1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive_regs.h" 24 #include "trace.h" 25 26 /* 27 * XIVE Thread Interrupt Management context 28 */ 29 30 /* 31 * Convert a priority number to an Interrupt Pending Buffer (IPB) 32 * register, which indicates a pending interrupt at the priority 33 * corresponding to the bit number 34 */ 35 static uint8_t priority_to_ipb(uint8_t priority) 36 { 37 return priority > XIVE_PRIORITY_MAX ? 38 0 : 1 << (XIVE_PRIORITY_MAX - priority); 39 } 40 41 /* 42 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 43 * Interrupt Priority Register (PIPR), which contains the priority of 44 * the most favored pending notification. 45 */ 46 static uint8_t ipb_to_pipr(uint8_t ibp) 47 { 48 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 49 } 50 51 static uint8_t exception_mask(uint8_t ring) 52 { 53 switch (ring) { 54 case TM_QW1_OS: 55 return TM_QW1_NSR_EO; 56 case TM_QW3_HV_PHYS: 57 return TM_QW3_NSR_HE; 58 default: 59 g_assert_not_reached(); 60 } 61 } 62 63 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 64 { 65 switch (ring) { 66 case TM_QW0_USER: 67 return 0; /* Not supported */ 68 case TM_QW1_OS: 69 return tctx->os_output; 70 case TM_QW2_HV_POOL: 71 case TM_QW3_HV_PHYS: 72 return tctx->hv_output; 73 default: 74 return 0; 75 } 76 } 77 78 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 79 { 80 uint8_t *regs = &tctx->regs[ring]; 81 uint8_t nsr = regs[TM_NSR]; 82 uint8_t mask = exception_mask(ring); 83 84 qemu_irq_lower(xive_tctx_output(tctx, ring)); 85 86 if (regs[TM_NSR] & mask) { 87 uint8_t cppr = regs[TM_PIPR]; 88 89 regs[TM_CPPR] = cppr; 90 91 /* Reset the pending buffer bit */ 92 regs[TM_IPB] &= ~priority_to_ipb(cppr); 93 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 94 95 /* Drop Exception bit */ 96 regs[TM_NSR] &= ~mask; 97 98 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 99 regs[TM_IPB], regs[TM_PIPR], 100 regs[TM_CPPR], regs[TM_NSR]); 101 } 102 103 return (nsr << 8) | regs[TM_CPPR]; 104 } 105 106 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 107 { 108 uint8_t *regs = &tctx->regs[ring]; 109 110 if (regs[TM_PIPR] < regs[TM_CPPR]) { 111 switch (ring) { 112 case TM_QW1_OS: 113 regs[TM_NSR] |= TM_QW1_NSR_EO; 114 break; 115 case TM_QW3_HV_PHYS: 116 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 117 break; 118 default: 119 g_assert_not_reached(); 120 } 121 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 122 regs[TM_IPB], regs[TM_PIPR], 123 regs[TM_CPPR], regs[TM_NSR]); 124 qemu_irq_raise(xive_tctx_output(tctx, ring)); 125 } 126 } 127 128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 129 { 130 uint8_t *regs = &tctx->regs[ring]; 131 132 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 133 regs[TM_IPB], regs[TM_PIPR], 134 cppr, regs[TM_NSR]); 135 136 if (cppr > XIVE_PRIORITY_MAX) { 137 cppr = 0xff; 138 } 139 140 tctx->regs[ring + TM_CPPR] = cppr; 141 142 /* CPPR has changed, check if we need to raise a pending exception */ 143 xive_tctx_notify(tctx, ring); 144 } 145 146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 147 { 148 uint8_t *regs = &tctx->regs[ring]; 149 150 regs[TM_IPB] |= ipb; 151 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 152 xive_tctx_notify(tctx, ring); 153 } 154 155 static inline uint32_t xive_tctx_word2(uint8_t *ring) 156 { 157 return *((uint32_t *) &ring[TM_WORD2]); 158 } 159 160 /* 161 * XIVE Thread Interrupt Management Area (TIMA) 162 */ 163 164 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 165 hwaddr offset, uint64_t value, unsigned size) 166 { 167 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 168 } 169 170 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 171 hwaddr offset, unsigned size) 172 { 173 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 174 } 175 176 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 177 hwaddr offset, unsigned size) 178 { 179 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 180 uint32_t qw2w2; 181 182 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 183 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 184 return qw2w2; 185 } 186 187 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 188 uint64_t value, unsigned size) 189 { 190 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 191 } 192 193 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 194 hwaddr offset, unsigned size) 195 { 196 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 197 } 198 199 /* 200 * Define an access map for each page of the TIMA that we will use in 201 * the memory region ops to filter values when doing loads and stores 202 * of raw registers values 203 * 204 * Registers accessibility bits : 205 * 206 * 0x0 - no access 207 * 0x1 - write only 208 * 0x2 - read only 209 * 0x3 - read/write 210 */ 211 212 static const uint8_t xive_tm_hw_view[] = { 213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 214 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 215 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 216 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 217 }; 218 219 static const uint8_t xive_tm_hv_view[] = { 220 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 221 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 222 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 223 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 224 }; 225 226 static const uint8_t xive_tm_os_view[] = { 227 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 228 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 229 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 231 }; 232 233 static const uint8_t xive_tm_user_view[] = { 234 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 236 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 237 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 238 }; 239 240 /* 241 * Overall TIMA access map for the thread interrupt management context 242 * registers 243 */ 244 static const uint8_t *xive_tm_views[] = { 245 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 246 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 247 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 248 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 249 }; 250 251 /* 252 * Computes a register access mask for a given offset in the TIMA 253 */ 254 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 255 { 256 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 257 uint8_t reg_offset = offset & 0x3F; 258 uint8_t reg_mask = write ? 