1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "qapi/type-helpers.h" 15 #include "target/ppc/cpu.h" 16 #include "sysemu/cpus.h" 17 #include "sysemu/dma.h" 18 #include "sysemu/reset.h" 19 #include "hw/qdev-properties.h" 20 #include "migration/vmstate.h" 21 #include "monitor/monitor.h" 22 #include "hw/irq.h" 23 #include "hw/ppc/xive.h" 24 #include "hw/ppc/xive2.h" 25 #include "hw/ppc/xive_regs.h" 26 #include "trace.h" 27 28 /* 29 * XIVE Thread Interrupt Management context 30 */ 31 32 /* 33 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 34 * Interrupt Priority Register (PIPR), which contains the priority of 35 * the most favored pending notification. 36 */ 37 static uint8_t ipb_to_pipr(uint8_t ibp) 38 { 39 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 40 } 41 42 static uint8_t exception_mask(uint8_t ring) 43 { 44 switch (ring) { 45 case TM_QW1_OS: 46 return TM_QW1_NSR_EO; 47 case TM_QW3_HV_PHYS: 48 return TM_QW3_NSR_HE; 49 default: 50 g_assert_not_reached(); 51 } 52 } 53 54 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 55 { 56 switch (ring) { 57 case TM_QW0_USER: 58 return 0; /* Not supported */ 59 case TM_QW1_OS: 60 return tctx->os_output; 61 case TM_QW2_HV_POOL: 62 case TM_QW3_HV_PHYS: 63 return tctx->hv_output; 64 default: 65 return 0; 66 } 67 } 68 69 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 70 { 71 uint8_t *regs = &tctx->regs[ring]; 72 uint8_t nsr = regs[TM_NSR]; 73 uint8_t mask = exception_mask(ring); 74 75 qemu_irq_lower(xive_tctx_output(tctx, ring)); 76 77 if (regs[TM_NSR] & mask) { 78 uint8_t cppr = regs[TM_PIPR]; 79 80 regs[TM_CPPR] = cppr; 81 82 /* Reset the pending buffer bit */ 83 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 84 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 85 86 /* Drop Exception bit */ 87 regs[TM_NSR] &= ~mask; 88 89 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 90 regs[TM_IPB], regs[TM_PIPR], 91 regs[TM_CPPR], regs[TM_NSR]); 92 } 93 94 return (nsr << 8) | regs[TM_CPPR]; 95 } 96 97 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 98 { 99 uint8_t *regs = &tctx->regs[ring]; 100 101 if (regs[TM_PIPR] < regs[TM_CPPR]) { 102 switch (ring) { 103 case TM_QW1_OS: 104 regs[TM_NSR] |= TM_QW1_NSR_EO; 105 break; 106 case TM_QW3_HV_PHYS: 107 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 108 break; 109 default: 110 g_assert_not_reached(); 111 } 112 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 113 regs[TM_IPB], regs[TM_PIPR], 114 regs[TM_CPPR], regs[TM_NSR]); 115 qemu_irq_raise(xive_tctx_output(tctx, ring)); 116 } 117 } 118 119 void xive_tctx_reset_os_signal(XiveTCTX *tctx) 120 { 121 /* 122 * Lower the External interrupt. Used when pulling an OS 123 * context. It is necessary to avoid catching it in the hypervisor 124 * context. It should be raised again when re-pushing the OS 125 * context. 126 */ 127 qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS)); 128 } 129 130 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 131 { 132 uint8_t *regs = &tctx->regs[ring]; 133 134 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 135 regs[TM_IPB], regs[TM_PIPR], 136 cppr, regs[TM_NSR]); 137 138 if (cppr > XIVE_PRIORITY_MAX) { 139 cppr = 0xff; 140 } 141 142 tctx->regs[ring + TM_CPPR] = cppr; 143 144 /* CPPR has changed, check if we need to raise a pending exception */ 145 xive_tctx_notify(tctx, ring); 146 } 147 148 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 149 { 150 uint8_t *regs = &tctx->regs[ring]; 151 152 regs[TM_IPB] |= ipb; 153 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 154 xive_tctx_notify(tctx, ring); 155 } 156 157 /* 158 * XIVE Thread Interrupt Management Area (TIMA) 159 */ 160 161 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 162 hwaddr offset, uint64_t value, unsigned size) 163 { 164 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 165 } 166 167 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 168 hwaddr offset, unsigned size) 169 { 170 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 171 } 172 173 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 174 hwaddr offset, unsigned size) 175 { 176 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 177 uint32_t qw2w2; 178 179 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 180 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 181 return qw2w2; 182 } 183 184 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 185 uint64_t value, unsigned size) 186 { 187 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 188 } 189 190 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 191 hwaddr offset, unsigned size) 192 { 193 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 194 } 195 196 /* 197 * Define an access map for each page of the TIMA that we will use in 198 * the memory region ops to filter values when doing loads and stores 199 * of raw registers values 200 * 201 * Registers accessibility bits : 202 * 203 * 0x0 - no access 204 * 0x1 - write only 205 * 0x2 - read only 206 * 0x3 - read/write 207 */ 208 209 static const uint8_t xive_tm_hw_view[] = { 210 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 211 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 212 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 213 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 214 }; 215 216 static const uint8_t xive_tm_hv_view[] = { 217 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 218 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 219 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 220 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 221 }; 222 223 static const uint8_t xive_tm_os_view[] = { 224 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 225 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 226 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 227 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 228 }; 229 230 static const uint8_t xive_tm_user_view[] = { 231 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 233 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 234 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 235 }; 236 237 /* 238 * Overall TIMA access map for the thread interrupt management context 239 * registers 240 */ 241 static const uint8_t *xive_tm_views[] = { 242 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 243 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 244 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 245 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 246 }; 247 248 /* 249 * Computes a register access mask for a given offset in the TIMA 250 */ 251 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 252 { 253 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 254 uint8_t reg_offset = offset & TM_REG_OFFSET; 255 uint8_t reg_mask = write ? 