1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/module.h" 12 #include "qapi/error.h" 13 #include "target/ppc/cpu.h" 14 #include "system/cpus.h" 15 #include "system/dma.h" 16 #include "system/reset.h" 17 #include "hw/qdev-properties.h" 18 #include "migration/vmstate.h" 19 #include "hw/irq.h" 20 #include "hw/ppc/xive.h" 21 #include "hw/ppc/xive2.h" 22 #include "hw/ppc/xive_regs.h" 23 #include "trace.h" 24 25 /* 26 * XIVE Thread Interrupt Management context 27 */ 28 bool xive_ring_valid(XiveTCTX *tctx, uint8_t ring) 29 { 30 uint8_t cur_ring; 31 32 for (cur_ring = ring; cur_ring <= TM_QW3_HV_PHYS; 33 cur_ring += XIVE_TM_RING_SIZE) { 34 if (!(tctx->regs[cur_ring + TM_WORD2] & 0x80)) { 35 return false; 36 } 37 } 38 return true; 39 } 40 41 bool xive_nsr_indicates_exception(uint8_t ring, uint8_t nsr) 42 { 43 switch (ring) { 44 case TM_QW1_OS: 45 return !!(nsr & TM_QW1_NSR_EO); 46 case TM_QW2_HV_POOL: 47 case TM_QW3_HV_PHYS: 48 return !!(nsr & TM_QW3_NSR_HE); 49 default: 50 g_assert_not_reached(); 51 } 52 } 53 54 bool xive_nsr_indicates_group_exception(uint8_t ring, uint8_t nsr) 55 { 56 if ((nsr & TM_NSR_GRP_LVL) > 0) { 57 g_assert(xive_nsr_indicates_exception(ring, nsr)); 58 return true; 59 } 60 return false; 61 } 62 63 uint8_t xive_nsr_exception_ring(uint8_t ring, uint8_t nsr) 64 { 65 /* NSR determines if pool/phys ring is for phys or pool interrupt */ 66 if ((ring == TM_QW3_HV_PHYS) || (ring == TM_QW2_HV_POOL)) { 67 uint8_t he = (nsr & TM_QW3_NSR_HE) >> 6; 68 69 if (he == TM_QW3_NSR_HE_PHYS) { 70 return TM_QW3_HV_PHYS; 71 } else if (he == TM_QW3_NSR_HE_POOL) { 72 return TM_QW2_HV_POOL; 73 } else { 74 /* Don't support LSI mode */ 75 g_assert_not_reached(); 76 } 77 } 78 return ring; 79 } 80 81 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 82 { 83 switch (ring) { 84 case TM_QW0_USER: 85 return 0; /* Not supported */ 86 case TM_QW1_OS: 87 return tctx->os_output; 88 case TM_QW2_HV_POOL: 89 case TM_QW3_HV_PHYS: 90 return tctx->hv_output; 91 default: 92 return 0; 93 } 94 } 95 96 /* 97 * interrupt is accepted on the presentation ring, for PHYS ring the NSR 98 * directs it to the PHYS or POOL rings. 99 */ 100 uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t sig_ring) 101 { 102 uint8_t *sig_regs = &tctx->regs[sig_ring]; 103 uint8_t nsr = sig_regs[TM_NSR]; 104 105 g_assert(sig_ring == TM_QW1_OS || sig_ring == TM_QW3_HV_PHYS); 106 107 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_NSR] == 0); 108 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_PIPR] == 0); 109 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_CPPR] == 0); 110 111 if (xive_nsr_indicates_exception(sig_ring, nsr)) { 112 uint8_t cppr = sig_regs[TM_PIPR]; 113 uint8_t ring; 114 uint8_t *regs; 115 116 ring = xive_nsr_exception_ring(sig_ring, nsr); 117 regs = &tctx->regs[ring]; 118 119 sig_regs[TM_CPPR] = cppr; 120 121 /* 122 * If the interrupt was for a specific VP, reset the pending 123 * buffer bit, otherwise clear the logical server indicator 124 */ 125 if (!xive_nsr_indicates_group_exception(sig_ring, nsr)) { 126 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 127 } 128 129 /* Clear the exception from NSR */ 130 sig_regs[TM_NSR] = 0; 131 qemu_irq_lower(xive_tctx_output(tctx, sig_ring)); 132 133 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 134 regs[TM_IPB], sig_regs[TM_PIPR], 135 sig_regs[TM_CPPR], sig_regs[TM_NSR]); 136 } 137 138 return ((uint64_t)nsr << 8) | sig_regs[TM_CPPR]; 139 } 140 141 /* Change PIPR and calculate NSR and irq based on PIPR, CPPR, group */ 142 void xive_tctx_pipr_set(XiveTCTX *tctx, uint8_t ring, uint8_t pipr, 143 uint8_t group_level) 144 { 145 uint8_t *sig_regs = xive_tctx_signal_regs(tctx, ring); 146 uint8_t *regs = &tctx->regs[ring]; 147 148 g_assert(!xive_nsr_indicates_group_exception(ring, sig_regs[TM_NSR])); 149 150 sig_regs[TM_PIPR] = pipr; 151 152 if (pipr < sig_regs[TM_CPPR]) { 153 switch (ring) { 154 case TM_QW1_OS: 155 sig_regs[TM_NSR] = TM_QW1_NSR_EO | (group_level & 0x3F); 156 break; 157 case TM_QW2_HV_POOL: 158 sig_regs[TM_NSR] = (TM_QW3_NSR_HE_POOL << 6) | (group_level & 0x3F); 159 break; 160 case TM_QW3_HV_PHYS: 161 sig_regs[TM_NSR] = (TM_QW3_NSR_HE_PHYS << 6) | (group_level & 0x3F); 162 break; 163 default: 164 g_assert_not_reached(); 165 } 166 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 167 regs[TM_IPB], pipr, 168 sig_regs[TM_CPPR], sig_regs[TM_NSR]); 169 qemu_irq_raise(xive_tctx_output(tctx, ring)); 170 } else { 171 sig_regs[TM_NSR] = 0; 172 qemu_irq_lower(xive_tctx_output(tctx, ring)); 173 } 174 } 175 176 void xive_tctx_reset_signal(XiveTCTX *tctx, uint8_t ring) 177 { 178 /* 179 * Lower the External interrupt. Used when pulling a context. It is 180 * necessary to avoid catching it in the higher privilege context. It 181 * should be raised again when re-pushing the lower privilege context. 182 */ 183 qemu_irq_lower(xive_tctx_output(tctx, ring)); 184 } 185 186 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 187 { 188 uint8_t *sig_regs = &tctx->regs[ring]; 189 uint8_t pipr_min; 190 uint8_t ring_min; 191 192 g_assert(ring == TM_QW1_OS || ring == TM_QW3_HV_PHYS); 193 194 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_NSR] == 0); 195 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_PIPR] == 0); 196 g_assert(tctx->regs[TM_QW2_HV_POOL + TM_CPPR] == 0); 197 198 /* XXX: should show pool IPB for PHYS ring */ 199 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 200 sig_regs[TM_IPB], sig_regs[TM_PIPR], 201 cppr, sig_regs[TM_NSR]); 202 203 if (cppr > XIVE_PRIORITY_MAX) { 204 cppr = 0xff; 205 } 206 207 sig_regs[TM_CPPR] = cppr; 208 209 /* 210 * Recompute the PIPR based on local pending interrupts. The PHYS 211 * ring must take the minimum of both the PHYS and POOL PIPR values. 212 */ 213 pipr_min = xive_ipb_to_pipr(sig_regs[TM_IPB]); 214 ring_min = ring; 215 216 /* PHYS updates also depend on POOL values */ 217 if (ring == TM_QW3_HV_PHYS) { 218 uint8_t *pool_regs = &tctx->regs[TM_QW2_HV_POOL]; 219 220 /* POOL values only matter if POOL ctx is valid */ 221 if (pool_regs[TM_WORD2] & 0x80) { 222 uint8_t pool_pipr = xive_ipb_to_pipr(pool_regs[TM_IPB]); 223 224 /* 225 * Determine highest priority interrupt and 226 * remember which ring has it. 227 */ 228 if (pool_pipr < pipr_min) { 229 pipr_min = pool_pipr; 230 ring_min = TM_QW2_HV_POOL; 231 } 232 } 233 } 234 235 /* CPPR has changed, this may present or preclude a pending exception */ 236 xive_tctx_pipr_set(tctx, ring_min, pipr_min, 0); 237 } 238 239 static void xive_tctx_pipr_recompute_from_ipb(XiveTCTX *tctx, uint8_t ring) 240 { 241 uint8_t *sig_regs = xive_tctx_signal_regs(tctx, ring); 242 uint8_t *regs = &tctx->regs[ring]; 243 244 /* Does not support a presented group interrupt */ 245 g_assert(!xive_nsr_indicates_group_exception(ring, sig_regs[TM_NSR])); 246 247 xive_tctx_pipr_set(tctx, ring, xive_ipb_to_pipr(regs[TM_IPB]), 0); 248 } 249 250 void xive_tctx_pipr_present(XiveTCTX *tctx, uint8_t ring, uint8_t priority, 251 uint8_t group_level) 252 { 253 uint8_t *sig_regs = xive_tctx_signal_regs(tctx, ring); 254 uint8_t *regs = &tctx->regs[ring]; 255 uint8_t pipr = xive_priority_to_pipr(priority); 256 257 if (group_level == 0) { 258 regs[TM_IPB] |= xive_priority_to_ipb(priority); 259 if (pipr >= sig_regs[TM_PIPR]) { 260 /* VP interrupts can come here with lower priority than PIPR */ 261 return; 262 } 263 } 264 g_assert(pipr <= xive_ipb_to_pipr(regs[TM_IPB])); 265 g_assert(pipr < sig_regs[TM_PIPR]); 266 xive_tctx_pipr_set(tctx, ring, pipr, group_level); 267 } 268 269 /* 270 * XIVE Thread Interrupt Management Area (TIMA) 271 */ 272 273 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 274 hwaddr offset, uint64_t value, unsigned size) 275 { 276 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 277 } 278 279 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 280 hwaddr offset, unsigned size) 281 { 282 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 283 } 284 285 static void xive_pool_cam_decode(uint32_t cam, uint8_t *nvt_blk, 286 uint32_t *nvt_idx, bool *vp) 287 { 288 if (nvt_blk) { 289 *nvt_blk = xive_nvt_blk(cam); 290 } 291 if (nvt_idx) { 292 *nvt_idx = xive_nvt_idx(cam); 293 } 294 if (vp) { 295 *vp = !!(cam & TM_QW2W2_VP); 296 } 297 } 298 299 static uint32_t xive_tctx_get_pool_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 300 uint32_t *nvt_idx, bool *vp) 301 { 302 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 303 uint32_t cam = be32_to_cpu(qw2w2); 304 305 xive_pool_cam_decode(cam, nvt_blk, nvt_idx, vp); 306 return qw2w2; 307 } 308 309 static void xive_tctx_set_pool_cam(XiveTCTX *tctx, uint32_t qw2w2) 310 { 311 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 312 } 313 314 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 315 hwaddr offset, unsigned size) 316 { 317 uint32_t qw2w2; 318 uint32_t qw2w2_new; 319 uint8_t nvt_blk; 320 uint32_t nvt_idx; 321 bool vp; 322 323 qw2w2 = xive_tctx_get_pool_cam(tctx, &nvt_blk, &nvt_idx, &vp); 324 325 if (!vp) { 326 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pull invalid POOL NVT %x/%x !?