0x1 : 0x2; 259 uint64_t mask = 0x0; 260 int i; 261 262 for (i = 0; i < size; i++) { 263 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 264 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 265 } 266 } 267 268 return mask; 269 } 270 271 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 272 unsigned size) 273 { 274 uint8_t ring_offset = offset & 0x30; 275 uint8_t reg_offset = offset & 0x3F; 276 uint64_t mask = xive_tm_mask(offset, size, true); 277 int i; 278 279 /* 280 * Only 4 or 8 bytes stores are allowed and the User ring is 281 * excluded 282 */ 283 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 284 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 285 HWADDR_PRIx"\n", offset); 286 return; 287 } 288 289 /* 290 * Use the register offset for the raw values and filter out 291 * reserved values 292 */ 293 for (i = 0; i < size; i++) { 294 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 295 if (byte_mask) { 296 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 297 byte_mask; 298 } 299 } 300 } 301 302 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 303 { 304 uint8_t ring_offset = offset & 0x30; 305 uint8_t reg_offset = offset & 0x3F; 306 uint64_t mask = xive_tm_mask(offset, size, false); 307 uint64_t ret; 308 int i; 309 310 /* 311 * Only 4 or 8 bytes loads are allowed and the User ring is 312 * excluded 313 */ 314 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 315 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 316 HWADDR_PRIx"\n", offset); 317 return -1; 318 } 319 320 /* Use the register offset for the raw values */ 321 ret = 0; 322 for (i = 0; i < size; i++) { 323 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 324 } 325 326 /* filter out reserved values */ 327 return ret & mask; 328 } 329 330 /* 331 * The TM context is mapped twice within each page. Stores and loads 332 * to the first mapping below 2K write and read the specified values 333 * without modification. The second mapping above 2K performs specific 334 * state changes (side effects) in addition to setting/returning the 335 * interrupt management area context of the processor thread. 336 */ 337 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 338 hwaddr offset, unsigned size) 339 { 340 return xive_tctx_accept(tctx, TM_QW1_OS); 341 } 342 343 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 344 hwaddr offset, uint64_t value, unsigned size) 345 { 346 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 347 } 348 349 /* 350 * Adjust the IPB to allow a CPU to process event queues of other 351 * priorities during one physical interrupt cycle. 352 */ 353 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 354 hwaddr offset, uint64_t value, unsigned size) 355 { 356 xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff)); 357 } 358 359 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 360 uint32_t *nvt_idx, bool *vo) 361 { 362 if (nvt_blk) { 363 *nvt_blk = xive_nvt_blk(cam); 364 } 365 if (nvt_idx) { 366 *nvt_idx = xive_nvt_idx(cam); 367 } 368 if (vo) { 369 *vo = !!(cam & TM_QW1W2_VO); 370 } 371 } 372 373 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 374 uint32_t *nvt_idx, bool *vo) 375 { 376 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 377 uint32_t cam = be32_to_cpu(qw1w2); 378 379 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 380 return qw1w2; 381 } 382 383 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 384 { 385 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 386 } 387 388 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 389 hwaddr offset, unsigned size) 390 { 391 uint32_t qw1w2; 392 uint32_t qw1w2_new; 393 uint8_t nvt_blk; 394 uint32_t nvt_idx; 395 bool vo; 396 397 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 398 399 if (!vo) { 400 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 401 nvt_blk, nvt_idx); 402 } 403 404 /* Invalidate CAM line */ 405 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 406 xive_tctx_set_os_cam(tctx, qw1w2_new); 407 return qw1w2; 408 } 409 410 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 411 uint8_t nvt_blk, uint32_t nvt_idx) 412 { 413 XiveNVT nvt; 414 uint8_t ipb; 415 416 /* 417 * Grab the associated NVT to pull the pending bits, and merge 418 * them with the IPB of the thread interrupt context registers 419 */ 420 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 421 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 422 nvt_blk, nvt_idx); 423 return; 424 } 425 426 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 427 428 if (ipb) { 429 /* Reset the NVT value */ 430 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 431 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 432 433 /* Merge in current context */ 434 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 435 } 436 } 437 438 /* 439 * Updating the OS CAM line can trigger a resend of interrupt 440 */ 441 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 442 hwaddr offset, uint64_t value, unsigned size) 443 { 444 uint32_t cam = value; 445 uint32_t qw1w2 = cpu_to_be32(cam); 446 uint8_t nvt_blk; 447 uint32_t nvt_idx; 448 bool vo; 449 450 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 451 452 /* First update the registers */ 453 xive_tctx_set_os_cam(tctx, qw1w2); 454 455 /* Check the interrupt pending bits */ 456 if (vo) { 457 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 458 } 459 } 460 461 /* 462 * Define a mapping of "special" operations depending on the TIMA page 463 * offset and the size of the operation. 464 */ 465 typedef struct XiveTmOp { 466 uint8_t page_offset; 467 uint32_t op_offset; 468 unsigned size; 469 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 470 hwaddr offset, 471 uint64_t value, unsigned size); 472 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 473 unsigned size); 474 } XiveTmOp; 475 476 static const XiveTmOp xive_tm_operations[] = { 477 /* 478 * MMIOs below 2K : raw values and special operations without side 479 * effects 480 */ 481 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 482 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 483 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 484 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 485 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 486 487 /* MMIOs above 2K : special operations with side effects */ 488 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 489 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 490 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 491 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 492 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 493 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 494 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 495 }; 496 497 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 498 { 499 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 500 uint32_t op_offset = offset & 0xFFF; 501 int i; 502 503 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 504 const XiveTmOp *xto = &xive_tm_operations[i]; 505 506 /* Accesses done from a more privileged TIMA page is allowed */ 507 if (xto->page_offset >= page_offset && 508 xto->op_offset == op_offset && 509 xto->size == size && 510 ((write && xto->write_handler) || (!write && xto->read_handler))) { 511 return xto; 512 } 513 } 514 return NULL; 515 } 516 517 /* 518 * TIMA MMIO handlers 519 */ 520 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 521 