0x1 : 0x2; 256 uint64_t mask = 0x0; 257 int i; 258 259 for (i = 0; i < size; i++) { 260 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 261 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 262 } 263 } 264 265 return mask; 266 } 267 268 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 269 unsigned size) 270 { 271 uint8_t ring_offset = offset & TM_RING_OFFSET; 272 uint8_t reg_offset = offset & TM_REG_OFFSET; 273 uint64_t mask = xive_tm_mask(offset, size, true); 274 int i; 275 276 /* 277 * Only 4 or 8 bytes stores are allowed and the User ring is 278 * excluded 279 */ 280 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 281 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 282 HWADDR_PRIx"\n", offset); 283 return; 284 } 285 286 /* 287 * Use the register offset for the raw values and filter out 288 * reserved values 289 */ 290 for (i = 0; i < size; i++) { 291 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 292 if (byte_mask) { 293 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 294 byte_mask; 295 } 296 } 297 } 298 299 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 300 { 301 uint8_t ring_offset = offset & TM_RING_OFFSET; 302 uint8_t reg_offset = offset & TM_REG_OFFSET; 303 uint64_t mask = xive_tm_mask(offset, size, false); 304 uint64_t ret; 305 int i; 306 307 /* 308 * Only 4 or 8 bytes loads are allowed and the User ring is 309 * excluded 310 */ 311 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 312 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 313 HWADDR_PRIx"\n", offset); 314 return -1; 315 } 316 317 /* Use the register offset for the raw values */ 318 ret = 0; 319 for (i = 0; i < size; i++) { 320 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 321 } 322 323 /* filter out reserved values */ 324 return ret & mask; 325 } 326 327 /* 328 * The TM context is mapped twice within each page. Stores and loads 329 * to the first mapping below 2K write and read the specified values 330 * without modification. The second mapping above 2K performs specific 331 * state changes (side effects) in addition to setting/returning the 332 * interrupt management area context of the processor thread. 333 */ 334 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 335 hwaddr offset, unsigned size) 336 { 337 return xive_tctx_accept(tctx, TM_QW1_OS); 338 } 339 340 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 341 hwaddr offset, uint64_t value, unsigned size) 342 { 343 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 344 } 345 346 /* 347 * Adjust the IPB to allow a CPU to process event queues of other 348 * priorities during one physical interrupt cycle. 349 */ 350 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 351 hwaddr offset, uint64_t value, unsigned size) 352 { 353 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff)); 354 } 355 356 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 357 uint32_t *nvt_idx, bool *vo) 358 { 359 if (nvt_blk) { 360 *nvt_blk = xive_nvt_blk(cam); 361 } 362 if (nvt_idx) { 363 *nvt_idx = xive_nvt_idx(cam); 364 } 365 if (vo) { 366 *vo = !!(cam & TM_QW1W2_VO); 367 } 368 } 369 370 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 371 uint32_t *nvt_idx, bool *vo) 372 { 373 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 374 uint32_t cam = be32_to_cpu(qw1w2); 375 376 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 377 return qw1w2; 378 } 379 380 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 381 { 382 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 383 } 384 385 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 386 hwaddr offset, unsigned size) 387 { 388 uint32_t qw1w2; 389 uint32_t qw1w2_new; 390 uint8_t nvt_blk; 391 uint32_t nvt_idx; 392 bool vo; 393 394 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 395 396 if (!vo) { 397 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 398 nvt_blk, nvt_idx); 399 } 400 401 /* Invalidate CAM line */ 402 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 403 xive_tctx_set_os_cam(tctx, qw1w2_new); 404 405 xive_tctx_reset_os_signal(tctx); 406 return qw1w2; 407 } 408 409 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 410 uint8_t nvt_blk, uint32_t nvt_idx) 411 { 412 XiveNVT nvt; 413 uint8_t ipb; 414 415 /* 416 * Grab the associated NVT to pull the pending bits, and merge 417 * them with the IPB of the thread interrupt context registers 418 */ 419 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 420 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 421 nvt_blk, nvt_idx); 422 return; 423 } 424 425 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 426 427 if (ipb) { 428 /* Reset the NVT value */ 429 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 430 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 431 } 432 /* 433 * Always call xive_tctx_ipb_update(). Even if there were no 434 * escalation triggered, there could be a pending interrupt which 435 * was saved when the context was pulled and that we need to take 436 * into account by recalculating the PIPR (which is not 437 * saved/restored). 438 * It will also raise the External interrupt signal if needed. 439 */ 440 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 441 } 442 443 /* 444 * Updating the OS CAM line can trigger a resend of interrupt 445 */ 446 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 447 hwaddr offset, uint64_t value, unsigned size) 448 { 449 uint32_t cam = value; 450 uint32_t qw1w2 = cpu_to_be32(cam); 451 uint8_t nvt_blk; 452 uint32_t nvt_idx; 453 bool vo; 454 455 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 456 457 /* First update the registers */ 458 xive_tctx_set_os_cam(tctx, qw1w2); 459 460 /* Check the interrupt pending bits */ 461 if (vo) { 462 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 463 } 464 } 465 466 static uint32_t xive_presenter_get_config(XivePresenter *xptr) 467 { 468 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 469 470 return xpc->get_config(xptr); 471 } 472 473 /* 474 * Define a mapping of "special" operations depending on the TIMA page 475 * offset and the size of the operation. 476 */ 477 typedef struct XiveTmOp { 478 uint8_t page_offset; 479 uint32_t op_offset; 480 unsigned size; 481 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 482 hwaddr offset, 483 uint64_t value, unsigned size); 484 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 485 unsigned size); 486 } XiveTmOp; 487 488 static const XiveTmOp xive_tm_operations[] = { 489 /* 490 * MMIOs below 2K : raw values and special operations without side 491 * effects 492 */ 493 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 494 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 495 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 496 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 497 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 498 499 /* MMIOs above 2K : special operations with side effects */ 500 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 501 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 502 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 503 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 504 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 505 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 506 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 507 }; 508 509 static const XiveTmOp xive2_tm_operations[] = { 510 /* 511 * MMIOs below 2K : raw values and special operations without side 512 * effects 513 */ 514 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 515 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive2_tm_push_os_ctx, NULL }, 516 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 517 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 518 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 519 520 /* MMIOs above 2K : special operations with side effects */ 521 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 522 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 523 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive2_tm_pull_os_ctx }, 524 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive2_tm_pull_os_ctx }, 525 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 526 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 527 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 528 }; 529 530 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset, 531 unsigned size, bool write) 532 { 533 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 534 uint32_t op_offset = offset & TM_ADDRESS_MASK; 535 const XiveTmOp *tm_ops; 536 int i, tm_ops_count; 537 uint32_t cfg; 538 539 cfg = xive_presenter_get_config(xptr); 540 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) { 541 tm_ops = xive_tm_operations; 542 tm_ops_count = ARRAY_SIZE(xive_tm_operations); 543 } else { 544 tm_ops = xive2_tm_operations; 545 tm_ops_count = ARRAY_SIZE(xive2_tm_operations); 546 } 547 548 for (i = 0; i < tm_ops_count; i++) { 549 const XiveTmOp *xto = &tm_ops[i]; 550 551 /* Accesses done from a more privileged TIMA page is allowed */ 552 if (xto->page_offset >= page_offset && 553 xto->op_offset == op_offset && 554 xto->size == size && 555 ((write && xto->write_handler) || (!write && xto->read_handler))) { 556 return xto; 557 } 558 } 559 return NULL; 560 } 561 562 /* 563 * TIMA MMIO handlers 564 */ 565 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 566 uint64_t value, unsigned size) 567 { 568 const XiveTmOp *xto; 569 570 trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value); 571 572 /* 573 * TODO: check V bit in Q[0-3]W2 574 */ 575 576 /* 577 * First, check for special operations in the 2K region 578 */ 579 if (offset & TM_SPECIAL_OP) { 580 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 581 if (!xto) { 582 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 583 "@%"HWADDR_PRIx"\n", offset); 584 } else { 585 xto->write_handler(xptr, tctx, offset, value, size); 586 } 587 return; 588 } 589 590 /* 591 * Then, for special operations in the region below 2K. 592 */ 593 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 594 if (xto) { 595 xto->write_handler(xptr, tctx, offset, value, size); 596 return; 597 } 598 599 /* 600 * Finish with raw access to the register values 601 */ 602 xive_tm_raw_write(tctx, offset, value, size); 603 } 604 605 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 606 unsigned size) 607 { 608 const XiveTmOp *xto; 609 uint64_t ret; 610 611 /* 612 * TODO: check V bit in Q[0-3]W2 613 */ 614 615 /* 616 * First, check for special operations in the 2K region 617 */ 618 if (offset & TM_SPECIAL_OP) { 619 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 620 if (!xto) { 621 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 622 "@%"HWADDR_PRIx"\n", offset); 623 return -1; 624 } 625 ret = xto->read_handler(xptr, tctx, offset, size); 626 goto out; 627 } 628 629 /* 630 * Then, for special operations in the region below 2K. 631 */ 632 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 633 if (xto) { 634 ret = xto->read_handler(xptr, tctx, offset, size); 635 goto out; 636 } 637 638 /* 639 * Finish with raw access to the register values 640 */ 641 ret = xive_tm_raw_read(tctx, offset, size); 642 out: 643 trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret); 644 return ret; 645 } 646 647 static char *xive_tctx_ring_print(uint8_t *ring) 648 { 649 uint32_t w2 = xive_tctx_word2(ring); 650 651 return g_strdup_printf("%02x %02x %02x %02x %02x " 652 "%02x %02x %02x %08x", 653 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 654 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 655 be32_to_cpu(w2)); 656 } 657 658 static const char * const xive_tctx_ring_names[] = { 659 "USER", "OS", "POOL", "PHYS", 660 }; 661 662 /* 663 * kvm_irqchip_in_kernel() will cause the compiler to turn this 664 * info a nop if CONFIG_KVM isn't defined. 665 */ 666 #define xive_in_kernel(xptr) \ 667 (kvm_irqchip_in_kernel() && \ 668 ({ \ 669 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 670 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 671 })) 672 673 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf) 674 { 675 int cpu_index; 676 int i; 677 678 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 679 * are hot plugged or unplugged. 680 */ 681 if (!tctx) { 682 return; 683 } 684 685 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 686 687 if (xive_in_kernel(tctx->xptr)) { 688 Error *local_err = NULL; 689 690 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 691 if (local_err) { 692 error_report_err(local_err); 693 return; 694 } 695 } 696 697 g_string_append_printf(buf, "CPU[%04x]: " 698 "QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR W2\n", 699 cpu_index); 700 701 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 702 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 703 g_string_append_printf(buf, "CPU[%04x]: %4s %s\n", 704 cpu_index, xive_tctx_ring_names[i], s); 705 g_free(s); 706 } 707 } 708 709 void xive_tctx_reset(XiveTCTX *tctx) 710 { 711 memset(tctx->regs, 0, sizeof(tctx->regs)); 712 713 /* Set some defaults */ 714 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 715 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 716 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 717 718 /* 719 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 720 * CPPR is first set. 721 */ 722 tctx->regs[TM_QW1_OS + TM_PIPR] = 723 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 724 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 725 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 726 } 727 728 static void xive_tctx_realize(DeviceState *dev, Error **errp) 729 { 730 XiveTCTX *tctx = XIVE_TCTX(dev); 731 PowerPCCPU *cpu; 732 CPUPPCState *env; 733 734 assert(tctx->cs); 735 assert(tctx->xptr); 736 737 cpu = POWERPC_CPU(tctx->cs); 738 env = &cpu->env; 739 switch (PPC_INPUT(env)) { 740 case PPC_FLAGS_INPUT_POWER9: 741 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT); 742 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT); 743 break; 744 745 default: 746 error_setg(errp, "XIVE interrupt controller does not support " 747 "this CPU bus model"); 748 return; 749 } 750 751 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 752 if (xive_in_kernel(tctx->xptr)) { 753 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 754 return; 755 } 756 } 757 } 758 759 static int vmstate_xive_tctx_pre_save(void *opaque) 760 { 761 XiveTCTX *tctx = XIVE_TCTX(opaque); 762 Error *local_err = NULL; 763 int ret; 764 765 if (xive_in_kernel(tctx->xptr)) { 766 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 767 if (ret < 0) { 768 error_report_err(local_err); 769 return ret; 770 } 771 } 772 773 return 0; 774 } 775 776 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 777 { 778 XiveTCTX *tctx = XIVE_TCTX(opaque); 779 Error *local_err = NULL; 780 int ret; 781 782 if (xive_in_kernel(tctx->xptr)) { 783 /* 784 * Required for hotplugged CPU, for which the state comes 785 * after all states of the machine. 786 */ 787 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 788 if (ret < 0) { 789 error_report_err(local_err); 790 return ret; 791 } 792 } 793 794 return 0; 795 } 796 797 static const VMStateDescription vmstate_xive_tctx = { 798 .name = TYPE_XIVE_TCTX, 799 .version_id = 1, 800 .minimum_version_id = 1, 801 .pre_save = vmstate_xive_tctx_pre_save, 802 .post_load = vmstate_xive_tctx_post_load, 803 .fields = (const VMStateField[]) { 804 VMSTATE_BUFFER(regs, XiveTCTX), 805 VMSTATE_END_OF_LIST() 806 }, 807 }; 808 809 static Property xive_tctx_properties[] = { 810 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 811 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 812 XivePresenter *), 813 DEFINE_PROP_END_OF_LIST(), 814 }; 815 816 static void xive_tctx_class_init(ObjectClass *klass, void *data) 817 { 818 DeviceClass *dc = DEVICE_CLASS(klass); 819 820 dc->desc = "XIVE Interrupt Thread Context"; 821 dc->realize = xive_tctx_realize; 822 dc->vmsd = &vmstate_xive_tctx; 823 device_class_set_props(dc, xive_tctx_properties); 824 /* 825 * Reason: part of XIVE interrupt controller, needs to be wired up 826 * by xive_tctx_create(). 