xref: /openbmc/qemu/hw/intc/xive.c (revision b0dd0a3d)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
25 
26 /*
27  * XIVE Thread Interrupt Management context
28  */
29 
30 /*
31  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32  * Interrupt Priority Register (PIPR), which contains the priority of
33  * the most favored pending notification.
34  */
35 static uint8_t ipb_to_pipr(uint8_t ibp)
36 {
37     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
38 }
39 
40 static uint8_t exception_mask(uint8_t ring)
41 {
42     switch (ring) {
43     case TM_QW1_OS:
44         return TM_QW1_NSR_EO;
45     case TM_QW3_HV_PHYS:
46         return TM_QW3_NSR_HE;
47     default:
48         g_assert_not_reached();
49     }
50 }
51 
52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
53 {
54         switch (ring) {
55         case TM_QW0_USER:
56                 return 0; /* Not supported */
57         case TM_QW1_OS:
58                 return tctx->os_output;
59         case TM_QW2_HV_POOL:
60         case TM_QW3_HV_PHYS:
61                 return tctx->hv_output;
62         default:
63                 return 0;
64         }
65 }
66 
67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
68 {
69     uint8_t *regs = &tctx->regs[ring];
70     uint8_t nsr = regs[TM_NSR];
71     uint8_t mask = exception_mask(ring);
72 
73     qemu_irq_lower(xive_tctx_output(tctx, ring));
74 
75     if (regs[TM_NSR] & mask) {
76         uint8_t cppr = regs[TM_PIPR];
77 
78         regs[TM_CPPR] = cppr;
79 
80         /* Reset the pending buffer bit */
81         regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
83 
84         /* Drop Exception bit */
85         regs[TM_NSR] &= ~mask;
86 
87         trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88                                regs[TM_IPB], regs[TM_PIPR],
89                                regs[TM_CPPR], regs[TM_NSR]);
90     }
91 
92     return (nsr << 8) | regs[TM_CPPR];
93 }
94 
95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
96 {
97     uint8_t *regs = &tctx->regs[ring];
98 
99     if (regs[TM_PIPR] < regs[TM_CPPR]) {
100         switch (ring) {
101         case TM_QW1_OS:
102             regs[TM_NSR] |= TM_QW1_NSR_EO;
103             break;
104         case TM_QW3_HV_PHYS:
105             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106             break;
107         default:
108             g_assert_not_reached();
109         }
110         trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111                                regs[TM_IPB], regs[TM_PIPR],
112                                regs[TM_CPPR], regs[TM_NSR]);
113         qemu_irq_raise(xive_tctx_output(tctx, ring));
114     }
115 }
116 
117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
118 {
119     uint8_t *regs = &tctx->regs[ring];
120 
121     trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
122                              regs[TM_IPB], regs[TM_PIPR],
123                              cppr, regs[TM_NSR]);
124 
125     if (cppr > XIVE_PRIORITY_MAX) {
126         cppr = 0xff;
127     }
128 
129     tctx->regs[ring + TM_CPPR] = cppr;
130 
131     /* CPPR has changed, check if we need to raise a pending exception */
132     xive_tctx_notify(tctx, ring);
133 }
134 
135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
136 {
137     uint8_t *regs = &tctx->regs[ring];
138 
139     regs[TM_IPB] |= ipb;
140     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
141     xive_tctx_notify(tctx, ring);
142 }
143 
144 /*
145  * XIVE Thread Interrupt Management Area (TIMA)
146  */
147 
148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
149                                 hwaddr offset, uint64_t value, unsigned size)
150 {
151     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
152 }
153 
154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
155                                    hwaddr offset, unsigned size)
156 {
157     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
158 }
159 
160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
161                                       hwaddr offset, unsigned size)
162 {
163     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
164     uint32_t qw2w2;
165 
166     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
167     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
168     return qw2w2;
169 }
170 
171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
172                             uint64_t value, unsigned size)
173 {
174     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
175 }
176 
177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
178                                 hwaddr offset, unsigned size)
179 {
180     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
181 }
182 
183 /*
184  * Define an access map for each page of the TIMA that we will use in
185  * the memory region ops to filter values when doing loads and stores
186  * of raw registers values
187  *
188  * Registers accessibility bits :
189  *
190  *    0x0 - no access
191  *    0x1 - write only
192  *    0x2 - read only
193  *    0x3 - read/write
194  */
195 
196 static const uint8_t xive_tm_hw_view[] = {
197     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
198     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
199     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
200     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
201 };
202 
203 static const uint8_t xive_tm_hv_view[] = {
204     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
205     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
206     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
207     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
208 };
209 
210 static const uint8_t xive_tm_os_view[] = {
211     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
212     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
213     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
214     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
215 };
216 
217 static const uint8_t xive_tm_user_view[] = {
218     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
219     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
220     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
221     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
222 };
223 
224 /*
225  * Overall TIMA access map for the thread interrupt management context
226  * registers
227  */
228 static const uint8_t *xive_tm_views[] = {
229     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
230     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
231     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
232     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
233 };
234 
235 /*
236  * Computes a register access mask for a given offset in the TIMA
237  */
238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
239 {
240     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
241     uint8_t reg_offset = offset & 0x3F;
242     uint8_t reg_mask = write ? 0x1 : 0x2;
243     uint64_t mask = 0x0;
244     int i;
245 
246     for (i = 0; i < size; i++) {
247         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
248             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
249         }
250     }
251 
252     return mask;
253 }
254 
255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
256                               unsigned size)
257 {
258     uint8_t ring_offset = offset & 0x30;
259     uint8_t reg_offset = offset & 0x3F;
260     uint64_t mask = xive_tm_mask(offset, size, true);
261     int i;
262 
263     /*
264      * Only 4 or 8 bytes stores are allowed and the User ring is
265      * excluded
266      */
267     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
268         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
269                       HWADDR_PRIx"\n", offset);
270         return;
271     }
272 
273     /*
274      * Use the register offset for the raw values and filter out
275      * reserved values
276      */
277     for (i = 0; i < size; i++) {
278         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
279         if (byte_mask) {
280             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
281                 byte_mask;
282         }
283     }
284 }
285 
286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
287 {
288     uint8_t ring_offset = offset & 0x30;
289     uint8_t reg_offset = offset & 0x3F;
290     uint64_t mask = xive_tm_mask(offset, size, false);
291     uint64_t ret;
292     int i;
293 
294     /*
295      * Only 4 or 8 bytes loads are allowed and the User ring is
296      * excluded
297      */
298     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
299         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
300                       HWADDR_PRIx"\n", offset);
301         return -1;
302     }
303 
304     /* Use the register offset for the raw values */
305     ret = 0;
306     for (i = 0; i < size; i++) {
307         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
308     }
309 
310     /* filter out reserved values */
311     return ret & mask;
312 }
313 
314 /*
315  * The TM context is mapped twice within each page. Stores and loads
316  * to the first mapping below 2K write and read the specified values
317  * without modification. The second mapping above 2K performs specific
318  * state changes (side effects) in addition to setting/returning the
319  * interrupt management area context of the processor thread.