\n", 327 nvt_blk, nvt_idx); 328 } 329 330 /* Invalidate CAM line */ 331 qw2w2_new = xive_set_field32(TM_QW2W2_VP, qw2w2, 0); 332 xive_tctx_set_pool_cam(tctx, qw2w2_new); 333 334 xive_tctx_reset_signal(tctx, TM_QW1_OS); 335 xive_tctx_reset_signal(tctx, TM_QW2_HV_POOL); 336 /* Re-check phys for interrupts if pool was disabled */ 337 xive_tctx_pipr_recompute_from_ipb(tctx, TM_QW3_HV_PHYS); 338 339 return qw2w2; 340 } 341 342 static uint64_t xive_tm_pull_phys_ctx(XivePresenter *xptr, XiveTCTX *tctx, 343 hwaddr offset, unsigned size) 344 { 345 uint8_t qw3b8 = tctx->regs[TM_QW3_HV_PHYS + TM_WORD2]; 346 uint8_t qw3b8_new; 347 348 qw3b8 = tctx->regs[TM_QW3_HV_PHYS + TM_WORD2]; 349 if (!(qw3b8 & TM_QW3B8_VT)) { 350 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid PHYS thread!?\n"); 351 } 352 qw3b8_new = qw3b8 & ~TM_QW3B8_VT; 353 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = qw3b8_new; 354 355 xive_tctx_reset_signal(tctx, TM_QW1_OS); 356 xive_tctx_reset_signal(tctx, TM_QW3_HV_PHYS); 357 return qw3b8; 358 } 359 360 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 361 uint64_t value, unsigned size) 362 { 363 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 364 } 365 366 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 367 hwaddr offset, unsigned size) 368 { 369 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 370 } 371 372 /* 373 * Define an access map for each page of the TIMA that we will use in 374 * the memory region ops to filter values when doing loads and stores 375 * of raw registers values 376 * 377 * Registers accessibility bits : 378 * 379 * 0x0 - no access 380 * 0x1 - write only 381 * 0x2 - read only 382 * 0x3 - read/write 383 */ 384 385 static const uint8_t xive_tm_hw_view[] = { 386 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 387 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 3, /* QW-1 OS */ 388 0, 0, 3, 3, 0, 3, 3, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 389 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 390 }; 391 392 static const uint8_t xive_tm_hv_view[] = { 393 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 394 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 3, /* QW-1 OS */ 395 0, 0, 3, 3, 0, 3, 3, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 396 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 397 }; 398 399 static const uint8_t xive_tm_os_view[] = { 400 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 401 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 402 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 403 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 404 }; 405 406 static const uint8_t xive_tm_user_view[] = { 407 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 408 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 409 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 411 }; 412 413 /* 414 * Overall TIMA access map for the thread interrupt management context 415 * registers 416 */ 417 static const uint8_t *xive_tm_views[] = { 418 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 419 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 420 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 421 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 422 }; 423 424 /* 425 * Computes a register access mask for a given offset in the TIMA 426 */ 427 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 428 { 429 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 430 uint8_t reg_offset = offset & TM_REG_OFFSET; 431 uint8_t reg_mask = write ? 0x1 : 0x2; 432 uint64_t mask = 0x0; 433 int i; 434 435 for (i = 0; i < size; i++) { 436 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 437 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 438 } 439 } 440 441 return mask; 442 } 443 444 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 445 unsigned size) 446 { 447 uint8_t ring_offset = offset & TM_RING_OFFSET; 448 uint8_t reg_offset = offset & TM_REG_OFFSET; 449 uint64_t mask = xive_tm_mask(offset, size, true); 450 int i; 451 452 /* 453 * Only 4 or 8 bytes stores are allowed and the User ring is 454 * excluded 455 */ 456 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 457 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 458 HWADDR_PRIx" size %d\n", offset, size); 459 return; 460 } 461 462 /* 463 * Use the register offset for the raw values and filter out 464 * reserved values 465 */ 466 for (i = 0; i < size; i++) { 467 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 468 if (byte_mask) { 469 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 470 byte_mask; 471 } 472 } 473 } 474 475 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 476 { 477 uint8_t ring_offset = offset & TM_RING_OFFSET; 478 uint8_t reg_offset = offset & TM_REG_OFFSET; 479 uint64_t mask = xive_tm_mask(offset, size, false); 480 uint64_t ret; 481 int i; 482 483 /* 484 * Only 4 or 8 bytes loads are allowed and the User ring is 485 * excluded 486 */ 487 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 488 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 489 HWADDR_PRIx" size %d\n", offset, size); 490 return -1; 491 } 492 493 /* Use the register offset for the raw values */ 494 ret = 0; 495 for (i = 0; i < size; i++) { 496 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 497 } 498 499 /* filter out reserved values */ 500 return ret & mask; 501 } 502 503 /* 504 * The TM context is mapped twice within each page. Stores and loads 505 * to the first mapping below 2K write and read the specified values 506 * without modification. The second mapping above 2K performs specific 507 * state changes (side effects) in addition to setting/returning the 508 * interrupt management area context of the processor thread. 509 */ 510 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 511 hwaddr offset, unsigned size) 512 { 513 return xive_tctx_accept(tctx, TM_QW1_OS); 514 } 515 516 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 517 hwaddr offset, uint64_t value, unsigned size) 518 { 519 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 520 } 521 522 static void xive_tctx_set_lgs(XiveTCTX *tctx, uint8_t ring, uint8_t lgs) 523 { 524 uint8_t *regs = &tctx->regs[ring]; 525 526 regs[TM_LGS] = lgs; 527 } 528 529 static void xive_tm_set_os_lgs(XivePresenter *xptr, XiveTCTX *tctx, 530 hwaddr offset, uint64_t value, unsigned size) 531 { 532 xive_tctx_set_lgs(tctx, TM_QW1_OS, value & 0xff); 533 } 534 535 /* 536 * Adjust the PIPR to allow a CPU to process event queues of other 537 * priorities during one physical interrupt cycle. 538 */ 539 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 540 hwaddr offset, uint64_t value, unsigned size) 541 { 542 uint8_t ring = TM_QW1_OS; 543 uint8_t *regs = &tctx->regs[ring]; 544 545 /* XXX: how should this work exactly? */ 546 regs[TM_IPB] |= xive_priority_to_ipb(value & 0xff); 547 xive_tctx_pipr_recompute_from_ipb(tctx, ring); 548 } 549 550 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 551 uint32_t *nvt_idx, bool *vo) 552 { 553 if (nvt_blk) { 554 *nvt_blk = xive_nvt_blk(cam); 555 } 556 if (nvt_idx) { 557 *nvt_idx = xive_nvt_idx(cam); 558 } 559 if (vo) { 560 *vo = !!(cam & TM_QW1W2_VO); 561 } 562 } 563 564 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 565 uint32_t *nvt_idx, bool *vo) 566 { 567 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 568 uint32_t cam = be32_to_cpu(qw1w2); 569 570 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 571 return qw1w2; 572 } 573 574 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 575 { 576 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 577 } 578 579 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 580 hwaddr offset, unsigned size) 581 { 582 uint32_t qw1w2; 583 uint32_t qw1w2_new; 584 uint8_t nvt_blk; 585 uint32_t nvt_idx; 586 bool vo; 587 588 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 589 590 if (!vo) { 591 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pull invalid OS NVT %x/%x !?\n", 592 nvt_blk, nvt_idx); 593 } 594 595 /* Invalidate CAM line */ 596 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 597 xive_tctx_set_os_cam(tctx, qw1w2_new); 598 599 xive_tctx_reset_signal(tctx, TM_QW1_OS); 600 return qw1w2; 601 } 602 603 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 604 uint8_t nvt_blk, uint32_t nvt_idx) 605 { 606 XiveNVT nvt; 607 uint8_t ipb; 608 609 /* 610 * Grab the associated NVT to pull the pending bits, and merge 611 * them with the IPB of the thread interrupt context registers 612 */ 613 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 614 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 615 nvt_blk, nvt_idx); 616 return; 617 } 618 619 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 620 621 if (ipb) { 622 /* Reset the NVT value */ 623 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 624 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 625 626 uint8_t *regs = &tctx->regs[TM_QW1_OS]; 627 regs[TM_IPB] |= ipb; 628 } 629 630 /* 631 * Always call xive_tctx_recompute_from_ipb(). Even if there were no 632 * escalation triggered, there could be a pending interrupt which 633 * was saved when the context was pulled and that we need to take 634 * into account by recalculating the PIPR (which is not 635 * saved/restored). 