827 */ 828 dc->user_creatable = false; 829 } 830 831 static const TypeInfo xive_tctx_info = { 832 .name = TYPE_XIVE_TCTX, 833 .parent = TYPE_DEVICE, 834 .instance_size = sizeof(XiveTCTX), 835 .class_init = xive_tctx_class_init, 836 }; 837 838 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 839 { 840 Object *obj; 841 842 obj = object_new(TYPE_XIVE_TCTX); 843 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 844 object_unref(obj); 845 object_property_set_link(obj, "cpu", cpu, &error_abort); 846 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 847 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 848 object_unparent(obj); 849 return NULL; 850 } 851 return obj; 852 } 853 854 void xive_tctx_destroy(XiveTCTX *tctx) 855 { 856 Object *obj = OBJECT(tctx); 857 858 object_unparent(obj); 859 } 860 861 /* 862 * XIVE ESB helpers 863 */ 864 865 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 866 { 867 uint8_t old_pq = *pq & 0x3; 868 869 *pq &= ~0x3; 870 *pq |= value & 0x3; 871 872 return old_pq; 873 } 874 875 bool xive_esb_trigger(uint8_t *pq) 876 { 877 uint8_t old_pq = *pq & 0x3; 878 879 switch (old_pq) { 880 case XIVE_ESB_RESET: 881 xive_esb_set(pq, XIVE_ESB_PENDING); 882 return true; 883 case XIVE_ESB_PENDING: 884 case XIVE_ESB_QUEUED: 885 xive_esb_set(pq, XIVE_ESB_QUEUED); 886 return false; 887 case XIVE_ESB_OFF: 888 xive_esb_set(pq, XIVE_ESB_OFF); 889 return false; 890 default: 891 g_assert_not_reached(); 892 } 893 } 894 895 bool xive_esb_eoi(uint8_t *pq) 896 { 897 uint8_t old_pq = *pq & 0x3; 898 899 switch (old_pq) { 900 case XIVE_ESB_RESET: 901 case XIVE_ESB_PENDING: 902 xive_esb_set(pq, XIVE_ESB_RESET); 903 return false; 904 case XIVE_ESB_QUEUED: 905 xive_esb_set(pq, XIVE_ESB_PENDING); 906 return true; 907 case XIVE_ESB_OFF: 908 xive_esb_set(pq, XIVE_ESB_OFF); 909 return false; 910 default: 911 g_assert_not_reached(); 912 } 913 } 914 915 /* 916 * XIVE Interrupt Source (or IVSE) 917 */ 918 919 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 920 { 921 assert(srcno < xsrc->nr_irqs); 922 923 return xsrc->status[srcno] & 0x3; 924 } 925 926 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 927 { 928 assert(srcno < xsrc->nr_irqs); 929 930 return xive_esb_set(&xsrc->status[srcno], pq); 931 } 932 933 /* 934 * Returns whether the event notification should be forwarded. 935 */ 936 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 937 { 938 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 939 940 xive_source_set_asserted(xsrc, srcno, true); 941 942 switch (old_pq) { 943 case XIVE_ESB_RESET: 944 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 945 return true; 946 default: 947 return false; 948 } 949 } 950 951 /* 952 * Sources can be configured with PQ offloading in which case the check 953 * on the PQ state bits of MSIs is disabled 954 */ 955 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno) 956 { 957 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) && 958 !xive_source_irq_is_lsi(xsrc, srcno); 959 } 960 961 /* 962 * Returns whether the event notification should be forwarded. 963 */ 964 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 965 { 966 bool ret; 967 968 assert(srcno < xsrc->nr_irqs); 969 970 if (xive_source_esb_disabled(xsrc, srcno)) { 971 return true; 972 } 973 974 ret = xive_esb_trigger(&xsrc->status[srcno]); 975 976 if (xive_source_irq_is_lsi(xsrc, srcno) && 977 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 978 qemu_log_mask(LOG_GUEST_ERROR, 979 "XIVE: queued an event on LSI IRQ %d\n", srcno); 980 } 981 982 return ret; 983 } 984 985 /* 986 * Returns whether the event notification should be forwarded. 987 */ 988 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 989 { 990 bool ret; 991 992 assert(srcno < xsrc->nr_irqs); 993 994 if (xive_source_esb_disabled(xsrc, srcno)) { 995 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno); 996 return false; 997 } 998 999 ret = xive_esb_eoi(&xsrc->status[srcno]); 1000 1001 /* 1002 * LSI sources do not set the Q bit but they can still be 1003 * asserted, in which case we should forward a new event 1004 * notification 1005 */ 1006 if (xive_source_irq_is_lsi(xsrc, srcno) && 1007 xive_source_is_asserted(xsrc, srcno)) { 1008 ret = xive_source_lsi_trigger(xsrc, srcno); 1009 } 1010 1011 return ret; 1012 } 1013 1014 /* 1015 * Forward the source event notification to the Router 1016 */ 1017 static void xive_source_notify(XiveSource *xsrc, int srcno) 1018 { 1019 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 1020 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno); 1021 1022 if (xnc->notify) { 1023 xnc->notify(xsrc->xive, srcno, pq_checked); 1024 } 1025 } 1026 1027 /* 1028 * In a two pages ESB MMIO setting, even page is the trigger page, odd 1029 * page is for management 1030 */ 1031 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 1032 { 1033 return !((addr >> shift) & 1); 1034 } 1035 1036 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 1037 { 1038 return xive_source_esb_has_2page(xsrc) && 1039 addr_is_even(addr, xsrc->esb_shift - 1); 1040 } 1041 1042 /* 1043 * ESB MMIO loads 1044 * Trigger page Management/EOI page 1045 * 1046 * ESB MMIO setting 2 pages 1 or 2 pages 1047 * 1048 * 0x000 .. 0x3FF -1 EOI and return 0|1 1049 * 0x400 .. 0x7FF -1 EOI and return 0|1 1050 * 0x800 .. 0xBFF -1 return PQ 1051 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 1052 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 1053 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 1054 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 1055 */ 1056 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 1057 { 1058 XiveSource *xsrc = XIVE_SOURCE(opaque); 1059 uint32_t offset = addr & 0xFFF; 1060 uint32_t srcno = addr >> xsrc->esb_shift; 1061 uint64_t ret = -1; 1062 1063 /* In a two pages ESB MMIO setting, trigger page should not be read */ 1064 if (xive_source_is_trigger_page(xsrc, addr)) { 1065 qemu_log_mask(LOG_GUEST_ERROR, 1066 "XIVE: invalid load on IRQ %d trigger page at " 1067 "0x%"HWADDR_PRIx"\n", srcno, addr); 1068 return -1; 1069 } 1070 1071 switch (offset) { 1072 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1073 ret = xive_source_esb_eoi(xsrc, srcno); 1074 1075 /* Forward the source event notification for routing */ 1076 if (ret) { 1077 xive_source_notify(xsrc, srcno); 1078 } 1079 break; 1080 1081 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1082 ret = xive_source_esb_get(xsrc, srcno); 1083 break; 1084 1085 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1086 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1087 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1088 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1089 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1090 break; 1091 default: 1092 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1093 offset); 1094 } 1095 1096 trace_xive_source_esb_read(addr, srcno, ret); 1097 1098 return ret; 1099 } 1100 1101 /* 1102 * ESB MMIO stores 1103 * Trigger page Management/EOI page 1104 * 1105 * ESB MMIO setting 2 pages 1 or 2 pages 1106 * 1107 * 0x000 .. 0x3FF Trigger Trigger 1108 * 0x400 .. 0x7FF Trigger EOI 1109 * 0x800 .. 0xBFF Trigger undefined 1110 * 0xC00 .. 0xCFF Trigger PQ=00 1111 * 0xD00 .. 0xDFF Trigger PQ=01 1112 * 0xE00 .. 0xDFF Trigger PQ=10 1113 * 0xF00 .. 