320  */
321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
322                                    hwaddr offset, unsigned size)
323 {
324     return xive_tctx_accept(tctx, TM_QW1_OS);
325 }
326 
327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
328                                 hwaddr offset, uint64_t value, unsigned size)
329 {
330     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
331 }
332 
333 /*
334  * Adjust the IPB to allow a CPU to process event queues of other
335  * priorities during one physical interrupt cycle.
336  */
337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
338                                    hwaddr offset, uint64_t value, unsigned size)
339 {
340     xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
341 }
342 
343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
344                                uint32_t *nvt_idx, bool *vo)
345 {
346     if (nvt_blk) {
347         *nvt_blk = xive_nvt_blk(cam);
348     }
349     if (nvt_idx) {
350         *nvt_idx = xive_nvt_idx(cam);
351     }
352     if (vo) {
353         *vo = !!(cam & TM_QW1W2_VO);
354     }
355 }
356 
357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
358                                      uint32_t *nvt_idx, bool *vo)
359 {
360     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
361     uint32_t cam = be32_to_cpu(qw1w2);
362 
363     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
364     return qw1w2;
365 }
366 
367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
368 {
369     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
370 }
371 
372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
373                                     hwaddr offset, unsigned size)
374 {
375     uint32_t qw1w2;
376     uint32_t qw1w2_new;
377     uint8_t nvt_blk;
378     uint32_t nvt_idx;
379     bool vo;
380 
381     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
382 
383     if (!vo) {
384         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
385                       nvt_blk, nvt_idx);
386     }
387 
388     /* Invalidate CAM line */
389     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
390     xive_tctx_set_os_cam(tctx, qw1w2_new);
391     return qw1w2;
392 }
393 
394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
395                                   uint8_t nvt_blk, uint32_t nvt_idx)
396 {
397     XiveNVT nvt;
398     uint8_t ipb;
399 
400     /*
401      * Grab the associated NVT to pull the pending bits, and merge
402      * them with the IPB of the thread interrupt context registers
403      */
404     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
405         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
406                           nvt_blk, nvt_idx);
407         return;
408     }
409 
410     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
411 
412     if (ipb) {
413         /* Reset the NVT value */
414         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
415         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
416 
417         /* Merge in current context */
418         xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
419     }
420 }
421 
422 /*
423  * Updating the OS CAM line can trigger a resend of interrupt
424  */
425 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
426                                 hwaddr offset, uint64_t value, unsigned size)
427 {
428     uint32_t cam = value;
429     uint32_t qw1w2 = cpu_to_be32(cam);
430     uint8_t nvt_blk;
431     uint32_t nvt_idx;
432     bool vo;
433 
434     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
435 
436     /* First update the registers */
437     xive_tctx_set_os_cam(tctx, qw1w2);
438 
439     /* Check the interrupt pending bits */
440     if (vo) {
441         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
442     }
443 }
444 
445 /*
446  * Define a mapping of "special" operations depending on the TIMA page
447  * offset and the size of the operation.
448  */
449 typedef struct XiveTmOp {
450     uint8_t  page_offset;
451     uint32_t op_offset;
452     unsigned size;
453     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
454                               hwaddr offset,
455                               uint64_t value, unsigned size);
456     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
457                              unsigned size);
458 } XiveTmOp;
459 
460 static const XiveTmOp xive_tm_operations[] = {
461     /*
462      * MMIOs below 2K : raw values and special operations without side
463      * effects
464      */
465     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
466     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,     4, xive_tm_push_os_ctx, NULL },
467     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
468     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
469     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
470 
471     /* MMIOs above 2K : special operations with side effects */
472     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
473     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
474     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
475     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
476     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
477     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
478     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
479 };
480 
481 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
482 {
483     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
484     uint32_t op_offset = offset & 0xFFF;
485     int i;
486 
487     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
488         const XiveTmOp *xto = &xive_tm_operations[i];
489 
490         /* Accesses done from a more privileged TIMA page is allowed */
491         if (xto->page_offset >= page_offset &&
492             xto->op_offset == op_offset &&
493             xto->size == size &&
494             ((write && xto->write_handler) || (!write && xto->read_handler))) {
495             return xto;
496         }
497     }
498     return NULL;
499 }
500 
501 /*
502  * TIMA MMIO handlers
503  */
504 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
505                         uint64_t value, unsigned size)
506 {
507     const XiveTmOp *xto;
508 
509     trace_xive_tctx_tm_write(offset, size, value);
510 
511     /*
512      * TODO: check V bit in Q[0-3]W2
513      */
514 
515     /*
516      * First, check for special operations in the 2K region
517      */
518     if (offset & 0x800) {
519         xto = xive_tm_find_op(offset, size, true);
520         if (!xto) {
521             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
522                           "@%"HWADDR_PRIx"\n", offset);
523         } else {
524             xto->write_handler(xptr, tctx, offset, value, size);
525         }
526         return;
527     }
528 
529     /*
530      * Then, for special operations in the region below 2K.
531      */
532     xto = xive_tm_find_op(offset, size, true);
533     if (xto) {
534         xto->write_handler(xptr, tctx, offset, value, size);
535         return;
536     }
537 
538     /*
539      * Finish with raw access to the register values
540      */
541     xive_tm_raw_write(tctx, offset, value, size);
542 }
543 
544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
545                            unsigned size)
546 {
547     const XiveTmOp *xto;
548     uint64_t ret;
549 
550     /*
551      * TODO: check V bit in Q[0-3]W2
552      */
553 
554     /*
555      * First, check for special operations in the 2K region
556      */
557     if (offset & 0x800) {
558         xto = xive_tm_find_op(offset, size, false);
559         if (!xto) {
560             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
561                           "@%"HWADDR_PRIx"\n", offset);
562             return -1;
563         }
564         ret = xto->read_handler(xptr, tctx, offset, size);
565         goto out;
566     }
567 
568     /*
569      * Then, for special operations in the region below 2K.