636 * It will also raise the External interrupt signal if needed. 637 */ 638 xive_tctx_pipr_recompute_from_ipb(tctx, TM_QW1_OS); /* fxb */ 639 } 640 641 /* 642 * Updating the OS CAM line can trigger a resend of interrupt 643 */ 644 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 645 hwaddr offset, uint64_t value, unsigned size) 646 { 647 uint32_t cam = value; 648 uint32_t qw1w2 = cpu_to_be32(cam); 649 uint8_t nvt_blk; 650 uint32_t nvt_idx; 651 bool vo; 652 653 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 654 655 /* First update the registers */ 656 xive_tctx_set_os_cam(tctx, qw1w2); 657 658 /* Check the interrupt pending bits */ 659 if (vo) { 660 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 661 } 662 } 663 664 static uint32_t xive_presenter_get_config(XivePresenter *xptr) 665 { 666 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 667 668 return xpc->get_config(xptr); 669 } 670 671 /* 672 * Define a mapping of "special" operations depending on the TIMA page 673 * offset and the size of the operation. 674 */ 675 typedef struct XiveTmOp { 676 uint8_t page_offset; 677 uint32_t op_offset; 678 unsigned size; 679 bool hw_ok; 680 bool sw_ok; 681 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 682 hwaddr offset, 683 uint64_t value, unsigned size); 684 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 685 unsigned size); 686 } XiveTmOp; 687 688 static const XiveTmOp xive_tm_operations[] = { 689 /* 690 * MMIOs below 2K : raw values and special operations without side 691 * effects 692 */ 693 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, true, true, 694 xive_tm_set_os_cppr, NULL }, 695 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, true, true, 696 xive_tm_push_os_ctx, NULL }, 697 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, true, true, 698 xive_tm_set_hv_cppr, NULL }, 699 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, false, true, 700 xive_tm_vt_push, NULL }, 701 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, true, true, 702 NULL, xive_tm_vt_poll }, 703 704 /* MMIOs above 2K : special operations with side effects */ 705 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, true, false, 706 NULL, xive_tm_ack_os_reg }, 707 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, true, false, 708 xive_tm_set_os_pending, NULL }, 709 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, true, false, 710 NULL, xive_tm_pull_os_ctx }, 711 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, true, false, 712 NULL, xive_tm_pull_os_ctx }, 713 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, true, false, 714 NULL, xive_tm_ack_hv_reg }, 715 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, true, false, 716 NULL, xive_tm_pull_pool_ctx }, 717 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, true, false, 718 NULL, xive_tm_pull_pool_ctx }, 719 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX, 1, true, false, 720 NULL, xive_tm_pull_phys_ctx }, 721 }; 722 723 static const XiveTmOp xive2_tm_operations[] = { 724 /* 725 * MMIOs below 2K : raw values and special operations without side 726 * effects 727 */ 728 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, true, true, 729 xive2_tm_set_os_cppr, NULL }, 730 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, true, true, 731 xive2_tm_push_os_ctx, NULL }, 732 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 8, true, true, 733 xive2_tm_push_os_ctx, NULL }, 734 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_LGS, 1, true, true, 735 xive_tm_set_os_lgs, NULL }, 736 { XIVE_TM_HV_PAGE, TM_QW2_HV_POOL + TM_WORD2, 4, true, true, 737 xive2_tm_push_pool_ctx, NULL }, 738 { XIVE_TM_HV_PAGE, TM_QW2_HV_POOL + TM_WORD2, 8, true, true, 739 xive2_tm_push_pool_ctx, NULL }, 740 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, true, true, 741 xive2_tm_set_hv_cppr, NULL }, 742 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, true, true, 743 NULL, xive_tm_vt_poll }, 744 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_T, 1, true, true, 745 xive2_tm_set_hv_target, NULL }, 746 747 /* MMIOs above 2K : special operations with side effects */ 748 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, true, false, 749 NULL, xive_tm_ack_os_reg }, 750 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_G2, 4, true, false, 751 NULL, xive2_tm_pull_os_ctx }, 752 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, true, false, 753 NULL, xive2_tm_pull_os_ctx }, 754 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, true, false, 755 NULL, xive2_tm_pull_os_ctx }, 756 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, true, false, 757 NULL, xive_tm_ack_hv_reg }, 758 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX_G2, 4, true, false, 759 NULL, xive2_tm_pull_pool_ctx }, 760 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, true, false, 761 NULL, xive2_tm_pull_pool_ctx }, 762 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, true, false, 763 NULL, xive2_tm_pull_pool_ctx }, 764 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_OL, 1, true, false, 765 xive2_tm_pull_os_ctx_ol, NULL }, 766 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_G2, 4, true, false, 767 NULL, xive2_tm_pull_phys_ctx }, 768 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX, 1, true, false, 769 NULL, xive2_tm_pull_phys_ctx }, 770 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_OL, 1, true, false, 771 xive2_tm_pull_phys_ctx_ol, NULL }, 772 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_EL, 1, true, false, 773 xive2_tm_ack_os_el, NULL }, 774 }; 775 776 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset, 777 unsigned size, bool write) 778 { 779 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 780 uint32_t op_offset = offset & TM_ADDRESS_MASK; 781 const XiveTmOp *tm_ops; 782 int i, tm_ops_count; 783 uint32_t cfg; 784 785 cfg = xive_presenter_get_config(xptr); 786 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) { 787 tm_ops = xive_tm_operations; 788 tm_ops_count = ARRAY_SIZE(xive_tm_operations); 789 } else { 790 tm_ops = xive2_tm_operations; 791 tm_ops_count = ARRAY_SIZE(xive2_tm_operations); 792 } 793 794 for (i = 0; i < tm_ops_count; i++) { 795 const XiveTmOp *xto = &tm_ops[i]; 796 797 /* Accesses done from a more privileged TIMA page is allowed */ 798 if (xto->page_offset >= page_offset && 799 xto->op_offset == op_offset && 800 xto->size == size && 801 ((write && xto->write_handler) || (!write && xto->read_handler))) { 802 return xto; 803 } 804 } 805 return NULL; 806 } 807 808 /* 809 * TIMA MMIO handlers 810 */ 811 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 812 uint64_t value, unsigned size) 813 { 814 const XiveTmOp *xto; 815 uint8_t ring = offset & TM_RING_OFFSET; 816 bool is_valid = xive_ring_valid(tctx, ring); 817 bool hw_owned = is_valid; 818 819 trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value); 820 821 /* 822 * First, check for special operations in the 2K region 823 */ 824 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 825 if (xto) { 826 if (hw_owned && !xto->hw_ok) { 827 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: undefined write to HW TIMA " 828 "@%"HWADDR_PRIx" size %d\n", offset, size); 829 } 830 if (!hw_owned && !xto->sw_ok) { 831 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: undefined write to SW TIMA " 832 "@%"HWADDR_PRIx" size %d\n", offset, size); 833 } 834 } 835 836 if (offset & TM_SPECIAL_OP) { 837 if (!xto) { 838 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 839 "@%"HWADDR_PRIx" size %d\n", offset, size); 840 } else { 841 xto->write_handler(xptr, tctx, offset, value, size); 842 } 843 return; 844 } 845 846 /* 847 * Then, for special operations in the region below 2K. 848 */ 849 if (xto) { 850 xto->write_handler(xptr, tctx, offset, value, size); 851 return; 852 } 853 854 /* 855 * Finish with raw access to the register values 856 */ 857 if (hw_owned) { 858 /* Store context operations are dangerous when context is valid */ 859 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: undefined write to HW TIMA " 860 "@%"HWADDR_PRIx" size %d\n", offset, size); 861 } 862 xive_tm_raw_write(tctx, offset, value, size); 863 } 864 865 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 866 unsigned size) 867 { 868 const XiveTmOp *xto; 869 uint8_t ring = offset & TM_RING_OFFSET; 870 bool is_valid = xive_ring_valid(tctx, ring); 871 bool hw_owned = is_valid; 872 uint64_t ret; 873 874 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 875 if (xto) { 876 if (hw_owned && !xto->hw_ok) { 877 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: undefined read to HW TIMA " 878 "@%"HWADDR_PRIx" size %d\n", offset, size); 879 } 880 if (!hw_owned && !xto->sw_ok) { 881 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: undefined read to SW TIMA " 882 "@%"HWADDR_PRIx" size %d\n", offset, size); 883 } 884 } 885 886 /* 887 * First, check for special operations in the 2K region 888 */ 889 if (offset & TM_SPECIAL_OP) { 890 if (!xto) { 891 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 892 "@%"HWADDR_PRIx" size %d\n", offset, size); 893 return -1; 894 } 895 ret = xto->read_handler(xptr, tctx, offset, size); 896 goto out; 897 } 898 899 /* 900 * Then, for special operations in the region below 2K. 901 */ 902 if (xto) { 903 ret = xto->read_handler(xptr, tctx, offset, size); 904 goto out; 905 } 906 907 /* 908 * Finish with raw access to the register values 909 */ 910 ret = xive_tm_raw_read(tctx, offset, size); 911 out: 912 trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret); 913 return ret; 914 } 915 916 static char *xive_tctx_ring_print(uint8_t *ring) 917 { 918 uint32_t w2 = xive_tctx_word2(ring); 919 920 return g_strdup_printf("%02x %02x %02x %02x %02x " 921 "%02x %02x %02x %08x", 922 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 923 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 924 be32_to_cpu(w2)); 925 } 926 927 static const char * const xive_tctx_ring_names[] = { 928 "USER", "OS", "POOL", "PHYS", 929 }; 930 931 /* 932 * kvm_irqchip_in_kernel() will cause the compiler to turn this 933 * info a nop if CONFIG_KVM isn't defined. 