0xDFF Trigger PQ=11 1114 */ 1115 static void xive_source_esb_write(void *opaque, hwaddr addr, 1116 uint64_t value, unsigned size) 1117 { 1118 XiveSource *xsrc = XIVE_SOURCE(opaque); 1119 uint32_t offset = addr & 0xFFF; 1120 uint32_t srcno = addr >> xsrc->esb_shift; 1121 bool notify = false; 1122 1123 trace_xive_source_esb_write(addr, srcno, value); 1124 1125 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1126 if (xive_source_is_trigger_page(xsrc, addr)) { 1127 notify = xive_source_esb_trigger(xsrc, srcno); 1128 goto out; 1129 } 1130 1131 switch (offset) { 1132 case 0 ... 0x3FF: 1133 notify = xive_source_esb_trigger(xsrc, srcno); 1134 break; 1135 1136 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1137 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1138 qemu_log_mask(LOG_GUEST_ERROR, 1139 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1140 return; 1141 } 1142 1143 notify = xive_source_esb_eoi(xsrc, srcno); 1144 break; 1145 1146 /* 1147 * This is an internal offset used to inject triggers when the PQ 1148 * state bits are not controlled locally. Such as for LSIs when 1149 * under ABT mode. 1150 */ 1151 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1152 notify = true; 1153 break; 1154 1155 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1156 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1157 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1158 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1159 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1160 break; 1161 1162 default: 1163 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1164 offset); 1165 return; 1166 } 1167 1168 out: 1169 /* Forward the source event notification for routing */ 1170 if (notify) { 1171 xive_source_notify(xsrc, srcno); 1172 } 1173 } 1174 1175 static const MemoryRegionOps xive_source_esb_ops = { 1176 .read = xive_source_esb_read, 1177 .write = xive_source_esb_write, 1178 .endianness = DEVICE_BIG_ENDIAN, 1179 .valid = { 1180 .min_access_size = 1, 1181 .max_access_size = 8, 1182 }, 1183 .impl = { 1184 .min_access_size = 1, 1185 .max_access_size = 8, 1186 }, 1187 }; 1188 1189 void xive_source_set_irq(void *opaque, int srcno, int val) 1190 { 1191 XiveSource *xsrc = XIVE_SOURCE(opaque); 1192 bool notify = false; 1193 1194 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1195 if (val) { 1196 notify = xive_source_lsi_trigger(xsrc, srcno); 1197 } else { 1198 xive_source_set_asserted(xsrc, srcno, false); 1199 } 1200 } else { 1201 if (val) { 1202 notify = xive_source_esb_trigger(xsrc, srcno); 1203 } 1204 } 1205 1206 /* Forward the source event notification for routing */ 1207 if (notify) { 1208 xive_source_notify(xsrc, srcno); 1209 } 1210 } 1211 1212 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1213 { 1214 int i; 1215 1216 for (i = 0; i < xsrc->nr_irqs; i++) { 1217 uint8_t pq = xive_source_esb_get(xsrc, i); 1218 1219 if (pq == XIVE_ESB_OFF) { 1220 continue; 1221 } 1222 1223 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1224 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1225 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1226 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1227 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1228 } 1229 } 1230 1231 static void xive_source_reset(void *dev) 1232 { 1233 XiveSource *xsrc = XIVE_SOURCE(dev); 1234 1235 /* Do not clear the LSI bitmap */ 1236 1237 memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs); 1238 } 1239 1240 static void xive_source_realize(DeviceState *dev, Error **errp) 1241 { 1242 XiveSource *xsrc = XIVE_SOURCE(dev); 1243 size_t esb_len = xive_source_esb_len(xsrc); 1244 1245 assert(xsrc->xive); 1246 1247 if (!xsrc->nr_irqs) { 1248 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1249 return; 1250 } 1251 1252 if (xsrc->esb_shift != XIVE_ESB_4K && 1253 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1254 xsrc->esb_shift != XIVE_ESB_64K && 1255 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1256 error_setg(errp, "Invalid ESB shift setting"); 1257 return; 1258 } 1259 1260 xsrc->status = g_malloc0(xsrc->nr_irqs); 1261 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1262 1263 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1264 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1265 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1266 esb_len); 1267 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1268 1269 qemu_register_reset(xive_source_reset, dev); 1270 } 1271 1272 static const VMStateDescription vmstate_xive_source = { 1273 .name = TYPE_XIVE_SOURCE, 1274 .version_id = 1, 1275 .minimum_version_id = 1, 1276 .fields = (const VMStateField[]) { 1277 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1278 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1279 VMSTATE_END_OF_LIST() 1280 }, 1281 }; 1282 1283 /* 1284 * The default XIVE interrupt source setting for the ESB MMIOs is two 1285 * 64k pages without Store EOI, to be in sync with KVM. 1286 */ 1287 static Property xive_source_properties[] = { 1288 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1289 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1290 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1291 /* 1292 * By default, PQs are initialized to 0b01 (Q=1) which corresponds 1293 * to "ints off" 1294 */ 1295 DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF), 1296 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1297 XiveNotifier *), 1298 DEFINE_PROP_END_OF_LIST(), 1299 }; 1300 1301 static void xive_source_class_init(ObjectClass *klass, void *data) 1302 { 1303 DeviceClass *dc = DEVICE_CLASS(klass); 1304 1305 dc->desc = "XIVE Interrupt Source"; 1306 device_class_set_props(dc, xive_source_properties); 1307 dc->realize = xive_source_realize; 1308 dc->vmsd = &vmstate_xive_source; 1309 /* 1310 * Reason: part of XIVE interrupt controller, needs to be wired up, 1311 * e.g. by spapr_xive_instance_init(). 1312 */ 1313 dc->user_creatable = false; 1314 } 1315 1316 static const TypeInfo xive_source_info = { 1317 .name = TYPE_XIVE_SOURCE, 1318 .parent = TYPE_DEVICE, 1319 .instance_size = sizeof(XiveSource), 1320 .class_init = xive_source_class_init, 1321 }; 1322 1323 /* 1324 * XiveEND helpers 1325 */ 1326 1327 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf) 1328 { 1329 uint64_t qaddr_base = xive_end_qaddr(end); 1330 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1331 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1332 uint32_t qentries = 1 << (qsize + 10); 1333 int i; 1334 1335 /* 1336 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1337 */ 1338 g_string_append_printf(buf, " [ "); 1339 qindex = (qindex - (width - 1)) & (qentries - 1); 1340 for (i = 0; i < width; i++) { 1341 uint64_t qaddr = qaddr_base + (qindex << 2); 1342 uint32_t qdata = -1; 1343 1344 if (dma_memory_read(&address_space_memory, qaddr, 1345 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1346 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1347 HWADDR_PRIx "\n", qaddr); 1348 return; 1349 } 1350 g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "", 1351 be32_to_cpu(qdata)); 1352 qindex = (qindex + 1) & (qentries - 1); 1353 } 1354 g_string_append_c(buf, ']'); 1355 } 1356 1357 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1358 { 1359 uint64_t qaddr_base = xive_end_qaddr(end); 1360 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1361 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1362 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1363 uint32_t qentries = 1 << (qsize + 10); 1364 1365 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1366 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1367 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1368 uint8_t pq; 1369 g_autoptr(GString) buf = g_string_new(""); 1370 g_autoptr(HumanReadableText) info = NULL; 1371 1372 if (!xive_end_is_valid(end)) { 1373 return; 1374 } 1375 1376 pq = xive_get_field32(END_W1_ESn, end->w1); 1377 1378 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1379 end_idx, 1380 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1381 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1382 xive_end_is_valid(end) ? 