570      */
571     xto = xive_tm_find_op(offset, size, false);
572     if (xto) {
573         ret = xto->read_handler(xptr, tctx, offset, size);
574         goto out;
575     }
576 
577     /*
578      * Finish with raw access to the register values
579      */
580     ret = xive_tm_raw_read(tctx, offset, size);
581 out:
582     trace_xive_tctx_tm_read(offset, size, ret);
583     return ret;
584 }
585 
586 static char *xive_tctx_ring_print(uint8_t *ring)
587 {
588     uint32_t w2 = xive_tctx_word2(ring);
589 
590     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
591                    "%02x  %02x   %02x  %08x",
592                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
593                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
594                    be32_to_cpu(w2));
595 }
596 
597 static const char * const xive_tctx_ring_names[] = {
598     "USER", "OS", "POOL", "PHYS",
599 };
600 
601 /*
602  * kvm_irqchip_in_kernel() will cause the compiler to turn this
603  * info a nop if CONFIG_KVM isn't defined.
604  */
605 #define xive_in_kernel(xptr)                                            \
606     (kvm_irqchip_in_kernel() &&                                         \
607      ({                                                                 \
608          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
609          xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
610      }))
611 
612 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
613 {
614     int cpu_index;
615     int i;
616 
617     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
618      * are hot plugged or unplugged.
619      */
620     if (!tctx) {
621         return;
622     }
623 
624     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
625 
626     if (xive_in_kernel(tctx->xptr)) {
627         Error *local_err = NULL;
628 
629         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
630         if (local_err) {
631             error_report_err(local_err);
632             return;
633         }
634     }
635 
636     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
637                    "  W2\n", cpu_index);
638 
639     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
640         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
641         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
642                        xive_tctx_ring_names[i], s);
643         g_free(s);
644     }
645 }
646 
647 void xive_tctx_reset(XiveTCTX *tctx)
648 {
649     memset(tctx->regs, 0, sizeof(tctx->regs));
650 
651     /* Set some defaults */
652     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
653     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
654     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
655 
656     /*
657      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
658      * CPPR is first set.
659      */
660     tctx->regs[TM_QW1_OS + TM_PIPR] =
661         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
662     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
663         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
664 }
665 
666 static void xive_tctx_realize(DeviceState *dev, Error **errp)
667 {
668     XiveTCTX *tctx = XIVE_TCTX(dev);
669     PowerPCCPU *cpu;
670     CPUPPCState *env;
671 
672     assert(tctx->cs);
673     assert(tctx->xptr);
674 
675     cpu = POWERPC_CPU(tctx->cs);
676     env = &cpu->env;
677     switch (PPC_INPUT(env)) {
678     case PPC_FLAGS_INPUT_POWER9:
679         tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
680         tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
681         break;
682 
683     default:
684         error_setg(errp, "XIVE interrupt controller does not support "
685                    "this CPU bus model");
686         return;
687     }
688 
689     /* Connect the presenter to the VCPU (required for CPU hotplug) */
690     if (xive_in_kernel(tctx->xptr)) {
691         if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
692             return;
693         }
694     }
695 }
696 
697 static int vmstate_xive_tctx_pre_save(void *opaque)
698 {
699     XiveTCTX *tctx = XIVE_TCTX(opaque);
700     Error *local_err = NULL;
701     int ret;
702 
703     if (xive_in_kernel(tctx->xptr)) {
704         ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
705         if (ret < 0) {
706             error_report_err(local_err);
707             return ret;
708         }
709     }
710 
711     return 0;
712 }
713 
714 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
715 {
716     XiveTCTX *tctx = XIVE_TCTX(opaque);
717     Error *local_err = NULL;
718     int ret;
719 
720     if (xive_in_kernel(tctx->xptr)) {
721         /*
722          * Required for hotplugged CPU, for which the state comes
723          * after all states of the machine.
724          */
725         ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
726         if (ret < 0) {
727             error_report_err(local_err);
728             return ret;
729         }
730     }
731 
732     return 0;
733 }
734 
735 static const VMStateDescription vmstate_xive_tctx = {
736     .name = TYPE_XIVE_TCTX,
737     .version_id = 1,
738     .minimum_version_id = 1,
739     .pre_save = vmstate_xive_tctx_pre_save,
740     .post_load = vmstate_xive_tctx_post_load,
741     .fields = (VMStateField[]) {
742         VMSTATE_BUFFER(regs, XiveTCTX),
743         VMSTATE_END_OF_LIST()
744     },
745 };
746 
747 static Property xive_tctx_properties[] = {
748     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
749     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
750                      XivePresenter *),
751     DEFINE_PROP_END_OF_LIST(),
752 };
753 
754 static void xive_tctx_class_init(ObjectClass *klass, void *data)
755 {
756     DeviceClass *dc = DEVICE_CLASS(klass);
757 
758     dc->desc = "XIVE Interrupt Thread Context";
759     dc->realize = xive_tctx_realize;
760     dc->vmsd = &vmstate_xive_tctx;
761     device_class_set_props(dc, xive_tctx_properties);
762     /*
763      * Reason: part of XIVE interrupt controller, needs to be wired up
764      * by xive_tctx_create().
765      */
766     dc->user_creatable = false;
767 }
768 
769 static const TypeInfo xive_tctx_info = {
770     .name          = TYPE_XIVE_TCTX,
771     .parent        = TYPE_DEVICE,
772     .instance_size = sizeof(XiveTCTX),
773     .class_init    = xive_tctx_class_init,
774 };
775 
776 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
777 {
778     Object *obj;
779 
780     obj = object_new(TYPE_XIVE_TCTX);
781     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
782     object_unref(obj);
783     object_property_set_link(obj, "cpu", cpu, &error_abort);
784     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
785     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
786         object_unparent(obj);
787         return NULL;
788     }
789     return obj;
790 }
791 
792 void xive_tctx_destroy(XiveTCTX *tctx)
793 {
794     Object *obj = OBJECT(tctx);
795 
796     object_unparent(obj);
797 }
798 
799 /*
800  * XIVE ESB helpers
801  */
802 
803 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
804 {
805     uint8_t old_pq = *pq & 0x3;
806 
807     *pq &= ~0x3;
808     *pq |= value & 0x3;
809 
810     return old_pq;
811 }
812 
813 bool xive_esb_trigger(uint8_t *pq)
814 {
815     uint8_t old_pq = *pq & 0x3;
816 
817     switch (old_pq) {
818     case XIVE_ESB_RESET:
819         xive_esb_set(pq, XIVE_ESB_PENDING);
820         return true;
821     case XIVE_ESB_PENDING:
822     case XIVE_ESB_QUEUED:
823         xive_esb_set(pq, XIVE_ESB_QUEUED);
824         return false;
825     case XIVE_ESB_OFF:
826         xive_esb_set(pq, XIVE_ESB_OFF);
827         return false;
828     default:
829          g_assert_not_reached();
830     }
831 }
832 
833 bool xive_esb_eoi(uint8_t *pq)
834 {
835     uint8_t old_pq = *pq & 0x3;
836 
837     switch (old_pq) {
838     case XIVE_ESB_RESET:
839     case XIVE_ESB_PENDING:
840         xive_esb_set(pq, XIVE_ESB_RESET);
841         return false;
842     case XIVE_ESB_QUEUED:
843         xive_esb_set(pq, XIVE_ESB_PENDING);
844         return true;
845     case XIVE_ESB_OFF:
846         xive_esb_set(pq, XIVE_ESB_OFF);
847         return false;
848     default:
849          g_assert_not_reached();
850     }
851 }
852 
853 /*
854  * XIVE Interrupt Source (or IVSE)
855  */
856 
857 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
858 {
859     assert(srcno < xsrc->nr_irqs);
860 
861     return xsrc->status[srcno] & 0x3;
862 }
863 
864 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
865 {
866     assert(srcno < xsrc->nr_irqs);
867 
868     return xive_esb_set(&xsrc->status[srcno], pq);
869 }
870 
871 /*
872  * Returns whether the event notification should be forwarded.