934 */ 935 #define xive_in_kernel(xptr) \ 936 (kvm_irqchip_in_kernel() && \ 937 ({ \ 938 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 939 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 940 })) 941 942 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf) 943 { 944 int cpu_index; 945 int i; 946 947 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 948 * are hot plugged or unplugged. 949 */ 950 if (!tctx) { 951 return; 952 } 953 954 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 955 956 if (xive_in_kernel(tctx->xptr)) { 957 Error *local_err = NULL; 958 959 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 960 if (local_err) { 961 error_report_err(local_err); 962 return; 963 } 964 } 965 966 if (xive_presenter_get_config(tctx->xptr) & XIVE_PRESENTER_GEN1_TIMA_OS) { 967 g_string_append_printf(buf, "CPU[%04x]: " 968 "QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 969 " W2\n", cpu_index); 970 } else { 971 g_string_append_printf(buf, "CPU[%04x]: " 972 "QW NSR CPPR IPB LSMFB - LGS T PIPR" 973 " W2\n", cpu_index); 974 } 975 976 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 977 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 978 g_string_append_printf(buf, "CPU[%04x]: %4s %s\n", 979 cpu_index, xive_tctx_ring_names[i], s); 980 g_free(s); 981 } 982 } 983 984 void xive_tctx_reset(XiveTCTX *tctx) 985 { 986 memset(tctx->regs, 0, sizeof(tctx->regs)); 987 988 /* Set some defaults */ 989 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 990 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 991 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 992 if (!(xive_presenter_get_config(tctx->xptr) & 993 XIVE_PRESENTER_GEN1_TIMA_OS)) { 994 tctx->regs[TM_QW1_OS + TM_OGEN] = 2; 995 } 996 997 /* 998 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 999 * CPPR is first set. 1000 */ 1001 tctx->regs[TM_QW1_OS + TM_PIPR] = 1002 xive_ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 1003 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 1004 xive_ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 1005 } 1006 1007 static void xive_tctx_realize(DeviceState *dev, Error **errp) 1008 { 1009 XiveTCTX *tctx = XIVE_TCTX(dev); 1010 PowerPCCPU *cpu; 1011 CPUPPCState *env; 1012 1013 assert(tctx->cs); 1014 assert(tctx->xptr); 1015 1016 cpu = POWERPC_CPU(tctx->cs); 1017 env = &cpu->env; 1018 switch (PPC_INPUT(env)) { 1019 case PPC_FLAGS_INPUT_POWER9: 1020 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT); 1021 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT); 1022 break; 1023 1024 default: 1025 error_setg(errp, "XIVE interrupt controller does not support " 1026 "this CPU bus model"); 1027 return; 1028 } 1029 1030 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 1031 if (xive_in_kernel(tctx->xptr)) { 1032 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 1033 return; 1034 } 1035 } 1036 } 1037 1038 static int vmstate_xive_tctx_pre_save(void *opaque) 1039 { 1040 XiveTCTX *tctx = XIVE_TCTX(opaque); 1041 Error *local_err = NULL; 1042 int ret; 1043 1044 if (xive_in_kernel(tctx->xptr)) { 1045 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 1046 if (ret < 0) { 1047 error_report_err(local_err); 1048 return ret; 1049 } 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 1056 { 1057 XiveTCTX *tctx = XIVE_TCTX(opaque); 1058 Error *local_err = NULL; 1059 int ret; 1060 1061 if (xive_in_kernel(tctx->xptr)) { 1062 /* 1063 * Required for hotplugged CPU, for which the state comes 1064 * after all states of the machine. 1065 */ 1066 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 1067 if (ret < 0) { 1068 error_report_err(local_err); 1069 return ret; 1070 } 1071 } 1072 1073 return 0; 1074 } 1075 1076 static const VMStateDescription vmstate_xive_tctx = { 1077 .name = TYPE_XIVE_TCTX, 1078 .version_id = 1, 1079 .minimum_version_id = 1, 1080 .pre_save = vmstate_xive_tctx_pre_save, 1081 .post_load = vmstate_xive_tctx_post_load, 1082 .fields = (const VMStateField[]) { 1083 VMSTATE_BUFFER(regs, XiveTCTX), 1084 VMSTATE_END_OF_LIST() 1085 }, 1086 }; 1087 1088 static const Property xive_tctx_properties[] = { 1089 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 1090 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 1091 XivePresenter *), 1092 }; 1093 1094 static void xive_tctx_class_init(ObjectClass *klass, const void *data) 1095 { 1096 DeviceClass *dc = DEVICE_CLASS(klass); 1097 1098 dc->desc = "XIVE Interrupt Thread Context"; 1099 dc->realize = xive_tctx_realize; 1100 dc->vmsd = &vmstate_xive_tctx; 1101 device_class_set_props(dc, xive_tctx_properties); 1102 /* 1103 * Reason: part of XIVE interrupt controller, needs to be wired up 1104 * by xive_tctx_create(). 1105 */ 1106 dc->user_creatable = false; 1107 } 1108 1109 static const TypeInfo xive_tctx_info = { 1110 .name = TYPE_XIVE_TCTX, 1111 .parent = TYPE_DEVICE, 1112 .instance_size = sizeof(XiveTCTX), 1113 .class_init = xive_tctx_class_init, 1114 }; 1115 1116 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 1117 { 1118 Object *obj; 1119 1120 obj = object_new(TYPE_XIVE_TCTX); 1121 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 1122 object_unref(obj); 1123 object_property_set_link(obj, "cpu", cpu, &error_abort); 1124 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 1125 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 1126 object_unparent(obj); 1127 return NULL; 1128 } 1129 return obj; 1130 } 1131 1132 void xive_tctx_destroy(XiveTCTX *tctx) 1133 { 1134 Object *obj = OBJECT(tctx); 1135 1136 object_unparent(obj); 1137 } 1138 1139 /* 1140 * XIVE ESB helpers 1141 */ 1142 1143 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 1144 { 1145 uint8_t old_pq = *pq & 0x3; 1146 1147 *pq &= ~0x3; 1148 *pq |= value & 0x3; 1149 1150 return old_pq; 1151 } 1152 1153 bool xive_esb_trigger(uint8_t *pq) 1154 { 1155 uint8_t old_pq = *pq & 0x3; 1156 1157 switch (old_pq) { 1158 case XIVE_ESB_RESET: 1159 xive_esb_set(pq, XIVE_ESB_PENDING); 1160 return true; 1161 case XIVE_ESB_PENDING: 1162 case XIVE_ESB_QUEUED: 1163 xive_esb_set(pq, XIVE_ESB_QUEUED); 1164 return false; 1165 case XIVE_ESB_OFF: 1166 xive_esb_set(pq, XIVE_ESB_OFF); 1167 return false; 1168 default: 1169 g_assert_not_reached(); 1170 } 1171 } 1172 1173 bool xive_esb_eoi(uint8_t *pq) 1174 { 1175 uint8_t old_pq = *pq & 0x3; 1176 1177 switch (old_pq) { 1178 case XIVE_ESB_RESET: 1179 case XIVE_ESB_PENDING: 1180 xive_esb_set(pq, XIVE_ESB_RESET); 1181 return false; 1182 case XIVE_ESB_QUEUED: 1183 xive_esb_set(pq, XIVE_ESB_PENDING); 1184 return true; 1185 case XIVE_ESB_OFF: 1186 xive_esb_set(pq, XIVE_ESB_OFF); 1187 return false; 1188 default: 1189 g_assert_not_reached(); 1190 } 1191 } 1192 1193 /* 1194 * XIVE Interrupt Source (or IVSE) 1195 */ 1196 1197 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 1198 { 1199 assert(srcno < xsrc->nr_irqs); 1200 1201 return xsrc->status[srcno] & 0x3; 1202 } 1203 1204 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 1205 { 1206 assert(srcno < xsrc->nr_irqs); 1207 1208 return xive_esb_set(&xsrc->status[srcno], pq); 1209 } 1210 1211 /* 1212 * Returns whether the event notification should be forwarded. 1213 */ 1214 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 1215 { 1216 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 1217 1218 xive_source_set_asserted(xsrc, srcno, true); 1219 1220 switch (old_pq) { 1221 case XIVE_ESB_RESET: 1222 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 1223 return true; 1224 default: 1225 return false; 1226 } 1227 } 1228 1229 /* 1230 * Sources can be configured with PQ offloading in which case the check 1231 * on the PQ state bits of MSIs is disabled 1232 */ 1233 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno) 1234 { 1235 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) && 1236 !xive_source_irq_is_lsi(xsrc, srcno); 1237 } 1238 1239 /* 1240 * Returns whether the event notification should be forwarded. 