'v' : '-', 1383 xive_end_is_enqueue(end) ? 'q' : '-', 1384 xive_end_is_notify(end) ? 'n' : '-', 1385 xive_end_is_backlog(end) ? 'b' : '-', 1386 xive_end_is_escalate(end) ? 'e' : '-', 1387 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1388 xive_end_is_silent_escalation(end) ? 's' : '-', 1389 xive_end_is_firmware(end) ? 'f' : '-', 1390 priority, nvt_blk, nvt_idx); 1391 1392 if (qaddr_base) { 1393 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1394 qaddr_base, qindex, qentries, qgen); 1395 xive_end_queue_pic_print_info(end, 6, buf); 1396 } 1397 info = human_readable_text_from_str(buf); 1398 monitor_puts(mon, info->human_readable_text); 1399 monitor_printf(mon, "\n"); 1400 } 1401 1402 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1403 { 1404 uint64_t qaddr_base = xive_end_qaddr(end); 1405 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1406 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1407 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1408 1409 uint64_t qaddr = qaddr_base + (qindex << 2); 1410 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1411 uint32_t qentries = 1 << (qsize + 10); 1412 1413 if (dma_memory_write(&address_space_memory, qaddr, 1414 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1415 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1416 HWADDR_PRIx "\n", qaddr); 1417 return; 1418 } 1419 1420 qindex = (qindex + 1) & (qentries - 1); 1421 if (qindex == 0) { 1422 qgen ^= 1; 1423 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1424 } 1425 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1426 } 1427 1428 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1429 Monitor *mon) 1430 { 1431 XiveEAS *eas = (XiveEAS *) &end->w4; 1432 uint8_t pq; 1433 1434 if (!xive_end_is_escalate(end)) { 1435 return; 1436 } 1437 1438 pq = xive_get_field32(END_W1_ESe, end->w1); 1439 1440 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1441 end_idx, 1442 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1443 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1444 xive_eas_is_valid(eas) ? 'V' : ' ', 1445 xive_eas_is_masked(eas) ? 'M' : ' ', 1446 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1447 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1448 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1449 } 1450 1451 /* 1452 * XIVE Router (aka. Virtualization Controller or IVRE) 1453 */ 1454 1455 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1456 XiveEAS *eas) 1457 { 1458 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1459 1460 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1461 } 1462 1463 static 1464 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1465 uint8_t *pq) 1466 { 1467 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1468 1469 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1470 } 1471 1472 static 1473 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1474 uint8_t *pq) 1475 { 1476 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1477 1478 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1479 } 1480 1481 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1482 XiveEND *end) 1483 { 1484 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1485 1486 return xrc->get_end(xrtr, end_blk, end_idx, end); 1487 } 1488 1489 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1490 XiveEND *end, uint8_t word_number) 1491 { 1492 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1493 1494 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1495 } 1496 1497 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1498 XiveNVT *nvt) 1499 { 1500 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1501 1502 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1503 } 1504 1505 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1506 XiveNVT *nvt, uint8_t word_number) 1507 { 1508 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1509 1510 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1511 } 1512 1513 static int xive_router_get_block_id(XiveRouter *xrtr) 1514 { 1515 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1516 1517 return xrc->get_block_id(xrtr); 1518 } 1519 1520 static void xive_router_realize(DeviceState *dev, Error **errp) 1521 { 1522 XiveRouter *xrtr = XIVE_ROUTER(dev); 1523 1524 assert(xrtr->xfb); 1525 } 1526 1527 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas) 1528 { 1529 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1530 1531 return xrc->end_notify(xrtr, eas); 1532 } 1533 1534 /* 1535 * Encode the HW CAM line in the block group mode format : 1536 * 1537 * chip << 19 | 0000000 0 0001 thread (7Bit) 1538 */ 1539 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1540 { 1541 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1542 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1543 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1544 1545 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1546 } 1547 1548 /* 1549 * The thread context register words are in big-endian format. 1550 */ 1551 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1552 uint8_t format, 1553 uint8_t nvt_blk, uint32_t nvt_idx, 1554 bool cam_ignore, uint32_t logic_serv) 1555 { 1556 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1557 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1558 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1559 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1560 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1561 1562 /* 1563 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1564 * identifier are ignored in the "CAM" match. 1565 */ 1566 1567 if (format == 0) { 1568 if (cam_ignore == true) { 1569 /* 1570 * F=0 & i=1: Logical server notification (bits ignored at 1571 * the end of the NVT identifier) 1572 */ 1573 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1574 nvt_blk, nvt_idx); 1575 return -1; 1576 } 1577 1578 /* F=0 & i=0: Specific NVT notification */ 1579 1580 /* PHYS ring */ 1581 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1582 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1583 return TM_QW3_HV_PHYS; 1584 } 1585 1586 /* HV POOL ring */ 1587 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1588 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1589 return TM_QW2_HV_POOL; 1590 } 1591 1592 /* OS ring */ 1593 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1594 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1595 return TM_QW1_OS; 1596 } 1597 } else { 1598 /* F=1 : User level Event-Based Branch (EBB) notification */ 1599 1600 /* USER ring */ 1601 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1602 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1603 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1604 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1605 return TM_QW0_USER; 1606 } 1607 } 1608 return -1; 1609 } 1610 1611 /* 1612 * This is our simple Xive Presenter Engine model. It is merged in the 1613 * Router as it does not require an extra object. 