_idx); 1585 return -1; 1586 } 1587 1588 if (!xive_end_is_valid(&end)) { 1589 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1590 end_blk, end_idx); 1591 return -1; 1592 } 1593 1594 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1595 pq = xive_get_field32(end_esmask, end.w1); 1596 1597 switch (offset) { 1598 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1599 ret = xive_esb_eoi(&pq); 1600 1601 /* Forward the source event notification for routing ?? */ 1602 break; 1603 1604 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1605 ret = pq; 1606 break; 1607 1608 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1609 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1610 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1611 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1612 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1613 break; 1614 default: 1615 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1616 offset); 1617 return -1; 1618 } 1619 1620 if (pq != xive_get_field32(end_esmask, end.w1)) { 1621 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1622 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1623 } 1624 1625 return ret; 1626 } 1627 1628 /* 1629 * END ESB MMIO stores are invalid 1630 */ 1631 static void xive_end_source_write(void *opaque, hwaddr addr, 1632 uint64_t value, unsigned size) 1633 { 1634 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1635 HWADDR_PRIx"\n", addr); 1636 } 1637 1638 static const MemoryRegionOps xive_end_source_ops = { 1639 .read = xive_end_source_read, 1640 .write = xive_end_source_write, 1641 .endianness = DEVICE_BIG_ENDIAN, 1642 .valid = { 1643 .min_access_size = 8, 1644 .max_access_size = 8, 1645 }, 1646 .impl = { 1647 .min_access_size = 8, 1648 .max_access_size = 8, 1649 }, 1650 }; 1651 1652 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1653 { 1654 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1655 Object *obj; 1656 Error *local_err = NULL; 1657 1658 obj = object_property_get_link(OBJECT(dev), "xive", &local_err); 1659 if (!obj) { 1660 error_propagate(errp, local_err); 1661 error_prepend(errp, "required link 'xive' not found: "); 1662 return; 1663 } 1664 1665 xsrc->xrtr = XIVE_ROUTER(obj); 1666 1667 if (!xsrc->nr_ends) { 1668 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1669 return; 1670 } 1671 1672 if (xsrc->esb_shift != XIVE_ESB_4K && 1673 xsrc->esb_shift != XIVE_ESB_64K) { 1674 error_setg(errp, "Invalid ESB shift setting"); 1675 return; 1676 } 1677 1678 /* 1679 * Each END is assigned an even/odd pair of MMIO pages, the even page 1680 * manages the ESn field while the odd page manages the ESe field. 1681 */ 1682 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1683 &xive_end_source_ops, xsrc, "xive.end", 1684 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1685 } 1686 1687 static Property xive_end_source_properties[] = { 1688 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0), 1689 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 1690 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 1691 DEFINE_PROP_END_OF_LIST(), 1692 }; 1693 1694 static void xive_end_source_class_init(ObjectClass *klass, void *data) 1695 { 1696 DeviceClass *dc = DEVICE_CLASS(klass); 1697 1698 dc->desc = "XIVE END Source"; 1699 dc->props = xive_end_source_properties; 1700 dc->realize = xive_end_source_realize; 1701 } 1702 1703 static const TypeInfo xive_end_source_info = { 1704 .name = TYPE_XIVE_END_SOURCE, 1705 .parent = TYPE_DEVICE, 1706 .instance_size = sizeof(XiveENDSource), 1707 .class_init = xive_end_source_class_init, 1708 }; 1709 1710 /* 1711 * XIVE Notifier 1712 */ 1713 static const TypeInfo xive_notifier_info = { 1714 .name = TYPE_XIVE_NOTIFIER, 1715 .parent = TYPE_INTERFACE, 1716 .class_size = sizeof(XiveNotifierClass), 1717 }; 1718 1719 static void xive_register_types(void) 1720 { 1721 type_register_static(&xive_source_info); 1722 type_register_static(&xive_notifier_info); 1723 type_register_static(&xive_router_info); 1724 type_register_static(&xive_end_source_info); 1725 type_register_static(&xive_tctx_info); 1726 } 1727 1728 type_init(xive_register_types) 1729