1241 */ 1242 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 1243 { 1244 bool ret; 1245 1246 assert(srcno < xsrc->nr_irqs); 1247 1248 if (xive_source_esb_disabled(xsrc, srcno)) { 1249 return true; 1250 } 1251 1252 ret = xive_esb_trigger(&xsrc->status[srcno]); 1253 1254 if (xive_source_irq_is_lsi(xsrc, srcno) && 1255 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 1256 qemu_log_mask(LOG_GUEST_ERROR, 1257 "XIVE: queued an event on LSI IRQ %d\n", srcno); 1258 } 1259 1260 return ret; 1261 } 1262 1263 /* 1264 * Returns whether the event notification should be forwarded. 1265 */ 1266 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 1267 { 1268 bool ret; 1269 1270 assert(srcno < xsrc->nr_irqs); 1271 1272 if (xive_source_esb_disabled(xsrc, srcno)) { 1273 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno); 1274 return false; 1275 } 1276 1277 ret = xive_esb_eoi(&xsrc->status[srcno]); 1278 1279 /* 1280 * LSI sources do not set the Q bit but they can still be 1281 * asserted, in which case we should forward a new event 1282 * notification 1283 */ 1284 if (xive_source_irq_is_lsi(xsrc, srcno) && 1285 xive_source_is_asserted(xsrc, srcno)) { 1286 ret = xive_source_lsi_trigger(xsrc, srcno); 1287 } 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Forward the source event notification to the Router 1294 */ 1295 static void xive_source_notify(XiveSource *xsrc, int srcno) 1296 { 1297 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 1298 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno); 1299 1300 if (xnc->notify) { 1301 xnc->notify(xsrc->xive, srcno, pq_checked); 1302 } 1303 } 1304 1305 /* 1306 * In a two pages ESB MMIO setting, even page is the trigger page, odd 1307 * page is for management 1308 */ 1309 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 1310 { 1311 return !((addr >> shift) & 1); 1312 } 1313 1314 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 1315 { 1316 return xive_source_esb_has_2page(xsrc) && 1317 addr_is_even(addr, xsrc->esb_shift - 1); 1318 } 1319 1320 /* 1321 * ESB MMIO loads 1322 * Trigger page Management/EOI page 1323 * 1324 * ESB MMIO setting 2 pages 1 or 2 pages 1325 * 1326 * 0x000 .. 0x3FF -1 EOI and return 0|1 1327 * 0x400 .. 0x7FF -1 EOI and return 0|1 1328 * 0x800 .. 0xBFF -1 return PQ 1329 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 1330 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 1331 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 1332 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 1333 */ 1334 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 1335 { 1336 XiveSource *xsrc = XIVE_SOURCE(opaque); 1337 uint32_t offset = addr & 0xFFF; 1338 uint32_t srcno = addr >> xsrc->esb_shift; 1339 uint64_t ret = -1; 1340 1341 /* In a two pages ESB MMIO setting, trigger page should not be read */ 1342 if (xive_source_is_trigger_page(xsrc, addr)) { 1343 qemu_log_mask(LOG_GUEST_ERROR, 1344 "XIVE: invalid load on IRQ %d trigger page at " 1345 "0x%"HWADDR_PRIx"\n", srcno, addr); 1346 return -1; 1347 } 1348 1349 switch (offset) { 1350 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1351 ret = xive_source_esb_eoi(xsrc, srcno); 1352 1353 /* Forward the source event notification for routing */ 1354 if (ret) { 1355 trace_xive_source_notify(srcno); 1356 xive_source_notify(xsrc, srcno); 1357 } 1358 break; 1359 1360 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1361 ret = xive_source_esb_get(xsrc, srcno); 1362 break; 1363 1364 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1365 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1366 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1367 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1368 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1369 break; 1370 default: 1371 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1372 offset); 1373 } 1374 1375 trace_xive_source_esb_read(addr, srcno, ret); 1376 1377 return ret; 1378 } 1379 1380 /* 1381 * ESB MMIO stores 1382 * Trigger page Management/EOI page 1383 * 1384 * ESB MMIO setting 2 pages 1 or 2 pages 1385 * 1386 * 0x000 .. 0x3FF Trigger Trigger 1387 * 0x400 .. 0x7FF Trigger EOI 1388 * 0x800 .. 0xBFF Trigger undefined 1389 * 0xC00 .. 0xCFF Trigger PQ=00 1390 * 0xD00 .. 0xDFF Trigger PQ=01 1391 * 0xE00 .. 0xDFF Trigger PQ=10 1392 * 0xF00 .. 0xDFF Trigger PQ=11 1393 */ 1394 static void xive_source_esb_write(void *opaque, hwaddr addr, 1395 uint64_t value, unsigned size) 1396 { 1397 XiveSource *xsrc = XIVE_SOURCE(opaque); 1398 uint32_t offset = addr & 0xFFF; 1399 uint32_t srcno = addr >> xsrc->esb_shift; 1400 bool notify = false; 1401 1402 trace_xive_source_esb_write(addr, srcno, value); 1403 1404 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1405 if (xive_source_is_trigger_page(xsrc, addr)) { 1406 notify = xive_source_esb_trigger(xsrc, srcno); 1407 goto out; 1408 } 1409 1410 switch (offset) { 1411 case 0 ... 0x3FF: 1412 notify = xive_source_esb_trigger(xsrc, srcno); 1413 break; 1414 1415 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1416 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1417 qemu_log_mask(LOG_GUEST_ERROR, 1418 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1419 return; 1420 } 1421 1422 notify = xive_source_esb_eoi(xsrc, srcno); 1423 break; 1424 1425 /* 1426 * This is an internal offset used to inject triggers when the PQ 1427 * state bits are not controlled locally. Such as for LSIs when 1428 * under ABT mode. 1429 */ 1430 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1431 notify = true; 1432 break; 1433 1434 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1435 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1436 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1437 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1438 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1439 break; 1440 1441 default: 1442 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1443 offset); 1444 return; 1445 } 1446 1447 out: 1448 /* Forward the source event notification for routing */ 1449 if (notify) { 1450 xive_source_notify(xsrc, srcno); 1451 } else { 1452 trace_xive_source_blocked(srcno); 1453 } 1454 } 1455 1456 static const MemoryRegionOps xive_source_esb_ops = { 1457 .read = xive_source_esb_read, 1458 .write = xive_source_esb_write, 1459 .endianness = DEVICE_BIG_ENDIAN, 1460 .valid = { 1461 .min_access_size = 1, 1462 .max_access_size = 8, 1463 }, 1464 .impl = { 1465 .min_access_size = 1, 1466 .max_access_size = 8, 1467 }, 1468 }; 1469 1470 void xive_source_set_irq(void *opaque, int srcno, int val) 1471 { 1472 XiveSource *xsrc = XIVE_SOURCE(opaque); 1473 bool notify = false; 1474 1475 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1476 if (val) { 1477 notify = xive_source_lsi_trigger(xsrc, srcno); 1478 } else { 1479 xive_source_set_asserted(xsrc, srcno, false); 1480 } 1481 } else { 1482 if (val) { 1483 notify = xive_source_esb_trigger(xsrc, srcno); 1484 } 1485 } 1486 1487 /* Forward the source event notification for routing */ 1488 if (notify) { 1489 xive_source_notify(xsrc, srcno); 1490 } 1491 } 1492 1493 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, GString *buf) 1494 { 1495 for (unsigned i = 0; i < xsrc->nr_irqs; i++) { 1496 uint8_t pq = xive_source_esb_get(xsrc, i); 1497 1498 if (pq == XIVE_ESB_OFF) { 1499 continue; 1500 } 1501 1502 g_string_append_printf(buf, " %08x %s %c%c%c\n", i + offset, 1503 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1504 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1505 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1506 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1507 } 1508 } 1509 1510 static void xive_source_reset(void *dev) 1511 { 1512 XiveSource *xsrc = XIVE_SOURCE(dev); 1513 1514 /* Do not clear the LSI bitmap */ 1515 1516 memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs); 1517 } 1518 1519 static void xive_source_realize(DeviceState *dev, Error **errp) 1520 { 1521 XiveSource *xsrc = XIVE_SOURCE(dev); 1522 uint64_t esb_len = xive_source_esb_len(xsrc); 1523 1524 assert(xsrc->xive); 1525 1526 if (!xsrc->nr_irqs) { 1527 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1528 return; 1529 } 1530 1531 if (xsrc->esb_shift != XIVE_ESB_4K && 1532 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1533 xsrc->esb_shift != XIVE_ESB_64K && 1534 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1535 error_setg(errp, "Invalid ESB shift setting"); 1536 return; 1537 } 1538 1539 xsrc->status = g_malloc0(xsrc->nr_irqs); 1540 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1541 1542 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1543 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1544 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1545 esb_len); 1546 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1547 1548 qemu_register_reset(xive_source_reset, dev); 1549 } 1550 1551 static const VMStateDescription vmstate_xive_source = { 1552 .name = TYPE_XIVE_SOURCE, 1553 .version_id = 1, 1554 .minimum_version_id = 1, 1555 .fields = (const VMStateField[]) { 1556 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1557 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1558 VMSTATE_END_OF_LIST() 1559 }, 1560 }; 1561 1562 /* 1563 * The default XIVE interrupt source setting for the ESB MMIOs is two 1564 * 64k pages without Store EOI, to be in sync with KVM. 1565 */ 1566 static const Property xive_source_properties[] = { 1567 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1568 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1569 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1570 /* 1571 * By default, PQs are initialized to 0b01 (Q=1) which corresponds 1572 * to "ints off" 1573 */ 1574 DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF), 1575 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1576 XiveNotifier *), 1577 }; 1578 1579 static void xive_source_class_init(ObjectClass *klass, const void *data) 1580 { 1581 DeviceClass *dc = DEVICE_CLASS(klass); 1582 1583 dc->desc = "XIVE Interrupt Source"; 1584 device_class_set_props(dc, xive_source_properties); 1585 dc->realize = xive_source_realize; 1586 dc->vmsd = &vmstate_xive_source; 1587 /* 1588 * Reason: part of XIVE interrupt controller, needs to be wired up, 1589 * e.g. by spapr_xive_instance_init(). 