uint64_t value, unsigned size) 522 { 523 const XiveTmOp *xto; 524 525 trace_xive_tctx_tm_write(offset, size, value); 526 527 /* 528 * TODO: check V bit in Q[0-3]W2 529 */ 530 531 /* 532 * First, check for special operations in the 2K region 533 */ 534 if (offset & 0x800) { 535 xto = xive_tm_find_op(offset, size, true); 536 if (!xto) { 537 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 538 "@%"HWADDR_PRIx"\n", offset); 539 } else { 540 xto->write_handler(xptr, tctx, offset, value, size); 541 } 542 return; 543 } 544 545 /* 546 * Then, for special operations in the region below 2K. 547 */ 548 xto = xive_tm_find_op(offset, size, true); 549 if (xto) { 550 xto->write_handler(xptr, tctx, offset, value, size); 551 return; 552 } 553 554 /* 555 * Finish with raw access to the register values 556 */ 557 xive_tm_raw_write(tctx, offset, value, size); 558 } 559 560 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 561 unsigned size) 562 { 563 const XiveTmOp *xto; 564 uint64_t ret; 565 566 /* 567 * TODO: check V bit in Q[0-3]W2 568 */ 569 570 /* 571 * First, check for special operations in the 2K region 572 */ 573 if (offset & 0x800) { 574 xto = xive_tm_find_op(offset, size, false); 575 if (!xto) { 576 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 577 "@%"HWADDR_PRIx"\n", offset); 578 return -1; 579 } 580 ret = xto->read_handler(xptr, tctx, offset, size); 581 goto out; 582 } 583 584 /* 585 * Then, for special operations in the region below 2K. 586 */ 587 xto = xive_tm_find_op(offset, size, false); 588 if (xto) { 589 ret = xto->read_handler(xptr, tctx, offset, size); 590 goto out; 591 } 592 593 /* 594 * Finish with raw access to the register values 595 */ 596 ret = xive_tm_raw_read(tctx, offset, size); 597 out: 598 trace_xive_tctx_tm_read(offset, size, ret); 599 return ret; 600 } 601 602 static char *xive_tctx_ring_print(uint8_t *ring) 603 { 604 uint32_t w2 = xive_tctx_word2(ring); 605 606 return g_strdup_printf("%02x %02x %02x %02x %02x " 607 "%02x %02x %02x %08x", 608 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 609 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 610 be32_to_cpu(w2)); 611 } 612 613 static const char * const xive_tctx_ring_names[] = { 614 "USER", "OS", "POOL", "PHYS", 615 }; 616 617 /* 618 * kvm_irqchip_in_kernel() will cause the compiler to turn this 619 * info a nop if CONFIG_KVM isn't defined. 620 */ 621 #define xive_in_kernel(xptr) \ 622 (kvm_irqchip_in_kernel() && \ 623 ({ \ 624 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 625 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 626 })) 627 628 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 629 { 630 int cpu_index; 631 int i; 632 633 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 634 * are hot plugged or unplugged. 635 */ 636 if (!tctx) { 637 return; 638 } 639 640 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 641 642 if (xive_in_kernel(tctx->xptr)) { 643 Error *local_err = NULL; 644 645 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 646 if (local_err) { 647 error_report_err(local_err); 648 return; 649 } 650 } 651 652 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 653 " W2\n", cpu_index); 654 655 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 656 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 657 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 658 xive_tctx_ring_names[i], s); 659 g_free(s); 660 } 661 } 662 663 void xive_tctx_reset(XiveTCTX *tctx) 664 { 665 memset(tctx->regs, 0, sizeof(tctx->regs)); 666 667 /* Set some defaults */ 668 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 669 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 670 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 671 672 /* 673 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 674 * CPPR is first set. 675 */ 676 tctx->regs[TM_QW1_OS + TM_PIPR] = 677 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 678 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 679 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 680 } 681 682 static void xive_tctx_realize(DeviceState *dev, Error **errp) 683 { 684 XiveTCTX *tctx = XIVE_TCTX(dev); 685 PowerPCCPU *cpu; 686 CPUPPCState *env; 687 688 assert(tctx->cs); 689 assert(tctx->xptr); 690 691 cpu = POWERPC_CPU(tctx->cs); 692 env = &cpu->env; 693 switch (PPC_INPUT(env)) { 694 case PPC_FLAGS_INPUT_POWER9: 695 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT]; 696 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT]; 697 break; 698 699 default: 700 error_setg(errp, "XIVE interrupt controller does not support " 701 "this CPU bus model"); 702 return; 703 } 704 705 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 706 if (xive_in_kernel(tctx->xptr)) { 707 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 708 return; 709 } 710 } 711 } 712 713 static int vmstate_xive_tctx_pre_save(void *opaque) 714 { 715 XiveTCTX *tctx = XIVE_TCTX(opaque); 716 Error *local_err = NULL; 717 int ret; 718 719 if (xive_in_kernel(tctx->xptr)) { 720 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 721 if (ret < 0) { 722 error_report_err(local_err); 723 return ret; 724 } 725 } 726 727 return 0; 728 } 729 730 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 731 { 732 XiveTCTX *tctx = XIVE_TCTX(opaque); 733 Error *local_err = NULL; 734 int ret; 735 736 if (xive_in_kernel(tctx->xptr)) { 737 /* 738 * Required for hotplugged CPU, for which the state comes 739 * after all states of the machine. 740 */ 741 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 742 if (ret < 0) { 743 error_report_err(local_err); 744 return ret; 745 } 746 } 747 748 return 0; 749 } 750 751 static const VMStateDescription vmstate_xive_tctx = { 752 .name = TYPE_XIVE_TCTX, 753 .version_id = 1, 754 .minimum_version_id = 1, 755 .pre_save = vmstate_xive_tctx_pre_save, 756 .post_load = vmstate_xive_tctx_post_load, 757 .fields = (VMStateField[]) { 758 VMSTATE_BUFFER(regs, XiveTCTX), 759 VMSTATE_END_OF_LIST() 760 }, 761 }; 762 763 static Property xive_tctx_properties[] = { 764 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 765 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 766 XivePresenter *), 767 DEFINE_PROP_END_OF_LIST(), 768 }; 769 770 static void xive_tctx_class_init(ObjectClass *klass, void *data) 771 { 772 DeviceClass *dc = DEVICE_CLASS(klass); 773 774 dc->desc = "XIVE Interrupt Thread Context"; 775 dc->realize = xive_tctx_realize; 776 dc->vmsd = &vmstate_xive_tctx; 777 device_class_set_props(dc, xive_tctx_properties); 778 /* 779 * Reason: part of XIVE interrupt controller, needs to be wired up 780 * by xive_tctx_create(). 