873  */
874 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
875 {
876     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
877 
878     xive_source_set_asserted(xsrc, srcno, true);
879 
880     switch (old_pq) {
881     case XIVE_ESB_RESET:
882         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
883         return true;
884     default:
885         return false;
886     }
887 }
888 
889 /*
890  * Sources can be configured with PQ offloading in which case the check
891  * on the PQ state bits of MSIs is disabled
892  */
893 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
894 {
895     return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
896         !xive_source_irq_is_lsi(xsrc, srcno);
897 }
898 
899 /*
900  * Returns whether the event notification should be forwarded.
901  */
902 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
903 {
904     bool ret;
905 
906     assert(srcno < xsrc->nr_irqs);
907 
908     if (xive_source_esb_disabled(xsrc, srcno)) {
909         return true;
910     }
911 
912     ret = xive_esb_trigger(&xsrc->status[srcno]);
913 
914     if (xive_source_irq_is_lsi(xsrc, srcno) &&
915         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
916         qemu_log_mask(LOG_GUEST_ERROR,
917                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
918     }
919 
920     return ret;
921 }
922 
923 /*
924  * Returns whether the event notification should be forwarded.
925  */
926 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
927 {
928     bool ret;
929 
930     assert(srcno < xsrc->nr_irqs);
931 
932     if (xive_source_esb_disabled(xsrc, srcno)) {
933         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
934         return false;
935     }
936 
937     ret = xive_esb_eoi(&xsrc->status[srcno]);
938 
939     /*
940      * LSI sources do not set the Q bit but they can still be
941      * asserted, in which case we should forward a new event
942      * notification
943      */
944     if (xive_source_irq_is_lsi(xsrc, srcno) &&
945         xive_source_is_asserted(xsrc, srcno)) {
946         ret = xive_source_lsi_trigger(xsrc, srcno);
947     }
948 
949     return ret;
950 }
951 
952 /*
953  * Forward the source event notification to the Router
954  */
955 static void xive_source_notify(XiveSource *xsrc, int srcno)
956 {
957     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
958     bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
959 
960     if (xnc->notify) {
961         xnc->notify(xsrc->xive, srcno, pq_checked);
962     }
963 }
964 
965 /*
966  * In a two pages ESB MMIO setting, even page is the trigger page, odd
967  * page is for management
968  */
969 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
970 {
971     return !((addr >> shift) & 1);
972 }
973 
974 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
975 {
976     return xive_source_esb_has_2page(xsrc) &&
977         addr_is_even(addr, xsrc->esb_shift - 1);
978 }
979 
980 /*
981  * ESB MMIO loads
982  *                      Trigger page    Management/EOI page
983  *
984  * ESB MMIO setting     2 pages         1 or 2 pages
985  *
986  * 0x000 .. 0x3FF       -1              EOI and return 0|1
987  * 0x400 .. 0x7FF       -1              EOI and return 0|1
988  * 0x800 .. 0xBFF       -1              return PQ
989  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
990  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
991  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
992  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
993  */
994 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
995 {
996     XiveSource *xsrc = XIVE_SOURCE(opaque);
997     uint32_t offset = addr & 0xFFF;
998     uint32_t srcno = addr >> xsrc->esb_shift;
999     uint64_t ret = -1;
1000 
1001     /* In a two pages ESB MMIO setting, trigger page should not be read */
1002     if (xive_source_is_trigger_page(xsrc, addr)) {
1003         qemu_log_mask(LOG_GUEST_ERROR,
1004                       "XIVE: invalid load on IRQ %d trigger page at "
1005                       "0x%"HWADDR_PRIx"\n", srcno, addr);
1006         return -1;
1007     }
1008 
1009     switch (offset) {
1010     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1011         ret = xive_source_esb_eoi(xsrc, srcno);
1012 
1013         /* Forward the source event notification for routing */
1014         if (ret) {
1015             xive_source_notify(xsrc, srcno);
1016         }
1017         break;
1018 
1019     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1020         ret = xive_source_esb_get(xsrc, srcno);
1021         break;
1022 
1023     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1024     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1025     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1026     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1027         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1028         break;
1029     default:
1030         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1031                       offset);
1032     }
1033 
1034     trace_xive_source_esb_read(addr, srcno, ret);
1035 
1036     return ret;
1037 }
1038 
1039 /*
1040  * ESB MMIO stores
1041  *                      Trigger page    Management/EOI page
1042  *
1043  * ESB MMIO setting     2 pages         1 or 2 pages
1044  *
1045  * 0x000 .. 0x3FF       Trigger         Trigger
1046  * 0x400 .. 0x7FF       Trigger         EOI
1047  * 0x800 .. 0xBFF       Trigger         undefined
1048  * 0xC00 .. 0xCFF       Trigger         PQ=00
1049  * 0xD00 .. 0xDFF       Trigger         PQ=01
1050  * 0xE00 .. 0xDFF       Trigger         PQ=10
1051  * 0xF00 .. 0xDFF       Trigger         PQ=11
1052  */
1053 static void xive_source_esb_write(void *opaque, hwaddr addr,
1054                                   uint64_t value, unsigned size)
1055 {
1056     XiveSource *xsrc = XIVE_SOURCE(opaque);
1057     uint32_t offset = addr & 0xFFF;
1058     uint32_t srcno = addr >> xsrc->esb_shift;
1059     bool notify = false;
1060 
1061     trace_xive_source_esb_write(addr, srcno, value);
1062 
1063     /* In a two pages ESB MMIO setting, trigger page only triggers */
1064     if (xive_source_is_trigger_page(xsrc, addr)) {
1065         notify = xive_source_esb_trigger(xsrc, srcno);
1066         goto out;
1067     }
1068 
1069     switch (offset) {
1070     case 0 ... 0x3FF:
1071         notify = xive_source_esb_trigger(xsrc, srcno);
1072         break;
1073 
1074     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1075         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1076             qemu_log_mask(LOG_GUEST_ERROR,
1077                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1078             return;
1079         }
1080 
1081         notify = xive_source_esb_eoi(xsrc, srcno);
1082         break;
1083 
1084     /*
1085      * This is an internal offset used to inject triggers when the PQ
1086      * state bits are not controlled locally. Such as for LSIs when
1087      * under ABT mode.