1590 */ 1591 dc->user_creatable = false; 1592 } 1593 1594 static const TypeInfo xive_source_info = { 1595 .name = TYPE_XIVE_SOURCE, 1596 .parent = TYPE_DEVICE, 1597 .instance_size = sizeof(XiveSource), 1598 .class_init = xive_source_class_init, 1599 }; 1600 1601 /* 1602 * XiveEND helpers 1603 */ 1604 1605 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf) 1606 { 1607 uint64_t qaddr_base = xive_end_qaddr(end); 1608 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1609 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1610 uint32_t qentries = 1 << (qsize + 10); 1611 int i; 1612 1613 /* 1614 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1615 */ 1616 g_string_append_printf(buf, " [ "); 1617 qindex = (qindex - (width - 1)) & (qentries - 1); 1618 for (i = 0; i < width; i++) { 1619 uint64_t qaddr = qaddr_base + (qindex << 2); 1620 uint32_t qdata = -1; 1621 1622 if (dma_memory_read(&address_space_memory, qaddr, 1623 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1624 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1625 HWADDR_PRIx "\n", qaddr); 1626 return; 1627 } 1628 g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "", 1629 be32_to_cpu(qdata)); 1630 qindex = (qindex + 1) & (qentries - 1); 1631 } 1632 g_string_append_c(buf, ']'); 1633 } 1634 1635 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf) 1636 { 1637 uint64_t qaddr_base = xive_end_qaddr(end); 1638 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1639 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1640 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1641 uint32_t qentries = 1 << (qsize + 10); 1642 1643 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1644 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1645 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1646 uint8_t pq; 1647 1648 if (!xive_end_is_valid(end)) { 1649 return; 1650 } 1651 1652 pq = xive_get_field32(END_W1_ESn, end->w1); 1653 1654 g_string_append_printf(buf, 1655 " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1656 end_idx, 1657 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1658 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1659 xive_end_is_valid(end) ? 'v' : '-', 1660 xive_end_is_enqueue(end) ? 'q' : '-', 1661 xive_end_is_notify(end) ? 'n' : '-', 1662 xive_end_is_backlog(end) ? 'b' : '-', 1663 xive_end_is_escalate(end) ? 'e' : '-', 1664 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1665 xive_end_is_silent_escalation(end) ? 's' : '-', 1666 xive_end_is_firmware(end) ? 'f' : '-', 1667 priority, nvt_blk, nvt_idx); 1668 1669 if (qaddr_base) { 1670 g_string_append_printf(buf, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1671 qaddr_base, qindex, qentries, qgen); 1672 xive_end_queue_pic_print_info(end, 6, buf); 1673 } 1674 g_string_append_c(buf, '\n'); 1675 } 1676 1677 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1678 { 1679 uint64_t qaddr_base = xive_end_qaddr(end); 1680 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1681 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1682 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1683 1684 uint64_t qaddr = qaddr_base + (qindex << 2); 1685 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1686 uint32_t qentries = 1 << (qsize + 10); 1687 1688 if (dma_memory_write(&address_space_memory, qaddr, 1689 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1690 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1691 HWADDR_PRIx "\n", qaddr); 1692 return; 1693 } 1694 1695 qindex = (qindex + 1) & (qentries - 1); 1696 if (qindex == 0) { 1697 qgen ^= 1; 1698 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1699 } 1700 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1701 } 1702 1703 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf) 1704 { 1705 XiveEAS *eas = (XiveEAS *) &end->w4; 1706 uint8_t pq; 1707 1708 if (!xive_end_is_escalate(end)) { 1709 return; 1710 } 1711 1712 pq = xive_get_field32(END_W1_ESe, end->w1); 1713 1714 g_string_append_printf(buf, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1715 end_idx, 1716 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1717 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1718 xive_eas_is_valid(eas) ? 'V' : ' ', 1719 xive_eas_is_masked(eas) ? 'M' : ' ', 1720 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1721 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1722 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1723 } 1724 1725 /* 1726 * XIVE Router (aka. Virtualization Controller or IVRE) 1727 */ 1728 1729 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1730 XiveEAS *eas) 1731 { 1732 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1733 1734 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1735 } 1736 1737 static 1738 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1739 uint8_t *pq) 1740 { 1741 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1742 1743 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1744 } 1745 1746 static 1747 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1748 uint8_t *pq) 1749 { 1750 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1751 1752 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1753 } 1754 1755 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1756 XiveEND *end) 1757 { 1758 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1759 1760 return xrc->get_end(xrtr, end_blk, end_idx, end); 1761 } 1762 1763 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1764 XiveEND *end, uint8_t word_number) 1765 { 1766 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1767 1768 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1769 } 1770 1771 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1772 XiveNVT *nvt) 1773 { 1774 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1775 1776 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1777 } 1778 1779 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1780 XiveNVT *nvt, uint8_t word_number) 1781 { 1782 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1783 1784 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1785 } 1786 1787 static int xive_router_get_block_id(XiveRouter *xrtr) 1788 { 1789 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1790 1791 return xrc->get_block_id(xrtr); 1792 } 1793 1794 static void xive_router_realize(DeviceState *dev, Error **errp) 1795 { 1796 XiveRouter *xrtr = XIVE_ROUTER(dev); 1797 1798 assert(xrtr->xfb); 1799 } 1800 1801 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas) 1802 { 1803 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1804 1805 return xrc->end_notify(xrtr, eas); 1806 } 1807 1808 /* 1809 * Encode the HW CAM line in the block group mode format : 1810 * 1811 * chip << 19 | 0000000 0 0001 thread (7Bit) 1812 */ 1813 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1814 { 1815 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1816 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1817 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1818 1819 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1820 } 1821 1822 uint32_t xive_get_vpgroup_size(uint32_t nvp_index) 1823 { 1824 /* 1825 * Group size is a power of 2. The position of the first 0 1826 * (starting with the least significant bits) in the NVP index 1827 * gives the size of the group. 1828 */ 1829 int first_zero = cto32(nvp_index); 1830 if (first_zero >= 31) { 1831 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x", 1832 nvp_index); 1833 return 0; 1834 } 1835 1836 return 1U << (first_zero + 1); 1837 } 1838 1839 uint8_t xive_get_group_level(bool crowd, bool ignore, 1840 uint32_t nvp_blk, uint32_t nvp_index) 1841 { 1842 int first_zero; 1843 uint8_t level; 1844 1845 if (!ignore) { 1846 g_assert(!crowd); 1847 return 0; 1848 } 1849 1850 first_zero = cto32(nvp_index); 1851 if (first_zero >= 31) { 1852 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x", 1853 nvp_index); 1854 return 0; 1855 } 1856 1857 level = (first_zero + 1) & 0b1111; 1858 if (crowd) { 1859 uint32_t blk; 1860 1861 /* crowd level is bit position of first 0 from the right in nvp_blk */ 1862 first_zero = cto32(nvp_blk); 1863 if (first_zero >= 31) { 1864 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid crowd block 0x%08x", 1865 nvp_blk); 1866 return 0; 1867 } 1868 blk = first_zero + 1; 1869 1870 /* 1871 * Supported crowd sizes are 2^1, 2^2, and 2^4. 