781 */ 782 dc->user_creatable = false; 783 } 784 785 static const TypeInfo xive_tctx_info = { 786 .name = TYPE_XIVE_TCTX, 787 .parent = TYPE_DEVICE, 788 .instance_size = sizeof(XiveTCTX), 789 .class_init = xive_tctx_class_init, 790 }; 791 792 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 793 { 794 Object *obj; 795 796 obj = object_new(TYPE_XIVE_TCTX); 797 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 798 object_unref(obj); 799 object_property_set_link(obj, "cpu", cpu, &error_abort); 800 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 801 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 802 object_unparent(obj); 803 return NULL; 804 } 805 return obj; 806 } 807 808 void xive_tctx_destroy(XiveTCTX *tctx) 809 { 810 Object *obj = OBJECT(tctx); 811 812 object_unparent(obj); 813 } 814 815 /* 816 * XIVE ESB helpers 817 */ 818 819 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 820 { 821 uint8_t old_pq = *pq & 0x3; 822 823 *pq &= ~0x3; 824 *pq |= value & 0x3; 825 826 return old_pq; 827 } 828 829 static bool xive_esb_trigger(uint8_t *pq) 830 { 831 uint8_t old_pq = *pq & 0x3; 832 833 switch (old_pq) { 834 case XIVE_ESB_RESET: 835 xive_esb_set(pq, XIVE_ESB_PENDING); 836 return true; 837 case XIVE_ESB_PENDING: 838 case XIVE_ESB_QUEUED: 839 xive_esb_set(pq, XIVE_ESB_QUEUED); 840 return false; 841 case XIVE_ESB_OFF: 842 xive_esb_set(pq, XIVE_ESB_OFF); 843 return false; 844 default: 845 g_assert_not_reached(); 846 } 847 } 848 849 static bool xive_esb_eoi(uint8_t *pq) 850 { 851 uint8_t old_pq = *pq & 0x3; 852 853 switch (old_pq) { 854 case XIVE_ESB_RESET: 855 case XIVE_ESB_PENDING: 856 xive_esb_set(pq, XIVE_ESB_RESET); 857 return false; 858 case XIVE_ESB_QUEUED: 859 xive_esb_set(pq, XIVE_ESB_PENDING); 860 return true; 861 case XIVE_ESB_OFF: 862 xive_esb_set(pq, XIVE_ESB_OFF); 863 return false; 864 default: 865 g_assert_not_reached(); 866 } 867 } 868 869 /* 870 * XIVE Interrupt Source (or IVSE) 871 */ 872 873 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 874 { 875 assert(srcno < xsrc->nr_irqs); 876 877 return xsrc->status[srcno] & 0x3; 878 } 879 880 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 881 { 882 assert(srcno < xsrc->nr_irqs); 883 884 return xive_esb_set(&xsrc->status[srcno], pq); 885 } 886 887 /* 888 * Returns whether the event notification should be forwarded. 889 */ 890 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 891 { 892 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 893 894 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 895 896 switch (old_pq) { 897 case XIVE_ESB_RESET: 898 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 899 return true; 900 default: 901 return false; 902 } 903 } 904 905 /* 906 * Returns whether the event notification should be forwarded. 907 */ 908 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 909 { 910 bool ret; 911 912 assert(srcno < xsrc->nr_irqs); 913 914 ret = xive_esb_trigger(&xsrc->status[srcno]); 915 916 if (xive_source_irq_is_lsi(xsrc, srcno) && 917 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 918 qemu_log_mask(LOG_GUEST_ERROR, 919 "XIVE: queued an event on LSI IRQ %d\n", srcno); 920 } 921 922 return ret; 923 } 924 925 /* 926 * Returns whether the event notification should be forwarded. 927 */ 928 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 929 { 930 bool ret; 931 932 assert(srcno < xsrc->nr_irqs); 933 934 ret = xive_esb_eoi(&xsrc->status[srcno]); 935 936 /* 937 * LSI sources do not set the Q bit but they can still be 938 * asserted, in which case we should forward a new event 939 * notification 940 */ 941 if (xive_source_irq_is_lsi(xsrc, srcno) && 942 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 943 ret = xive_source_lsi_trigger(xsrc, srcno); 944 } 945 946 return ret; 947 } 948 949 /* 950 * Forward the source event notification to the Router 951 */ 952 static void xive_source_notify(XiveSource *xsrc, int srcno) 953 { 954 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 955 956 if (xnc->notify) { 957 xnc->notify(xsrc->xive, srcno); 958 } 959 } 960 961 /* 962 * In a two pages ESB MMIO setting, even page is the trigger page, odd 963 * page is for management 964 */ 965 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 966 { 967 return !((addr >> shift) & 1); 968 } 969 970 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 971 { 972 return xive_source_esb_has_2page(xsrc) && 973 addr_is_even(addr, xsrc->esb_shift - 1); 974 } 975 976 /* 977 * ESB MMIO loads 978 * Trigger page Management/EOI page 979 * 980 * ESB MMIO setting 2 pages 1 or 2 pages 981 * 982 * 0x000 .. 0x3FF -1 EOI and return 0|1 983 * 0x400 .. 0x7FF -1 EOI and return 0|1 984 * 0x800 .. 0xBFF -1 return PQ 985 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 986 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 987 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 988 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 989 */ 990 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 991 { 992 XiveSource *xsrc = XIVE_SOURCE(opaque); 993 uint32_t offset = addr & 0xFFF; 994 uint32_t srcno = addr >> xsrc->esb_shift; 995 uint64_t ret = -1; 996 997 /* In a two pages ESB MMIO setting, trigger page should not be read */ 998 if (xive_source_is_trigger_page(xsrc, addr)) { 999 qemu_log_mask(LOG_GUEST_ERROR, 1000 "XIVE: invalid load on IRQ %d trigger page at " 1001 "0x%"HWADDR_PRIx"\n", srcno, addr); 1002 return -1; 1003 } 1004 1005 switch (offset) { 1006 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1007 ret = xive_source_esb_eoi(xsrc, srcno); 1008 1009 /* Forward the source event notification for routing */ 1010 if (ret) { 1011 xive_source_notify(xsrc, srcno); 1012 } 1013 break; 1014 1015 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1016 ret = xive_source_esb_get(xsrc, srcno); 1017 break; 1018 1019 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1020 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1021 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1022 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1023 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1024 break; 1025 default: 1026 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1027 offset); 1028 } 1029 1030 trace_xive_source_esb_read(addr, srcno, ret); 1031 1032 return ret; 1033 } 1034 1035 /* 1036 * ESB MMIO stores 1037 * Trigger page Management/EOI page 1038 * 1039 * ESB MMIO setting 2 pages 1 or 2 pages 1040 * 1041 * 0x000 .. 0x3FF Trigger Trigger 1042 * 0x400 .. 0x7FF Trigger EOI 1043 * 0x800 .. 0xBFF Trigger undefined 1044 * 0xC00 .. 0xCFF Trigger PQ=00 1045 * 0xD00 .. 0xDFF Trigger PQ=01 1046 * 0xE00 .. 0xDFF Trigger PQ=10 1047 * 0xF00 .. 0xDFF Trigger PQ=11 1048 */ 1049 static void xive_source_esb_write(void *opaque, hwaddr addr, 1050 uint64_t value, unsigned size) 1051 { 1052 XiveSource *xsrc = XIVE_SOURCE(opaque); 1053 uint32_t offset = addr & 0xFFF; 1054 uint32_t srcno = addr >> xsrc->esb_shift; 1055 bool notify = false; 1056 1057 trace_xive_source_esb_write(addr, srcno, value); 1058 1059 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1060 if (xive_source_is_trigger_page(xsrc, addr)) { 1061 notify = xive_source_esb_trigger(xsrc, srcno); 1062 goto out; 1063 } 1064 1065 switch (offset) { 1066 case 0 ... 