1088      */
1089     case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1090         notify = true;
1091         break;
1092 
1093     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1094     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1095     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1096     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1097         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1098         break;
1099 
1100     default:
1101         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1102                       offset);
1103         return;
1104     }
1105 
1106 out:
1107     /* Forward the source event notification for routing */
1108     if (notify) {
1109         xive_source_notify(xsrc, srcno);
1110     }
1111 }
1112 
1113 static const MemoryRegionOps xive_source_esb_ops = {
1114     .read = xive_source_esb_read,
1115     .write = xive_source_esb_write,
1116     .endianness = DEVICE_BIG_ENDIAN,
1117     .valid = {
1118         .min_access_size = 8,
1119         .max_access_size = 8,
1120     },
1121     .impl = {
1122         .min_access_size = 8,
1123         .max_access_size = 8,
1124     },
1125 };
1126 
1127 void xive_source_set_irq(void *opaque, int srcno, int val)
1128 {
1129     XiveSource *xsrc = XIVE_SOURCE(opaque);
1130     bool notify = false;
1131 
1132     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1133         if (val) {
1134             notify = xive_source_lsi_trigger(xsrc, srcno);
1135         } else {
1136             xive_source_set_asserted(xsrc, srcno, false);
1137         }
1138     } else {
1139         if (val) {
1140             notify = xive_source_esb_trigger(xsrc, srcno);
1141         }
1142     }
1143 
1144     /* Forward the source event notification for routing */
1145     if (notify) {
1146         xive_source_notify(xsrc, srcno);
1147     }
1148 }
1149 
1150 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1151 {
1152     int i;
1153 
1154     for (i = 0; i < xsrc->nr_irqs; i++) {
1155         uint8_t pq = xive_source_esb_get(xsrc, i);
1156 
1157         if (pq == XIVE_ESB_OFF) {
1158             continue;
1159         }
1160 
1161         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1162                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1163                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1164                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1165                        xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1166     }
1167 }
1168 
1169 static void xive_source_reset(void *dev)
1170 {
1171     XiveSource *xsrc = XIVE_SOURCE(dev);
1172 
1173     /* Do not clear the LSI bitmap */
1174 
1175     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1176     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1177 }
1178 
1179 static void xive_source_realize(DeviceState *dev, Error **errp)
1180 {
1181     XiveSource *xsrc = XIVE_SOURCE(dev);
1182     size_t esb_len = xive_source_esb_len(xsrc);
1183 
1184     assert(xsrc->xive);
1185 
1186     if (!xsrc->nr_irqs) {
1187         error_setg(errp, "Number of interrupt needs to be greater than 0");
1188         return;
1189     }
1190 
1191     if (xsrc->esb_shift != XIVE_ESB_4K &&
1192         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1193         xsrc->esb_shift != XIVE_ESB_64K &&
1194         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1195         error_setg(errp, "Invalid ESB shift setting");
1196         return;
1197     }
1198 
1199     xsrc->status = g_malloc0(xsrc->nr_irqs);
1200     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1201 
1202     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1203     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1204                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1205                           esb_len);
1206     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1207 
1208     qemu_register_reset(xive_source_reset, dev);
1209 }
1210 
1211 static const VMStateDescription vmstate_xive_source = {
1212     .name = TYPE_XIVE_SOURCE,
1213     .version_id = 1,
1214     .minimum_version_id = 1,
1215     .fields = (VMStateField[]) {
1216         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1217         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1218         VMSTATE_END_OF_LIST()
1219     },
1220 };
1221 
1222 /*
1223  * The default XIVE interrupt source setting for the ESB MMIOs is two
1224  * 64k pages without Store EOI, to be in sync with KVM.
1225  */
1226 static Property xive_source_properties[] = {
1227     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1228     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1229     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1230     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1231                      XiveNotifier *),
1232     DEFINE_PROP_END_OF_LIST(),
1233 };
1234 
1235 static void xive_source_class_init(ObjectClass *klass, void *data)
1236 {
1237     DeviceClass *dc = DEVICE_CLASS(klass);
1238 
1239     dc->desc    = "XIVE Interrupt Source";
1240     device_class_set_props(dc, xive_source_properties);
1241     dc->realize = xive_source_realize;
1242     dc->vmsd    = &vmstate_xive_source;
1243     /*
1244      * Reason: part of XIVE interrupt controller, needs to be wired up,
1245      * e.g. by spapr_xive_instance_init().