2^3 is not supported. 1872 * HW will encode level 4 as the value 3. See xive2_pgofnext(). 1873 */ 1874 switch (blk) { 1875 case 1: 1876 case 2: 1877 break; 1878 case 4: 1879 blk = 3; 1880 break; 1881 default: 1882 g_assert_not_reached(); 1883 } 1884 1885 /* Crowd level bits reside in upper 2 bits of the 6 bit group level */ 1886 level |= blk << 4; 1887 } 1888 return level; 1889 } 1890 1891 /* 1892 * The thread context register words are in big-endian format. 1893 */ 1894 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1895 uint8_t format, 1896 uint8_t nvt_blk, uint32_t nvt_idx, 1897 bool cam_ignore, uint32_t logic_serv) 1898 { 1899 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1900 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1901 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1902 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1903 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1904 1905 /* 1906 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1907 * identifier are ignored in the "CAM" match. 1908 */ 1909 1910 if (format == 0) { 1911 if (cam_ignore == true) { 1912 /* 1913 * F=0 & i=1: Logical server notification (bits ignored at 1914 * the end of the NVT identifier) 1915 */ 1916 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1917 nvt_blk, nvt_idx); 1918 return -1; 1919 } 1920 1921 /* F=0 & i=0: Specific NVT notification */ 1922 1923 /* PHYS ring */ 1924 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1925 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1926 return TM_QW3_HV_PHYS; 1927 } 1928 1929 /* HV POOL ring */ 1930 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1931 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1932 return TM_QW2_HV_POOL; 1933 } 1934 1935 /* OS ring */ 1936 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1937 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1938 return TM_QW1_OS; 1939 } 1940 } else { 1941 /* F=1 : User level Event-Based Branch (EBB) notification */ 1942 1943 /* USER ring */ 1944 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1945 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1946 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1947 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1948 return TM_QW0_USER; 1949 } 1950 } 1951 return -1; 1952 } 1953 1954 /* 1955 * This is our simple Xive Presenter Engine model. It is merged in the 1956 * Router as it does not require an extra object. 1957 */ 1958 bool xive_presenter_match(XiveFabric *xfb, uint8_t format, 1959 uint8_t nvt_blk, uint32_t nvt_idx, 1960 bool crowd, bool cam_ignore, uint8_t priority, 1961 uint32_t logic_serv, XiveTCTXMatch *match) 1962 { 1963 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1964 1965 memset(match, 0, sizeof(*match)); 1966 1967 /* 1968 * Ask the machine to scan the interrupt controllers for a match. 1969 * 1970 * For VP-specific notification, we expect at most one match and 1971 * one call to the presenters is all we need (abbreviated notify 1972 * sequence documented by the architecture). 1973 * 1974 * For VP-group notification, match_nvt() is the equivalent of the 1975 * "histogram" and "poll" commands sent to the power bus to the 1976 * presenters. 'count' could be more than one, but we always 1977 * select the first match for now. 'precluded' tells if (at least) 1978 * one thread matches but can't take the interrupt now because 1979 * it's running at a more favored priority. We return the 1980 * information to the router so that it can take appropriate 1981 * actions (backlog, escalation, broadcast, etc...) 1982 * 1983 * If we were to implement a better way of dispatching the 1984 * interrupt in case of multiple matches (instead of the first 1985 * match), we would need a heuristic to elect a thread (for 1986 * example, the hardware keeps track of an 'age' in the TIMA) and 1987 * a new command to the presenters (the equivalent of the "assign" 1988 * power bus command in the documented full notify sequence. 1989 */ 1990 return xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, crowd, cam_ignore, 1991 priority, logic_serv, match); 1992 } 1993 1994 /* 1995 * Notification using the END ESe/ESn bit (Event State Buffer for 1996 * escalation and notification). Provide further coalescing in the 1997 * Router. 1998 */ 1999 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 2000 uint32_t end_idx, XiveEND *end, 2001 uint32_t end_esmask) 2002 { 2003 uint8_t pq = xive_get_field32(end_esmask, end->w1); 2004 bool notify = xive_esb_trigger(&pq); 2005 2006 if (pq != xive_get_field32(end_esmask, end->w1)) { 2007 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 2008 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 2009 } 2010 2011 /* ESe/n[Q]=1 : end of notification */ 2012 return notify; 2013 } 2014 2015 /* 2016 * An END trigger can come from an event trigger (IPI or HW) or from 2017 * another chip. We don't model the PowerBus but the END trigger 2018 * message has the same parameters than in the function below. 2019 */ 2020 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas) 2021 { 2022 XiveEND end; 2023 uint8_t priority; 2024 uint8_t format; 2025 uint8_t nvt_blk; 2026 uint32_t nvt_idx; 2027 XiveNVT nvt; 2028 XiveTCTXMatch match; 2029 2030 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 2031 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 2032 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w); 2033 2034 /* END cache lookup */ 2035 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 2036 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 2037 end_idx); 2038 return; 2039 } 2040 2041 if (!xive_end_is_valid(&end)) { 2042 trace_xive_router_end_notify(end_blk, end_idx, end_data); 2043 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 2044 end_blk, end_idx); 2045 return; 2046 } 2047 2048 if (xive_end_is_enqueue(&end)) { 2049 xive_end_enqueue(&end, end_data); 2050 /* Enqueuing event data modifies the EQ toggle and index */ 2051 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 2052 } 2053 2054 /* 2055 * When the END is silent, we skip the notification part. 2056 */ 2057 if (xive_end_is_silent_escalation(&end)) { 2058 goto do_escalation; 2059 } 2060 2061 /* 2062 * The W7 format depends on the F bit in W6. It defines the type 2063 * of the notification : 2064 * 2065 * F=0 : single or multiple NVT notification 2066 * F=1 : User level Event-Based Branch (EBB) notification, no 2067 * priority 2068 */ 2069 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 2070 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 2071 2072 /* The END is masked */ 2073 if (format == 0 && priority == 0xff) { 2074 return; 2075 } 2076 2077 /* 2078 * Check the END ESn (Event State Buffer for notification) for 2079 * even further coalescing in the Router 2080 */ 2081 if (!xive_end_is_notify(&end)) { 2082 /* ESn[Q]=1 : end of notification */ 2083 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 2084 &end, END_W1_ESn)) { 2085 return; 2086 } 2087 } 2088 2089 /* 2090 * Follows IVPE notification 2091 */ 2092 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 2093 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 2094 2095 /* NVT cache lookup */ 2096 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 2097 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 2098 nvt_blk, nvt_idx); 2099 return; 2100 } 2101 2102 if (!xive_nvt_is_valid(&nvt)) { 2103 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 2104 nvt_blk, nvt_idx); 2105 return; 2106 } 2107 2108 /* TODO: Auto EOI. */ 2109 /* we don't support VP-group notification on P9, so precluded is not used */ 2110 if (xive_presenter_match(xrtr->xfb, format, nvt_blk, nvt_idx, 2111 false /* crowd */, 2112 xive_get_field32(END_W7_F0_IGNORE, end.w7), 2113 priority, 2114 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7), 2115 &match)) { 2116 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring, 0); 2117 xive_tctx_pipr_present(match.tctx, match.ring, priority, 0); 2118 return; 2119 } 2120 2121 /* 2122 * If no matching NVT is dispatched on a HW thread : 2123 * - specific VP: update the NVT structure if backlog is activated 2124 * - logical server : forward request to IVPE (not supported) 2125 */ 2126 if (xive_end_is_backlog(&end)) { 2127 uint8_t ipb; 2128 2129 if (format == 1) { 2130 qemu_log_mask(LOG_GUEST_ERROR, 2131 "XIVE: END %x/%x invalid config: F1 & backlog\n", 2132 end_blk, end_idx); 2133 return; 2134 } 2135 /* 2136 * Record the IPB in the associated NVT structure for later 2137 * use. The presenter will resend the interrupt when the vCPU 2138 * is dispatched again on a HW thread. 