0x3FF: 1067 notify = xive_source_esb_trigger(xsrc, srcno); 1068 break; 1069 1070 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1071 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1072 qemu_log_mask(LOG_GUEST_ERROR, 1073 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1074 return; 1075 } 1076 1077 notify = xive_source_esb_eoi(xsrc, srcno); 1078 break; 1079 1080 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1081 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1082 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1083 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1084 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1085 break; 1086 1087 default: 1088 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1089 offset); 1090 return; 1091 } 1092 1093 out: 1094 /* Forward the source event notification for routing */ 1095 if (notify) { 1096 xive_source_notify(xsrc, srcno); 1097 } 1098 } 1099 1100 static const MemoryRegionOps xive_source_esb_ops = { 1101 .read = xive_source_esb_read, 1102 .write = xive_source_esb_write, 1103 .endianness = DEVICE_BIG_ENDIAN, 1104 .valid = { 1105 .min_access_size = 8, 1106 .max_access_size = 8, 1107 }, 1108 .impl = { 1109 .min_access_size = 8, 1110 .max_access_size = 8, 1111 }, 1112 }; 1113 1114 void xive_source_set_irq(void *opaque, int srcno, int val) 1115 { 1116 XiveSource *xsrc = XIVE_SOURCE(opaque); 1117 bool notify = false; 1118 1119 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1120 if (val) { 1121 notify = xive_source_lsi_trigger(xsrc, srcno); 1122 } else { 1123 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 1124 } 1125 } else { 1126 if (val) { 1127 notify = xive_source_esb_trigger(xsrc, srcno); 1128 } 1129 } 1130 1131 /* Forward the source event notification for routing */ 1132 if (notify) { 1133 xive_source_notify(xsrc, srcno); 1134 } 1135 } 1136 1137 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1138 { 1139 int i; 1140 1141 for (i = 0; i < xsrc->nr_irqs; i++) { 1142 uint8_t pq = xive_source_esb_get(xsrc, i); 1143 1144 if (pq == XIVE_ESB_OFF) { 1145 continue; 1146 } 1147 1148 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1149 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1150 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1151 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1152 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' '); 1153 } 1154 } 1155 1156 static void xive_source_reset(void *dev) 1157 { 1158 XiveSource *xsrc = XIVE_SOURCE(dev); 1159 1160 /* Do not clear the LSI bitmap */ 1161 1162 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 1163 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 1164 } 1165 1166 static void xive_source_realize(DeviceState *dev, Error **errp) 1167 { 1168 XiveSource *xsrc = XIVE_SOURCE(dev); 1169 size_t esb_len = xive_source_esb_len(xsrc); 1170 1171 assert(xsrc->xive); 1172 1173 if (!xsrc->nr_irqs) { 1174 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1175 return; 1176 } 1177 1178 if (xsrc->esb_shift != XIVE_ESB_4K && 1179 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1180 xsrc->esb_shift != XIVE_ESB_64K && 1181 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1182 error_setg(errp, "Invalid ESB shift setting"); 1183 return; 1184 } 1185 1186 xsrc->status = g_malloc0(xsrc->nr_irqs); 1187 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1188 1189 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1190 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1191 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1192 esb_len); 1193 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1194 1195 qemu_register_reset(xive_source_reset, dev); 1196 } 1197 1198 static const VMStateDescription vmstate_xive_source = { 1199 .name = TYPE_XIVE_SOURCE, 1200 .version_id = 1, 1201 .minimum_version_id = 1, 1202 .fields = (VMStateField[]) { 1203 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1204 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1205 VMSTATE_END_OF_LIST() 1206 }, 1207 }; 1208 1209 /* 1210 * The default XIVE interrupt source setting for the ESB MMIOs is two 1211 * 64k pages without Store EOI, to be in sync with KVM. 1212 */ 1213 static Property xive_source_properties[] = { 1214 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1215 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1216 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1217 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1218 XiveNotifier *), 1219 DEFINE_PROP_END_OF_LIST(), 1220 }; 1221 1222 static void xive_source_class_init(ObjectClass *klass, void *data) 1223 { 1224 DeviceClass *dc = DEVICE_CLASS(klass); 1225 1226 dc->desc = "XIVE Interrupt Source"; 1227 device_class_set_props(dc, xive_source_properties); 1228 dc->realize = xive_source_realize; 1229 dc->vmsd = &vmstate_xive_source; 1230 /* 1231 * Reason: part of XIVE interrupt controller, needs to be wired up, 1232 * e.g. by spapr_xive_instance_init(). 1233 */ 1234 dc->user_creatable = false; 1235 } 1236 1237 static const TypeInfo xive_source_info = { 1238 .name = TYPE_XIVE_SOURCE, 1239 .parent = TYPE_DEVICE, 1240 .instance_size = sizeof(XiveSource), 1241 .class_init = xive_source_class_init, 1242 }; 1243 1244 /* 1245 * XiveEND helpers 1246 */ 1247 1248 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1249 { 1250 uint64_t qaddr_base = xive_end_qaddr(end); 1251 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1252 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1253 uint32_t qentries = 1 << (qsize + 10); 1254 int i; 1255 1256 /* 1257 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1258 */ 1259 monitor_printf(mon, " [ "); 1260 qindex = (qindex - (width - 1)) & (qentries - 1); 1261 for (i = 0; i < width; i++) { 1262 uint64_t qaddr = qaddr_base + (qindex << 2); 1263 uint32_t qdata = -1; 1264 1265 if (dma_memory_read(&address_space_memory, qaddr, &qdata, 1266 sizeof(qdata))) { 1267 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1268 HWADDR_PRIx "\n", qaddr); 1269 return; 1270 } 1271 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1272 be32_to_cpu(qdata)); 1273 qindex = (qindex + 1) & (qentries - 1); 1274 } 1275 monitor_printf(mon, "]"); 1276 } 1277 1278 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1279 { 1280 uint64_t qaddr_base = xive_end_qaddr(end); 1281 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1282 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1283 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1284 uint32_t qentries = 1 << (qsize + 10); 1285 1286 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1287 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1288 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1289 uint8_t pq; 1290 1291 if (!xive_end_is_valid(end)) { 1292 return; 1293 } 1294 1295 pq = xive_get_field32(END_W1_ESn, end->w1); 1296 1297 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1298 end_idx, 1299 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1300 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1301 xive_end_is_valid(end) ? 