1246      */
1247     dc->user_creatable = false;
1248 }
1249 
1250 static const TypeInfo xive_source_info = {
1251     .name          = TYPE_XIVE_SOURCE,
1252     .parent        = TYPE_DEVICE,
1253     .instance_size = sizeof(XiveSource),
1254     .class_init    = xive_source_class_init,
1255 };
1256 
1257 /*
1258  * XiveEND helpers
1259  */
1260 
1261 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1262 {
1263     uint64_t qaddr_base = xive_end_qaddr(end);
1264     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1265     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1266     uint32_t qentries = 1 << (qsize + 10);
1267     int i;
1268 
1269     /*
1270      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1271      */
1272     monitor_printf(mon, " [ ");
1273     qindex = (qindex - (width - 1)) & (qentries - 1);
1274     for (i = 0; i < width; i++) {
1275         uint64_t qaddr = qaddr_base + (qindex << 2);
1276         uint32_t qdata = -1;
1277 
1278         if (dma_memory_read(&address_space_memory, qaddr,
1279                             &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1280             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1281                           HWADDR_PRIx "\n", qaddr);
1282             return;
1283         }
1284         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1285                        be32_to_cpu(qdata));
1286         qindex = (qindex + 1) & (qentries - 1);
1287     }
1288     monitor_printf(mon, "]");
1289 }
1290 
1291 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1292 {
1293     uint64_t qaddr_base = xive_end_qaddr(end);
1294     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1295     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1296     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1297     uint32_t qentries = 1 << (qsize + 10);
1298 
1299     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1300     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1301     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1302     uint8_t pq;
1303 
1304     if (!xive_end_is_valid(end)) {
1305         return;
1306     }
1307 
1308     pq = xive_get_field32(END_W1_ESn, end->w1);
1309 
1310     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1311                    end_idx,
1312                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1313                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1314                    xive_end_is_valid(end)    ? 'v' : '-',
1315                    xive_end_is_enqueue(end)  ? 'q' : '-',
1316                    xive_end_is_notify(end)   ? 'n' : '-',
1317                    xive_end_is_backlog(end)  ? 'b' : '-',
1318                    xive_end_is_escalate(end) ? 'e' : '-',
1319                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1320                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1321                    xive_end_is_firmware(end)   ? 'f' : '-',
1322                    priority, nvt_blk, nvt_idx);
1323 
1324     if (qaddr_base) {
1325         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1326                        qaddr_base, qindex, qentries, qgen);
1327         xive_end_queue_pic_print_info(end, 6, mon);
1328     }
1329     monitor_printf(mon, "\n");
1330 }
1331 
1332 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1333 {
1334     uint64_t qaddr_base = xive_end_qaddr(end);
1335     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1336     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1337     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1338 
1339     uint64_t qaddr = qaddr_base + (qindex << 2);
1340     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1341     uint32_t qentries = 1 << (qsize + 10);
1342 
1343     if (dma_memory_write(&address_space_memory, qaddr,
1344                          &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1345         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1346                       HWADDR_PRIx "\n", qaddr);
1347         return;
1348     }
1349 
1350     qindex = (qindex + 1) & (qentries - 1);
1351     if (qindex == 0) {
1352         qgen ^= 1;
1353         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1354     }
1355     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1356 }
1357 
1358 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1359                                    Monitor *mon)
1360 {
1361     XiveEAS *eas = (XiveEAS *) &end->w4;
1362     uint8_t pq;
1363 
1364     if (!xive_end_is_escalate(end)) {
1365         return;
1366     }
1367 
1368     pq = xive_get_field32(END_W1_ESe, end->w1);
1369 
1370     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1371                    end_idx,
1372                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1373                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1374                    xive_eas_is_valid(eas) ? 'V' : ' ',
1375                    xive_eas_is_masked(eas) ? 'M' : ' ',
1376                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1377                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1378                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1379 }
1380 
1381 /*
1382  * XIVE Router (aka. Virtualization Controller or IVRE)
1383  */
1384 
1385 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1386                         XiveEAS *eas)
1387 {
1388     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1389 
1390     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1391 }
1392 
1393 static
1394 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1395                        uint8_t *pq)
1396 {
1397     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1398 
1399     return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1400 }
1401 
1402 static
1403 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1404                        uint8_t *pq)
1405 {
1406     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1407 
1408     return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1409 }
1410 
1411 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1412                         XiveEND *end)
1413 {
1414    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1415 
1416    return xrc->get_end(xrtr, end_blk, end_idx, end);
1417 }
1418 
1419 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1420                           XiveEND *end, uint8_t word_number)
1421 {
1422    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1423 
1424    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1425 }
1426 
1427 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1428                         XiveNVT *nvt)
1429 {
1430    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1431 
1432    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1433 }
1434 
1435 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1436                         XiveNVT *nvt, uint8_t word_number)
1437 {
1438    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1439 
1440    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1441 }
1442 
1443 static int xive_router_get_block_id(XiveRouter *xrtr)
1444 {
1445    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1446 
1447    return xrc->get_block_id(xrtr);
1448 }
1449 
1450 static void xive_router_realize(DeviceState *dev, Error **errp)
1451 {
1452     XiveRouter *xrtr = XIVE_ROUTER(dev);
1453 
1454     assert(xrtr->xfb);
1455 }
1456 
1457 /*
1458  * Encode the HW CAM line in the block group mode format :
1459  *
1460  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1461  */
1462 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1463 {
1464     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1465     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1466     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1467 
1468     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1469 }
1470 
1471 /*
1472  * The thread context register words are in big-endian format.
1473  */
1474 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1475                               uint8_t format,
1476                               uint8_t nvt_blk, uint32_t nvt_idx,
1477                               bool cam_ignore, uint32_t logic_serv)
1478 {
1479     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1480     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1481     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1482     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1483     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1484 
1485     /*
1486      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1487      * identifier are ignored in the "CAM" match.
1488      */
1489 
1490     if (format == 0) {
1491         if (cam_ignore == true) {
1492             /*
1493              * F=0 & i=1: Logical server notification (bits ignored at
1494              * the end of the NVT identifier)
1495              */
1496             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1497                           nvt_blk, nvt_idx);
1498              return -1;
1499         }
1500 
1501         /* F=0 & i=0: Specific NVT notification */
1502 
1503         /* PHYS ring */
1504         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1505             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1506             return TM_QW3_HV_PHYS;
1507         }
1508 
1509         /* HV POOL ring */
1510         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1511             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1512             return TM_QW2_HV_POOL;
1513         }
1514 
1515         /* OS ring */
1516         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1517             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1518             return TM_QW1_OS;
1519         }
1520     } else {
1521         /* F=1 : User level Event-Based Branch (EBB) notification */
1522 
1523         /* USER ring */
1524         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1525              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1526              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1527              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1528             return TM_QW0_USER;
1529         }
1530     }
1531     return -1;
1532 }
1533 
1534 /*
1535  * This is our simple Xive Presenter Engine model. It is merged in the
1536  * Router as it does not require an extra object.
1537  *
1538  * It receives notification requests sent by the IVRE to find one
1539  * matching NVT (or more) dispatched on the processor threads. In case
1540  * of a single NVT notification, the process is abreviated and the
1541  * thread is signaled if a match is found. In case of a logical server
1542  * notification (bits ignored at the end of the NVT identifier), the
1543  * IVPE and IVRE select a winning thread using different filters. This
1544  * involves 2 or 3 exchanges on the PowerBus that the model does not
1545  * support.
1546  *
1547  * The parameters represent what is sent on the PowerBus
1548  */
1549 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1550                            uint8_t nvt_blk, uint32_t nvt_idx,
1551                            bool cam_ignore, uint8_t priority,
1552                            uint32_t logic_serv)
1553 {
1554     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1555     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1556     int count;
1557 
1558     /*
1559      * Ask the machine to scan the interrupt controllers for a match
1560      */
1561     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1562                            priority, logic_serv, &match);
1563     if (count < 0) {
1564         return false;
1565     }
1566 
1567     /* handle CPU exception delivery */
1568     if (count) {
1569         trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1570         xive_tctx_ipb_update(match.tctx, match.ring,
1571                              xive_priority_to_ipb(priority));
1572     }
1573 
1574     return !!count;
1575 }
1576 
1577 /*
1578  * Notification using the END ESe/ESn bit (Event State Buffer for
1579  * escalation and notification). Provide further coalescing in the
1580  * Router.