1614 * 1615 * It receives notification requests sent by the IVRE to find one 1616 * matching NVT (or more) dispatched on the processor threads. In case 1617 * of a single NVT notification, the process is abbreviated and the 1618 * thread is signaled if a match is found. In case of a logical server 1619 * notification (bits ignored at the end of the NVT identifier), the 1620 * IVPE and IVRE select a winning thread using different filters. This 1621 * involves 2 or 3 exchanges on the PowerBus that the model does not 1622 * support. 1623 * 1624 * The parameters represent what is sent on the PowerBus 1625 */ 1626 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1627 uint8_t nvt_blk, uint32_t nvt_idx, 1628 bool cam_ignore, uint8_t priority, 1629 uint32_t logic_serv) 1630 { 1631 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1632 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1633 int count; 1634 1635 /* 1636 * Ask the machine to scan the interrupt controllers for a match 1637 */ 1638 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1639 priority, logic_serv, &match); 1640 if (count < 0) { 1641 return false; 1642 } 1643 1644 /* handle CPU exception delivery */ 1645 if (count) { 1646 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1647 xive_tctx_ipb_update(match.tctx, match.ring, 1648 xive_priority_to_ipb(priority)); 1649 } 1650 1651 return !!count; 1652 } 1653 1654 /* 1655 * Notification using the END ESe/ESn bit (Event State Buffer for 1656 * escalation and notification). Provide further coalescing in the 1657 * Router. 1658 */ 1659 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1660 uint32_t end_idx, XiveEND *end, 1661 uint32_t end_esmask) 1662 { 1663 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1664 bool notify = xive_esb_trigger(&pq); 1665 1666 if (pq != xive_get_field32(end_esmask, end->w1)) { 1667 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1668 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1669 } 1670 1671 /* ESe/n[Q]=1 : end of notification */ 1672 return notify; 1673 } 1674 1675 /* 1676 * An END trigger can come from an event trigger (IPI or HW) or from 1677 * another chip. We don't model the PowerBus but the END trigger 1678 * message has the same parameters than in the function below. 1679 */ 1680 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas) 1681 { 1682 XiveEND end; 1683 uint8_t priority; 1684 uint8_t format; 1685 uint8_t nvt_blk; 1686 uint32_t nvt_idx; 1687 XiveNVT nvt; 1688 bool found; 1689 1690 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 1691 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 1692 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w); 1693 1694 /* END cache lookup */ 1695 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1696 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1697 end_idx); 1698 return; 1699 } 1700 1701 if (!xive_end_is_valid(&end)) { 1702 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1703 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1704 end_blk, end_idx); 1705 return; 1706 } 1707 1708 if (xive_end_is_enqueue(&end)) { 1709 xive_end_enqueue(&end, end_data); 1710 /* Enqueuing event data modifies the EQ toggle and index */ 1711 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1712 } 1713 1714 /* 1715 * When the END is silent, we skip the notification part. 1716 */ 1717 if (xive_end_is_silent_escalation(&end)) { 1718 goto do_escalation; 1719 } 1720 1721 /* 1722 * The W7 format depends on the F bit in W6. It defines the type 1723 * of the notification : 1724 * 1725 * F=0 : single or multiple NVT notification 1726 * F=1 : User level Event-Based Branch (EBB) notification, no 1727 * priority 1728 */ 1729 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1730 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1731 1732 /* The END is masked */ 1733 if (format == 0 && priority == 0xff) { 1734 return; 1735 } 1736 1737 /* 1738 * Check the END ESn (Event State Buffer for notification) for 1739 * even further coalescing in the Router 1740 */ 1741 if (!xive_end_is_notify(&end)) { 1742 /* ESn[Q]=1 : end of notification */ 1743 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1744 &end, END_W1_ESn)) { 1745 return; 1746 } 1747 } 1748 1749 /* 1750 * Follows IVPE notification 1751 */ 1752 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1753 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1754 1755 /* NVT cache lookup */ 1756 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1757 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1758 nvt_blk, nvt_idx); 1759 return; 1760 } 1761 1762 if (!xive_nvt_is_valid(&nvt)) { 1763 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1764 nvt_blk, nvt_idx); 1765 return; 1766 } 1767 1768 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1769 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1770 priority, 1771 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1772 1773 /* TODO: Auto EOI. */ 1774 1775 if (found) { 1776 return; 1777 } 1778 1779 /* 1780 * If no matching NVT is dispatched on a HW thread : 1781 * - specific VP: update the NVT structure if backlog is activated 1782 * - logical server : forward request to IVPE (not supported) 1783 */ 1784 if (xive_end_is_backlog(&end)) { 1785 uint8_t ipb; 1786 1787 if (format == 1) { 1788 qemu_log_mask(LOG_GUEST_ERROR, 1789 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1790 end_blk, end_idx); 1791 return; 1792 } 1793 /* 1794 * Record the IPB in the associated NVT structure for later 1795 * use. The presenter will resend the interrupt when the vCPU 1796 * is dispatched again on a HW thread. 1797 */ 1798 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1799 xive_priority_to_ipb(priority); 1800 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1801 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1802 1803 /* 1804 * On HW, follows a "Broadcast Backlog" to IVPEs 1805 */ 1806 } 1807 1808 do_escalation: 1809 /* 1810 * If activated, escalate notification using the ESe PQ bits and 1811 * the EAS in w4-5 1812 */ 1813 if (!xive_end_is_escalate(&end)) { 1814 return; 1815 } 1816 1817 /* 1818 * Check the END ESe (Event State Buffer for escalation) for even 1819 * further coalescing in the Router 1820 */ 1821 if (!xive_end_is_uncond_escalation(&end)) { 1822 /* ESe[Q]=1 : end of notification */ 1823 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1824 &end, END_W1_ESe)) { 1825 return; 1826 } 1827 } 1828 1829 trace_xive_router_end_escalate(end_blk, end_idx, 1830 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1831 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1832 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1833 /* 1834 * The END trigger becomes an Escalation trigger 1835 */ 1836 xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4); 1837 } 1838 1839 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 1840 { 1841 XiveRouter *xrtr = XIVE_ROUTER(xn); 1842 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1843 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1844 XiveEAS eas; 1845 1846 /* EAS cache lookup */ 1847 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1848 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1849 return; 1850 } 1851 1852 if (!pq_checked) { 1853 bool notify; 1854 uint8_t pq; 1855 1856 /* PQ cache lookup */ 1857 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 1858 /* Set FIR */ 1859 g_assert_not_reached(); 1860 } 1861 1862 notify = xive_esb_trigger(&pq); 1863 1864 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 1865 /* Set FIR */ 1866 g_assert_not_reached(); 1867 } 1868 1869 if (!notify) { 1870 return; 1871 } 1872 } 1873 1874 if (!xive_eas_is_valid(&eas)) { 1875 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1876 return; 1877 } 1878 1879 if (xive_eas_is_masked(&eas)) { 1880 /* Notification completed */ 1881 return; 1882 } 1883 1884 /* 1885 * The event trigger becomes an END trigger 1886 */ 1887 xive_router_end_notify_handler(xrtr, &eas); 1888 } 1889 1890 static Property xive_router_properties[] = { 1891 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1892 TYPE_XIVE_FABRIC, XiveFabric *), 1893 DEFINE_PROP_END_OF_LIST(), 1894 }; 1895 1896 static void xive_router_class_init(ObjectClass *klass, void *data) 1897 { 1898 DeviceClass *dc = DEVICE_CLASS(klass); 1899 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1900 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 1901 1902 dc->desc = "XIVE Router Engine"; 1903 device_class_set_props(dc, xive_router_properties); 1904 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1905 dc->realize = xive_router_realize; 1906 xnc->notify = xive_router_notify; 1907 1908 /* By default, the router handles END triggers locally */ 1909 xrc->end_notify = xive_router_end_notify; 1910 } 1911 1912 static const TypeInfo xive_router_info = { 1913 .name = TYPE_XIVE_ROUTER, 1914 .parent = TYPE_SYS_BUS_DEVICE, 1915 .abstract = true, 1916 .instance_size = sizeof(XiveRouter), 1917 .class_size = sizeof(XiveRouterClass), 1918 .class_init = xive_router_class_init, 1919 .interfaces = (InterfaceInfo[]) { 1920 { TYPE_XIVE_NOTIFIER }, 1921 { TYPE_XIVE_PRESENTER }, 1922 { } 1923 } 1924 }; 1925 1926 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1927 { 1928 if (!xive_eas_is_valid(eas)) { 1929 return; 1930 } 1931 1932 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1933 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1934 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1935 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1936 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1937 } 1938 1939 /* 1940 * END ESB MMIO loads 1941 */ 1942 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1943 { 1944 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1945 uint32_t offset = addr & 0xFFF; 1946 uint8_t end_blk; 1947 uint32_t end_idx; 1948 XiveEND end; 1949 uint32_t end_esmask; 1950 uint8_t pq; 1951 uint64_t ret = -1; 1952 1953 /* 1954 * The block id should be deduced from the load address on the END 1955 * ESB MMIO but our model only supports a single block per XIVE chip. 1956 */ 1957 end_blk = xive_router_get_block_id(xsrc->xrtr); 1958 end_idx = addr >> (xsrc->esb_shift + 1); 1959 1960 trace_xive_end_source_read(end_blk, end_idx, addr); 1961 1962 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1963 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1964 end_idx); 1965 return -1; 1966 } 1967 1968 if (!xive_end_is_valid(&end)) { 1969 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1970 end_blk, end_idx); 1971 return -1; 1972 } 1973 1974 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1975 pq = xive_get_field32(end_esmask, end.w1); 1976 1977 switch (offset) { 1978 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1979 ret = xive_esb_eoi(&pq); 1980 1981 /* Forward the source event notification for routing ?? */ 1982 break; 1983 1984 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1985 ret = pq; 1986 break; 1987 1988 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1989 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1990 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1991 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1992 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1993 break; 1994 default: 1995 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1996 offset); 1997 return -1; 1998 } 1999 2000 if (pq != xive_get_field32(end_esmask, end.w1)) { 2001 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 2002 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 2003 } 2004 2005 return ret; 2006 } 2007 2008 /* 2009 * END ESB MMIO stores are invalid 2010 */ 2011 static void xive_end_source_write(void *opaque, hwaddr addr, 2012 uint64_t value, unsigned size) 2013 { 2014 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 2015 HWADDR_PRIx"\n", addr); 2016 } 2017 2018 static const MemoryRegionOps xive_end_source_ops = { 2019 .read = xive_end_source_read, 2020 .write = xive_end_source_write, 2021 .endianness = DEVICE_BIG_ENDIAN, 2022 .valid = { 2023 .min_access_size = 1, 2024 .max_access_size = 8, 2025 }, 2026 .impl = { 2027 .min_access_size = 1, 2028 .max_access_size = 8, 2029 }, 2030 }; 2031 2032 static void xive_end_source_realize(DeviceState *dev, Error **errp) 2033 { 2034 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 2035 2036 assert(xsrc->xrtr); 2037 2038 if (!xsrc->nr_ends) { 2039 error_setg(errp, "Number of interrupt needs to be greater than 0"); 2040 return; 2041 } 2042 2043 if (xsrc->esb_shift != XIVE_ESB_4K && 2044 xsrc->esb_shift != XIVE_ESB_64K) { 2045 error_setg(errp, "Invalid ESB shift setting"); 2046 return; 2047 } 2048 2049 /* 2050 * Each END is assigned an even/odd pair of MMIO pages, the even page 2051 * manages the ESn field while the odd page manages the ESe field. 2052 */ 2053 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 2054 &xive_end_source_ops, xsrc, "xive.end", 2055 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 2056 } 2057 2058 static Property xive_end_source_properties[] = { 2059 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 2060 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 2061 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 2062 XiveRouter *), 2063 DEFINE_PROP_END_OF_LIST(), 2064 }; 2065 2066 static void xive_end_source_class_init(ObjectClass *klass, void *data) 2067 { 2068 DeviceClass *dc = DEVICE_CLASS(klass); 2069 2070 dc->desc = "XIVE END Source"; 2071 device_class_set_props(dc, xive_end_source_properties); 2072 dc->realize = xive_end_source_realize; 2073 /* 2074 * Reason: part of XIVE interrupt controller, needs to be wired up, 2075 * e.g. by spapr_xive_instance_init(). 2076 */ 2077 dc->user_creatable = false; 2078 } 2079 2080 static const TypeInfo xive_end_source_info = { 2081 .name = TYPE_XIVE_END_SOURCE, 2082 .parent = TYPE_DEVICE, 2083 .instance_size = sizeof(XiveENDSource), 2084 .class_init = xive_end_source_class_init, 2085 }; 2086 2087 /* 2088 * XIVE Notifier 2089 */ 2090 static const TypeInfo xive_notifier_info = { 2091 .name = TYPE_XIVE_NOTIFIER, 2092 .parent = TYPE_INTERFACE, 2093 .class_size = sizeof(XiveNotifierClass), 2094 }; 2095 2096 /* 2097 * XIVE Presenter 2098 */ 2099 static const TypeInfo xive_presenter_info = { 2100 .name = TYPE_XIVE_PRESENTER, 2101 .parent = TYPE_INTERFACE, 2102 .class_size = sizeof(XivePresenterClass), 2103 }; 2104 2105 /* 2106 * XIVE Fabric 2107 */ 2108 static const TypeInfo xive_fabric_info = { 2109 .name = TYPE_XIVE_FABRIC, 2110 .parent = TYPE_INTERFACE, 2111 .class_size = sizeof(XiveFabricClass), 2112 }; 2113 2114 static void xive_register_types(void) 2115 { 2116 type_register_static(&xive_fabric_info); 2117 type_register_static(&xive_source_info); 2118 type_register_static(&xive_notifier_info); 2119 type_register_static(&xive_presenter_info); 2120 type_register_static(&xive_router_info); 2121 type_register_static(&xive_end_source_info); 2122 type_register_static(&xive_tctx_info); 2123 } 2124 2125 type_init(xive_register_types) 2126