'v' : '-', 1302 xive_end_is_enqueue(end) ? 'q' : '-', 1303 xive_end_is_notify(end) ? 'n' : '-', 1304 xive_end_is_backlog(end) ? 'b' : '-', 1305 xive_end_is_escalate(end) ? 'e' : '-', 1306 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1307 xive_end_is_silent_escalation(end) ? 's' : '-', 1308 priority, nvt_blk, nvt_idx); 1309 1310 if (qaddr_base) { 1311 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1312 qaddr_base, qindex, qentries, qgen); 1313 xive_end_queue_pic_print_info(end, 6, mon); 1314 } 1315 monitor_printf(mon, "\n"); 1316 } 1317 1318 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1319 { 1320 uint64_t qaddr_base = xive_end_qaddr(end); 1321 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1322 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1323 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1324 1325 uint64_t qaddr = qaddr_base + (qindex << 2); 1326 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1327 uint32_t qentries = 1 << (qsize + 10); 1328 1329 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) { 1330 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1331 HWADDR_PRIx "\n", qaddr); 1332 return; 1333 } 1334 1335 qindex = (qindex + 1) & (qentries - 1); 1336 if (qindex == 0) { 1337 qgen ^= 1; 1338 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1339 } 1340 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1341 } 1342 1343 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1344 Monitor *mon) 1345 { 1346 XiveEAS *eas = (XiveEAS *) &end->w4; 1347 uint8_t pq; 1348 1349 if (!xive_end_is_escalate(end)) { 1350 return; 1351 } 1352 1353 pq = xive_get_field32(END_W1_ESe, end->w1); 1354 1355 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1356 end_idx, 1357 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1358 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1359 xive_eas_is_valid(eas) ? 'V' : ' ', 1360 xive_eas_is_masked(eas) ? 'M' : ' ', 1361 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1362 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1363 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1364 } 1365 1366 /* 1367 * XIVE Router (aka. Virtualization Controller or IVRE) 1368 */ 1369 1370 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1371 XiveEAS *eas) 1372 { 1373 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1374 1375 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1376 } 1377 1378 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1379 XiveEND *end) 1380 { 1381 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1382 1383 return xrc->get_end(xrtr, end_blk, end_idx, end); 1384 } 1385 1386 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1387 XiveEND *end, uint8_t word_number) 1388 { 1389 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1390 1391 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1392 } 1393 1394 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1395 XiveNVT *nvt) 1396 { 1397 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1398 1399 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1400 } 1401 1402 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1403 XiveNVT *nvt, uint8_t word_number) 1404 { 1405 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1406 1407 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1408 } 1409 1410 static int xive_router_get_block_id(XiveRouter *xrtr) 1411 { 1412 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1413 1414 return xrc->get_block_id(xrtr); 1415 } 1416 1417 static void xive_router_realize(DeviceState *dev, Error **errp) 1418 { 1419 XiveRouter *xrtr = XIVE_ROUTER(dev); 1420 1421 assert(xrtr->xfb); 1422 } 1423 1424 /* 1425 * Encode the HW CAM line in the block group mode format : 1426 * 1427 * chip << 19 | 0000000 0 0001 thread (7Bit) 1428 */ 1429 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1430 { 1431 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1432 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1433 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1434 1435 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1436 } 1437 1438 /* 1439 * The thread context register words are in big-endian format. 1440 */ 1441 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1442 uint8_t format, 1443 uint8_t nvt_blk, uint32_t nvt_idx, 1444 bool cam_ignore, uint32_t logic_serv) 1445 { 1446 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1447 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1448 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1449 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1450 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1451 1452 /* 1453 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1454 * identifier are ignored in the "CAM" match. 1455 */ 1456 1457 if (format == 0) { 1458 if (cam_ignore == true) { 1459 /* 1460 * F=0 & i=1: Logical server notification (bits ignored at 1461 * the end of the NVT identifier) 1462 */ 1463 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1464 nvt_blk, nvt_idx); 1465 return -1; 1466 } 1467 1468 /* F=0 & i=0: Specific NVT notification */ 1469 1470 /* PHYS ring */ 1471 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1472 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1473 return TM_QW3_HV_PHYS; 1474 } 1475 1476 /* HV POOL ring */ 1477 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1478 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1479 return TM_QW2_HV_POOL; 1480 } 1481 1482 /* OS ring */ 1483 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1484 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1485 return TM_QW1_OS; 1486 } 1487 } else { 1488 /* F=1 : User level Event-Based Branch (EBB) notification */ 1489 1490 /* USER ring */ 1491 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1492 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1493 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1494 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1495 return TM_QW0_USER; 1496 } 1497 } 1498 return -1; 1499 } 1500 1501 /* 1502 * This is our simple Xive Presenter Engine model. It is merged in the 1503 * Router as it does not require an extra object. 1504 * 1505 * It receives notification requests sent by the IVRE to find one 1506 * matching NVT (or more) dispatched on the processor threads. In case 1507 * of a single NVT notification, the process is abreviated and the 1508 * thread is signaled if a match is found. In case of a logical server 1509 * notification (bits ignored at the end of the NVT identifier), the 1510 * IVPE and IVRE select a winning thread using different filters. This 1511 * involves 2 or 3 exchanges on the PowerBus that the model does not 1512 * support. 