1581  */
1582 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1583                                       uint32_t end_idx, XiveEND *end,
1584                                       uint32_t end_esmask)
1585 {
1586     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1587     bool notify = xive_esb_trigger(&pq);
1588 
1589     if (pq != xive_get_field32(end_esmask, end->w1)) {
1590         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1591         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1592     }
1593 
1594     /* ESe/n[Q]=1 : end of notification */
1595     return notify;
1596 }
1597 
1598 /*
1599  * An END trigger can come from an event trigger (IPI or HW) or from
1600  * another chip. We don't model the PowerBus but the END trigger
1601  * message has the same parameters than in the function below.
1602  */
1603 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1604                                    uint32_t end_idx, uint32_t end_data)
1605 {
1606     XiveEND end;
1607     uint8_t priority;
1608     uint8_t format;
1609     uint8_t nvt_blk;
1610     uint32_t nvt_idx;
1611     XiveNVT nvt;
1612     bool found;
1613 
1614     /* END cache lookup */
1615     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1616         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1617                       end_idx);
1618         return;
1619     }
1620 
1621     if (!xive_end_is_valid(&end)) {
1622         trace_xive_router_end_notify(end_blk, end_idx, end_data);
1623         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1624                       end_blk, end_idx);
1625         return;
1626     }
1627 
1628     if (xive_end_is_enqueue(&end)) {
1629         xive_end_enqueue(&end, end_data);
1630         /* Enqueuing event data modifies the EQ toggle and index */
1631         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1632     }
1633 
1634     /*
1635      * When the END is silent, we skip the notification part.
1636      */
1637     if (xive_end_is_silent_escalation(&end)) {
1638         goto do_escalation;
1639     }
1640 
1641     /*
1642      * The W7 format depends on the F bit in W6. It defines the type
1643      * of the notification :
1644      *
1645      *   F=0 : single or multiple NVT notification
1646      *   F=1 : User level Event-Based Branch (EBB) notification, no
1647      *         priority
1648      */
1649     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1650     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1651 
1652     /* The END is masked */
1653     if (format == 0 && priority == 0xff) {
1654         return;
1655     }
1656 
1657     /*
1658      * Check the END ESn (Event State Buffer for notification) for
1659      * even further coalescing in the Router
1660      */
1661     if (!xive_end_is_notify(&end)) {
1662         /* ESn[Q]=1 : end of notification */
1663         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1664                                        &end, END_W1_ESn)) {
1665             return;
1666         }
1667     }
1668 
1669     /*
1670      * Follows IVPE notification
1671      */
1672     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1673     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1674 
1675     /* NVT cache lookup */
1676     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1677         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1678                       nvt_blk, nvt_idx);
1679         return;
1680     }
1681 
1682     if (!xive_nvt_is_valid(&nvt)) {
1683         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1684                       nvt_blk, nvt_idx);
1685         return;
1686     }
1687 
1688     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1689                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1690                           priority,
1691                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1692 
1693     /* TODO: Auto EOI. */
1694 
1695     if (found) {
1696         return;
1697     }
1698 
1699     /*
1700      * If no matching NVT is dispatched on a HW thread :
1701      * - specific VP: update the NVT structure if backlog is activated
1702      * - logical server : forward request to IVPE (not supported)
1703      */
1704     if (xive_end_is_backlog(&end)) {
1705         uint8_t ipb;
1706 
1707         if (format == 1) {
1708             qemu_log_mask(LOG_GUEST_ERROR,
1709                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1710                           end_blk, end_idx);
1711             return;
1712         }
1713         /*
1714          * Record the IPB in the associated NVT structure for later
1715          * use. The presenter will resend the interrupt when the vCPU
1716          * is dispatched again on a HW thread.
1717          */
1718         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1719             xive_priority_to_ipb(priority);
1720         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1721         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1722 
1723         /*
1724          * On HW, follows a "Broadcast Backlog" to IVPEs
1725          */
1726     }
1727 
1728 do_escalation:
1729     /*
1730      * If activated, escalate notification using the ESe PQ bits and
1731      * the EAS in w4-5
1732      */
1733     if (!xive_end_is_escalate(&end)) {
1734         return;
1735     }
1736 
1737     /*
1738      * Check the END ESe (Event State Buffer for escalation) for even
1739      * further coalescing in the Router
1740      */
1741     if (!xive_end_is_uncond_escalation(&end)) {
1742         /* ESe[Q]=1 : end of notification */
1743         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1744                                        &end, END_W1_ESe)) {
1745             return;
1746         }
1747     }
1748 
1749     trace_xive_router_end_escalate(end_blk, end_idx,
1750            (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1751            (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1752            (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1753     /*
1754      * The END trigger becomes an Escalation trigger
1755      */
1756     xive_router_end_notify(xrtr,
1757                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1758                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1759                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1760 }
1761 
1762 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1763 {
1764     XiveRouter *xrtr = XIVE_ROUTER(xn);
1765     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1766     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1767     XiveEAS eas;
1768 
1769     /* EAS cache lookup */
1770     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1771         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1772         return;
1773     }
1774 
1775     if (!pq_checked) {
1776         bool notify;
1777         uint8_t pq;
1778 
1779         /* PQ cache lookup */
1780         if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1781             /* Set FIR */
1782             g_assert_not_reached();
1783         }
1784 
1785         notify = xive_esb_trigger(&pq);
1786 
1787         if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1788             /* Set FIR */
1789             g_assert_not_reached();
1790         }
1791 
1792         if (!notify) {
1793             return;
1794         }
1795     }
1796 
1797     if (!xive_eas_is_valid(&eas)) {
1798         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1799         return;
1800     }
1801 
1802     if (xive_eas_is_masked(&eas)) {
1803         /* Notification completed */
1804         return;
1805     }
1806 
1807     /*
1808      * The event trigger becomes an END trigger
1809      */
1810     xive_router_end_notify(xrtr,
1811                            xive_get_field64(EAS_END_BLOCK, eas.w),
1812                            xive_get_field64(EAS_END_INDEX, eas.w),
1813                            xive_get_field64(EAS_END_DATA,  eas.w));
1814 }
1815 
1816 static Property xive_router_properties[] = {
1817     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1818                      TYPE_XIVE_FABRIC, XiveFabric *),
1819     DEFINE_PROP_END_OF_LIST(),
1820 };
1821 
1822 static void xive_router_class_init(ObjectClass *klass, void *data)
1823 {
1824     DeviceClass *dc = DEVICE_CLASS(klass);
1825     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1826 
1827     dc->desc    = "XIVE Router Engine";
1828     device_class_set_props(dc, xive_router_properties);
1829     /* Parent is SysBusDeviceClass. No need to call its realize hook */
1830     dc->realize = xive_router_realize;
1831     xnc->notify = xive_router_notify;
1832 }
1833 
1834 static const TypeInfo xive_router_info = {
1835     .name          = TYPE_XIVE_ROUTER,
1836     .parent        = TYPE_SYS_BUS_DEVICE,
1837     .abstract      = true,
1838     .instance_size = sizeof(XiveRouter),
1839     .class_size    = sizeof(XiveRouterClass),
1840     .class_init    = xive_router_class_init,
1841     .interfaces    = (InterfaceInfo[]) {
1842         { TYPE_XIVE_NOTIFIER },
1843         { TYPE_XIVE_PRESENTER },
1844         { }
1845     }
1846 };
1847 
1848 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1849 {
1850     if (!xive_eas_is_valid(eas)) {
1851         return;
1852     }
1853 
1854     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1855                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1856                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1857                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1858                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1859 }
1860 
1861 /*
1862  * END ESB MMIO loads
1863  */
1864 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1865 {
1866     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1867     uint32_t offset = addr & 0xFFF;
1868     uint8_t end_blk;
1869     uint32_t end_idx;
1870     XiveEND end;
1871     uint32_t end_esmask;
1872     uint8_t pq;
1873     uint64_t ret = -1;
1874 
1875     /*
1876      * The block id should be deduced from the load address on the END
1877      * ESB MMIO but our model only supports a single block per XIVE chip.