2139 */ 2140 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 2141 xive_priority_to_ipb(priority); 2142 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 2143 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 2144 2145 /* 2146 * On HW, follows a "Broadcast Backlog" to IVPEs 2147 */ 2148 } 2149 2150 do_escalation: 2151 /* 2152 * If activated, escalate notification using the ESe PQ bits and 2153 * the EAS in w4-5 2154 */ 2155 if (!xive_end_is_escalate(&end)) { 2156 return; 2157 } 2158 2159 /* 2160 * Check the END ESe (Event State Buffer for escalation) for even 2161 * further coalescing in the Router 2162 */ 2163 if (!xive_end_is_uncond_escalation(&end)) { 2164 /* ESe[Q]=1 : end of notification */ 2165 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 2166 &end, END_W1_ESe)) { 2167 return; 2168 } 2169 } 2170 2171 trace_xive_router_end_escalate(end_blk, end_idx, 2172 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 2173 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 2174 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 2175 /* 2176 * The END trigger becomes an Escalation trigger 2177 */ 2178 xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4); 2179 } 2180 2181 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 2182 { 2183 XiveRouter *xrtr = XIVE_ROUTER(xn); 2184 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 2185 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 2186 XiveEAS eas; 2187 2188 /* EAS cache lookup */ 2189 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 2190 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 2191 return; 2192 } 2193 2194 if (!pq_checked) { 2195 bool notify; 2196 uint8_t pq; 2197 2198 /* PQ cache lookup */ 2199 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 2200 /* Set FIR */ 2201 g_assert_not_reached(); 2202 } 2203 2204 notify = xive_esb_trigger(&pq); 2205 2206 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 2207 /* Set FIR */ 2208 g_assert_not_reached(); 2209 } 2210 2211 if (!notify) { 2212 return; 2213 } 2214 } 2215 2216 if (!xive_eas_is_valid(&eas)) { 2217 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 2218 return; 2219 } 2220 2221 if (xive_eas_is_masked(&eas)) { 2222 /* Notification completed */ 2223 return; 2224 } 2225 2226 /* 2227 * The event trigger becomes an END trigger 2228 */ 2229 xive_router_end_notify_handler(xrtr, &eas); 2230 } 2231 2232 static const Property xive_router_properties[] = { 2233 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 2234 TYPE_XIVE_FABRIC, XiveFabric *), 2235 }; 2236 2237 static void xive_router_class_init(ObjectClass *klass, const void *data) 2238 { 2239 DeviceClass *dc = DEVICE_CLASS(klass); 2240 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 2241 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 2242 2243 dc->desc = "XIVE Router Engine"; 2244 device_class_set_props(dc, xive_router_properties); 2245 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 2246 dc->realize = xive_router_realize; 2247 xnc->notify = xive_router_notify; 2248 2249 /* By default, the router handles END triggers locally */ 2250 xrc->end_notify = xive_router_end_notify; 2251 } 2252 2253 static const TypeInfo xive_router_info = { 2254 .name = TYPE_XIVE_ROUTER, 2255 .parent = TYPE_SYS_BUS_DEVICE, 2256 .abstract = true, 2257 .instance_size = sizeof(XiveRouter), 2258 .class_size = sizeof(XiveRouterClass), 2259 .class_init = xive_router_class_init, 2260 .interfaces = (const InterfaceInfo[]) { 2261 { TYPE_XIVE_NOTIFIER }, 2262 { TYPE_XIVE_PRESENTER }, 2263 { } 2264 } 2265 }; 2266 2267 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf) 2268 { 2269 if (!xive_eas_is_valid(eas)) { 2270 return; 2271 } 2272 2273 g_string_append_printf(buf, " %08x %s end:%02x/%04x data:%08x\n", 2274 lisn, xive_eas_is_masked(eas) ? "M" : " ", 2275 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 2276 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 2277 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 2278 } 2279 2280 /* 2281 * END ESB MMIO loads 2282 */ 2283 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 2284 { 2285 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 2286 uint32_t offset = addr & 0xFFF; 2287 uint8_t end_blk; 2288 uint32_t end_idx; 2289 XiveEND end; 2290 uint32_t end_esmask; 2291 uint8_t pq; 2292 uint64_t ret = -1; 2293 2294 /* 2295 * The block id should be deduced from the load address on the END 2296 * ESB MMIO but our model only supports a single block per XIVE chip. 2297 */ 2298 end_blk = xive_router_get_block_id(xsrc->xrtr); 2299 end_idx = addr >> (xsrc->esb_shift + 1); 2300 2301 trace_xive_end_source_read(end_blk, end_idx, addr); 2302 2303 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 2304 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 2305 end_idx); 2306 return -1; 2307 } 2308 2309 if (!xive_end_is_valid(&end)) { 2310 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 2311 end_blk, end_idx); 2312 return -1; 2313 } 2314 2315 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 2316 pq = xive_get_field32(end_esmask, end.w1); 2317 2318 switch (offset) { 2319 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 2320 ret = xive_esb_eoi(&pq); 2321 2322 /* Forward the source event notification for routing ?? */ 2323 break; 2324 2325 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 2326 ret = pq; 2327 break; 2328 2329 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 2330 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 2331 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 2332 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 2333 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 2334 break; 2335 default: 2336 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 2337 offset); 2338 return -1; 2339 } 2340 2341 if (pq != xive_get_field32(end_esmask, end.w1)) { 2342 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 2343 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 2344 } 2345 2346 return ret; 2347 } 2348 2349 /* 2350 * END ESB MMIO stores are invalid 2351 */ 2352 static void xive_end_source_write(void *opaque, hwaddr addr, 2353 uint64_t value, unsigned size) 2354 { 2355 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 2356 HWADDR_PRIx"\n", addr); 2357 } 2358 2359 static const MemoryRegionOps xive_end_source_ops = { 2360 .read = xive_end_source_read, 2361 .write = xive_end_source_write, 2362 .endianness = DEVICE_BIG_ENDIAN, 2363 .valid = { 2364 .min_access_size = 1, 2365 .max_access_size = 8, 2366 }, 2367 .impl = { 2368 .min_access_size = 1, 2369 .max_access_size = 8, 2370 }, 2371 }; 2372 2373 static void xive_end_source_realize(DeviceState *dev, Error **errp) 2374 { 2375 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 2376 2377 assert(xsrc->xrtr); 2378 2379 if (!xsrc->nr_ends) { 2380 error_setg(errp, "Number of interrupt needs to be greater than 0"); 2381 return; 2382 } 2383 2384 if (xsrc->esb_shift != XIVE_ESB_4K && 2385 xsrc->esb_shift != XIVE_ESB_64K) { 2386 error_setg(errp, "Invalid ESB shift setting"); 2387 return; 2388 } 2389 2390 /* 2391 * Each END is assigned an even/odd pair of MMIO pages, the even page 2392 * manages the ESn field while the odd page manages the ESe field. 2393 */ 2394 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 2395 &xive_end_source_ops, xsrc, "xive.end", 2396 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 2397 } 2398 2399 static const Property xive_end_source_properties[] = { 2400 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 2401 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 2402 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 2403 XiveRouter *), 2404 }; 2405 2406 static void xive_end_source_class_init(ObjectClass *klass, const void *data) 2407 { 2408 DeviceClass *dc = DEVICE_CLASS(klass); 2409 2410 dc->desc = "XIVE END Source"; 2411 device_class_set_props(dc, xive_end_source_properties); 2412 dc->realize = xive_end_source_realize; 2413 /* 2414 * Reason: part of XIVE interrupt controller, needs to be wired up, 2415 * e.g. by spapr_xive_instance_init(). 2416 */ 2417 dc->user_creatable = false; 2418 } 2419 2420 static const TypeInfo xive_end_source_info = { 2421 .name = TYPE_XIVE_END_SOURCE, 2422 .parent = TYPE_DEVICE, 2423 .instance_size = sizeof(XiveENDSource), 2424 .class_init = xive_end_source_class_init, 2425 }; 2426 2427 /* 2428 * XIVE Notifier 2429 */ 2430 static const TypeInfo xive_notifier_info = { 2431 .name = TYPE_XIVE_NOTIFIER, 2432 .parent = TYPE_INTERFACE, 2433 .class_size = sizeof(XiveNotifierClass), 2434 }; 2435 2436 /* 2437 * XIVE Presenter 2438 */ 2439 static const TypeInfo xive_presenter_info = { 2440 .name = TYPE_XIVE_PRESENTER, 2441 .parent = TYPE_INTERFACE, 2442 .class_size = sizeof(XivePresenterClass), 2443 }; 2444 2445 /* 2446 * XIVE Fabric 2447 */ 2448 static const TypeInfo xive_fabric_info = { 2449 .name = TYPE_XIVE_FABRIC, 2450 .parent = TYPE_INTERFACE, 2451 .class_size = sizeof(XiveFabricClass), 2452 }; 2453 2454 static void xive_register_types(void) 2455 { 2456 type_register_static(&xive_fabric_info); 2457 type_register_static(&xive_source_info); 2458 type_register_static(&xive_notifier_info); 2459 type_register_static(&xive_presenter_info); 2460 type_register_static(&xive_router_info); 2461 type_register_static(&xive_end_source_info); 2462 type_register_static(&xive_tctx_info); 2463 } 2464 2465 type_init(xive_register_types) 2466