1513 * 1514 * The parameters represent what is sent on the PowerBus 1515 */ 1516 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1517 uint8_t nvt_blk, uint32_t nvt_idx, 1518 bool cam_ignore, uint8_t priority, 1519 uint32_t logic_serv) 1520 { 1521 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1522 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1523 int count; 1524 1525 /* 1526 * Ask the machine to scan the interrupt controllers for a match 1527 */ 1528 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1529 priority, logic_serv, &match); 1530 if (count < 0) { 1531 return false; 1532 } 1533 1534 /* handle CPU exception delivery */ 1535 if (count) { 1536 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1537 xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority)); 1538 } 1539 1540 return !!count; 1541 } 1542 1543 /* 1544 * Notification using the END ESe/ESn bit (Event State Buffer for 1545 * escalation and notification). Provide further coalescing in the 1546 * Router. 1547 */ 1548 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1549 uint32_t end_idx, XiveEND *end, 1550 uint32_t end_esmask) 1551 { 1552 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1553 bool notify = xive_esb_trigger(&pq); 1554 1555 if (pq != xive_get_field32(end_esmask, end->w1)) { 1556 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1557 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1558 } 1559 1560 /* ESe/n[Q]=1 : end of notification */ 1561 return notify; 1562 } 1563 1564 /* 1565 * An END trigger can come from an event trigger (IPI or HW) or from 1566 * another chip. We don't model the PowerBus but the END trigger 1567 * message has the same parameters than in the function below. 1568 */ 1569 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1570 uint32_t end_idx, uint32_t end_data) 1571 { 1572 XiveEND end; 1573 uint8_t priority; 1574 uint8_t format; 1575 uint8_t nvt_blk; 1576 uint32_t nvt_idx; 1577 XiveNVT nvt; 1578 bool found; 1579 1580 /* END cache lookup */ 1581 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1582 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1583 end_idx); 1584 return; 1585 } 1586 1587 if (!xive_end_is_valid(&end)) { 1588 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1589 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1590 end_blk, end_idx); 1591 return; 1592 } 1593 1594 if (xive_end_is_enqueue(&end)) { 1595 xive_end_enqueue(&end, end_data); 1596 /* Enqueuing event data modifies the EQ toggle and index */ 1597 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1598 } 1599 1600 /* 1601 * When the END is silent, we skip the notification part. 1602 */ 1603 if (xive_end_is_silent_escalation(&end)) { 1604 goto do_escalation; 1605 } 1606 1607 /* 1608 * The W7 format depends on the F bit in W6. It defines the type 1609 * of the notification : 1610 * 1611 * F=0 : single or multiple NVT notification 1612 * F=1 : User level Event-Based Branch (EBB) notification, no 1613 * priority 1614 */ 1615 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1616 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1617 1618 /* The END is masked */ 1619 if (format == 0 && priority == 0xff) { 1620 return; 1621 } 1622 1623 /* 1624 * Check the END ESn (Event State Buffer for notification) for 1625 * even further coalescing in the Router 1626 */ 1627 if (!xive_end_is_notify(&end)) { 1628 /* ESn[Q]=1 : end of notification */ 1629 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1630 &end, END_W1_ESn)) { 1631 return; 1632 } 1633 } 1634 1635 /* 1636 * Follows IVPE notification 1637 */ 1638 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1639 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1640 1641 /* NVT cache lookup */ 1642 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1643 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1644 nvt_blk, nvt_idx); 1645 return; 1646 } 1647 1648 if (!xive_nvt_is_valid(&nvt)) { 1649 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1650 nvt_blk, nvt_idx); 1651 return; 1652 } 1653 1654 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1655 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1656 priority, 1657 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1658 1659 /* TODO: Auto EOI. */ 1660 1661 if (found) { 1662 return; 1663 } 1664 1665 /* 1666 * If no matching NVT is dispatched on a HW thread : 1667 * - specific VP: update the NVT structure if backlog is activated 1668 * - logical server : forward request to IVPE (not supported) 1669 */ 1670 if (xive_end_is_backlog(&end)) { 1671 uint8_t ipb; 1672 1673 if (format == 1) { 1674 qemu_log_mask(LOG_GUEST_ERROR, 1675 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1676 end_blk, end_idx); 1677 return; 1678 } 1679 /* 1680 * Record the IPB in the associated NVT structure for later 1681 * use. The presenter will resend the interrupt when the vCPU 1682 * is dispatched again on a HW thread. 1683 */ 1684 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority); 1685 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1686 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1687 1688 /* 1689 * On HW, follows a "Broadcast Backlog" to IVPEs 1690 */ 1691 } 1692 1693 do_escalation: 1694 /* 1695 * If activated, escalate notification using the ESe PQ bits and 1696 * the EAS in w4-5 1697 */ 1698 if (!xive_end_is_escalate(&end)) { 1699 return; 1700 } 1701 1702 /* 1703 * Check the END ESe (Event State Buffer for escalation) for even 1704 * further coalescing in the Router 1705 */ 1706 if (!xive_end_is_uncond_escalation(&end)) { 1707 /* ESe[Q]=1 : end of notification */ 1708 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1709 &end, END_W1_ESe)) { 1710 return; 1711 } 1712 } 1713 1714 trace_xive_router_end_escalate(end_blk, end_idx, 1715 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1716 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1717 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1718 /* 1719 * The END trigger becomes an Escalation trigger 1720 */ 1721 xive_router_end_notify(xrtr, 1722 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1723 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1724 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1725 } 1726 1727 void xive_router_notify(XiveNotifier *xn, uint32_t lisn) 1728 { 1729 XiveRouter *xrtr = XIVE_ROUTER(xn); 1730 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1731 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1732 XiveEAS eas; 1733 1734 /* EAS cache lookup */ 1735 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1736 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1737 return; 1738 } 1739 1740 /* 1741 * The IVRE checks the State Bit Cache at this point. We skip the 1742 * SBC lookup because the state bits of the sources are modeled 1743 * internally in QEMU. 1744 */ 1745 1746 if (!xive_eas_is_valid(&eas)) { 1747 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1748 return; 1749 } 1750 1751 if (xive_eas_is_masked(&eas)) { 1752 /* Notification completed */ 1753 return; 1754 } 1755 1756 /* 1757 * The event trigger becomes an END trigger 1758 */ 1759 xive_router_end_notify(xrtr, 