1878      */
1879     end_blk = xive_router_get_block_id(xsrc->xrtr);
1880     end_idx = addr >> (xsrc->esb_shift + 1);
1881 
1882     trace_xive_end_source_read(end_blk, end_idx, addr);
1883 
1884     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1885         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1886                       end_idx);
1887         return -1;
1888     }
1889 
1890     if (!xive_end_is_valid(&end)) {
1891         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1892                       end_blk, end_idx);
1893         return -1;
1894     }
1895 
1896     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1897     pq = xive_get_field32(end_esmask, end.w1);
1898 
1899     switch (offset) {
1900     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1901         ret = xive_esb_eoi(&pq);
1902 
1903         /* Forward the source event notification for routing ?? */
1904         break;
1905 
1906     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1907         ret = pq;
1908         break;
1909 
1910     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1911     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1912     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1913     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1914         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1915         break;
1916     default:
1917         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1918                       offset);
1919         return -1;
1920     }
1921 
1922     if (pq != xive_get_field32(end_esmask, end.w1)) {
1923         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1924         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1925     }
1926 
1927     return ret;
1928 }
1929 
1930 /*
1931  * END ESB MMIO stores are invalid
1932  */
1933 static void xive_end_source_write(void *opaque, hwaddr addr,
1934                                   uint64_t value, unsigned size)
1935 {
1936     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1937                   HWADDR_PRIx"\n", addr);
1938 }
1939 
1940 static const MemoryRegionOps xive_end_source_ops = {
1941     .read = xive_end_source_read,
1942     .write = xive_end_source_write,
1943     .endianness = DEVICE_BIG_ENDIAN,
1944     .valid = {
1945         .min_access_size = 8,
1946         .max_access_size = 8,
1947     },
1948     .impl = {
1949         .min_access_size = 8,
1950         .max_access_size = 8,
1951     },
1952 };
1953 
1954 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1955 {
1956     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1957 
1958     assert(xsrc->xrtr);
1959 
1960     if (!xsrc->nr_ends) {
1961         error_setg(errp, "Number of interrupt needs to be greater than 0");
1962         return;
1963     }
1964 
1965     if (xsrc->esb_shift != XIVE_ESB_4K &&
1966         xsrc->esb_shift != XIVE_ESB_64K) {
1967         error_setg(errp, "Invalid ESB shift setting");
1968         return;
1969     }
1970 
1971     /*
1972      * Each END is assigned an even/odd pair of MMIO pages, the even page
1973      * manages the ESn field while the odd page manages the ESe field.
1974      */
1975     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1976                           &xive_end_source_ops, xsrc, "xive.end",
1977                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1978 }
1979 
1980 static Property xive_end_source_properties[] = {
1981     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1982     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1983     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1984                      XiveRouter *),
1985     DEFINE_PROP_END_OF_LIST(),
1986 };
1987 
1988 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1989 {
1990     DeviceClass *dc = DEVICE_CLASS(klass);
1991 
1992     dc->desc    = "XIVE END Source";
1993     device_class_set_props(dc, xive_end_source_properties);
1994     dc->realize = xive_end_source_realize;
1995     /*
1996      * Reason: part of XIVE interrupt controller, needs to be wired up,
1997      * e.g. by spapr_xive_instance_init().
1998      */
1999     dc->user_creatable = false;
2000 }
2001 
2002 static const TypeInfo xive_end_source_info = {
2003     .name          = TYPE_XIVE_END_SOURCE,
2004     .parent        = TYPE_DEVICE,
2005     .instance_size = sizeof(XiveENDSource),
2006     .class_init    = xive_end_source_class_init,
2007 };
2008 
2009 /*
2010  * XIVE Notifier
2011  */
2012 static const TypeInfo xive_notifier_info = {
2013     .name = TYPE_XIVE_NOTIFIER,
2014     .parent = TYPE_INTERFACE,
2015     .class_size = sizeof(XiveNotifierClass),
2016 };
2017 
2018 /*
2019  * XIVE Presenter
2020  */
2021 static const TypeInfo xive_presenter_info = {
2022     .name = TYPE_XIVE_PRESENTER,
2023     .parent = TYPE_INTERFACE,
2024     .class_size = sizeof(XivePresenterClass),
2025 };
2026 
2027 /*
2028  * XIVE Fabric
2029  */
2030 static const TypeInfo xive_fabric_info = {
2031     .name = TYPE_XIVE_FABRIC,
2032     .parent = TYPE_INTERFACE,
2033     .class_size = sizeof(XiveFabricClass),
2034 };
2035 
2036 static void xive_register_types(void)
2037 {
2038     type_register_static(&xive_fabric_info);
2039     type_register_static(&xive_source_info);
2040     type_register_static(&xive_notifier_info);
2041     type_register_static(&xive_presenter_info);
2042     type_register_static(&xive_router_info);
2043     type_register_static(&xive_end_source_info);
2044     type_register_static(&xive_tctx_info);
2045 }
2046 
2047 type_init(xive_register_types)
2048