1760 xive_get_field64(EAS_END_BLOCK, eas.w), 1761 xive_get_field64(EAS_END_INDEX, eas.w), 1762 xive_get_field64(EAS_END_DATA, eas.w)); 1763 } 1764 1765 static Property xive_router_properties[] = { 1766 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1767 TYPE_XIVE_FABRIC, XiveFabric *), 1768 DEFINE_PROP_END_OF_LIST(), 1769 }; 1770 1771 static void xive_router_class_init(ObjectClass *klass, void *data) 1772 { 1773 DeviceClass *dc = DEVICE_CLASS(klass); 1774 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1775 1776 dc->desc = "XIVE Router Engine"; 1777 device_class_set_props(dc, xive_router_properties); 1778 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1779 dc->realize = xive_router_realize; 1780 xnc->notify = xive_router_notify; 1781 } 1782 1783 static const TypeInfo xive_router_info = { 1784 .name = TYPE_XIVE_ROUTER, 1785 .parent = TYPE_SYS_BUS_DEVICE, 1786 .abstract = true, 1787 .instance_size = sizeof(XiveRouter), 1788 .class_size = sizeof(XiveRouterClass), 1789 .class_init = xive_router_class_init, 1790 .interfaces = (InterfaceInfo[]) { 1791 { TYPE_XIVE_NOTIFIER }, 1792 { TYPE_XIVE_PRESENTER }, 1793 { } 1794 } 1795 }; 1796 1797 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1798 { 1799 if (!xive_eas_is_valid(eas)) { 1800 return; 1801 } 1802 1803 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1804 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1805 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1806 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1807 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1808 } 1809 1810 /* 1811 * END ESB MMIO loads 1812 */ 1813 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1814 { 1815 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1816 uint32_t offset = addr & 0xFFF; 1817 uint8_t end_blk; 1818 uint32_t end_idx; 1819 XiveEND end; 1820 uint32_t end_esmask; 1821 uint8_t pq; 1822 uint64_t ret = -1; 1823 1824 /* 1825 * The block id should be deduced from the load address on the END 1826 * ESB MMIO but our model only supports a single block per XIVE chip. 1827 */ 1828 end_blk = xive_router_get_block_id(xsrc->xrtr); 1829 end_idx = addr >> (xsrc->esb_shift + 1); 1830 1831 trace_xive_end_source_read(end_blk, end_idx, addr); 1832 1833 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1834 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1835 end_idx); 1836 return -1; 1837 } 1838 1839 if (!xive_end_is_valid(&end)) { 1840 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1841 end_blk, end_idx); 1842 return -1; 1843 } 1844 1845 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1846 pq = xive_get_field32(end_esmask, end.w1); 1847 1848 switch (offset) { 1849 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1850 ret = xive_esb_eoi(&pq); 1851 1852 /* Forward the source event notification for routing ?? */ 1853 break; 1854 1855 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1856 ret = pq; 1857 break; 1858 1859 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1860 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1861 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1862 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1863 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1864 break; 1865 default: 1866 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1867 offset); 1868 return -1; 1869 } 1870 1871 if (pq != xive_get_field32(end_esmask, end.w1)) { 1872 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1873 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1874 } 1875 1876 return ret; 1877 } 1878 1879 /* 1880 * END ESB MMIO stores are invalid 1881 */ 1882 static void xive_end_source_write(void *opaque, hwaddr addr, 1883 uint64_t value, unsigned size) 1884 { 1885 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1886 HWADDR_PRIx"\n", addr); 1887 } 1888 1889 static const MemoryRegionOps xive_end_source_ops = { 1890 .read = xive_end_source_read, 1891 .write = xive_end_source_write, 1892 .endianness = DEVICE_BIG_ENDIAN, 1893 .valid = { 1894 .min_access_size = 8, 1895 .max_access_size = 8, 1896 }, 1897 .impl = { 1898 .min_access_size = 8, 1899 .max_access_size = 8, 1900 }, 1901 }; 1902 1903 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1904 { 1905 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1906 1907 assert(xsrc->xrtr); 1908 1909 if (!xsrc->nr_ends) { 1910 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1911 return; 1912 } 1913 1914 if (xsrc->esb_shift != XIVE_ESB_4K && 1915 xsrc->esb_shift != XIVE_ESB_64K) { 1916 error_setg(errp, "Invalid ESB shift setting"); 1917 return; 1918 } 1919 1920 /* 1921 * Each END is assigned an even/odd pair of MMIO pages, the even page 1922 * manages the ESn field while the odd page manages the ESe field. 1923 */ 1924 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1925 &xive_end_source_ops, xsrc, "xive.end", 1926 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1927 } 1928 1929 static Property xive_end_source_properties[] = { 1930 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 1931 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 1932 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 1933 XiveRouter *), 1934 DEFINE_PROP_END_OF_LIST(), 1935 }; 1936 1937 static void xive_end_source_class_init(ObjectClass *klass, void *data) 1938 { 1939 DeviceClass *dc = DEVICE_CLASS(klass); 1940 1941 dc->desc = "XIVE END Source"; 1942 device_class_set_props(dc, xive_end_source_properties); 1943 dc->realize = xive_end_source_realize; 1944 /* 1945 * Reason: part of XIVE interrupt controller, needs to be wired up, 1946 * e.g. by spapr_xive_instance_init(). 1947 */ 1948 dc->user_creatable = false; 1949 } 1950 1951 static const TypeInfo xive_end_source_info = { 1952 .name = TYPE_XIVE_END_SOURCE, 1953 .parent = TYPE_DEVICE, 1954 .instance_size = sizeof(XiveENDSource), 1955 .class_init = xive_end_source_class_init, 1956 }; 1957 1958 /* 1959 * XIVE Notifier 1960 */ 1961 static const TypeInfo xive_notifier_info = { 1962 .name = TYPE_XIVE_NOTIFIER, 1963 .parent = TYPE_INTERFACE, 1964 .class_size = sizeof(XiveNotifierClass), 1965 }; 1966 1967 /* 1968 * XIVE Presenter 1969 */ 1970 static const TypeInfo xive_presenter_info = { 1971 .name = TYPE_XIVE_PRESENTER, 1972 .parent = TYPE_INTERFACE, 1973 .class_size = sizeof(XivePresenterClass), 1974 }; 1975 1976 /* 1977 * XIVE Fabric 1978 */ 1979 static const TypeInfo xive_fabric_info = { 1980 .name = TYPE_XIVE_FABRIC, 1981 .parent = TYPE_INTERFACE, 1982 .class_size = sizeof(XiveFabricClass), 1983 }; 1984 1985 static void xive_register_types(void) 1986 { 1987 type_register_static(&xive_fabric_info); 1988 type_register_static(&xive_source_info); 1989 type_register_static(&xive_notifier_info); 1990 type_register_static(&xive_presenter_info); 1991 type_register_static(&xive_router_info); 1992 type_register_static(&xive_end_source_info); 1993 type_register_static(&xive_tctx_info); 1994 } 1995 1996 type_init(xive_register_types) 1997