xref: /openbmc/qemu/hw/intc/xive.c (revision a58a18adee0421bd704265ec14a6805f734d3dab)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
20 
21 /*
22  * XIVE Thread Interrupt Management context
23  */
24 
25 /*
26  * Convert a priority number to an Interrupt Pending Buffer (IPB)
27  * register, which indicates a pending interrupt at the priority
28  * corresponding to the bit number
29  */
30 static uint8_t priority_to_ipb(uint8_t priority)
31 {
32     return priority > XIVE_PRIORITY_MAX ?
33         0 : 1 << (XIVE_PRIORITY_MAX - priority);
34 }
35 
36 /*
37  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38  * Interrupt Priority Register (PIPR), which contains the priority of
39  * the most favored pending notification.
40  */
41 static uint8_t ipb_to_pipr(uint8_t ibp)
42 {
43     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
44 }
45 
46 static void ipb_update(uint8_t *regs, uint8_t priority)
47 {
48     regs[TM_IPB] |= priority_to_ipb(priority);
49     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
50 }
51 
52 static uint8_t exception_mask(uint8_t ring)
53 {
54     switch (ring) {
55     case TM_QW1_OS:
56         return TM_QW1_NSR_EO;
57     default:
58         g_assert_not_reached();
59     }
60 }
61 
62 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
63 {
64     uint8_t *regs = &tctx->regs[ring];
65     uint8_t nsr = regs[TM_NSR];
66     uint8_t mask = exception_mask(ring);
67 
68     qemu_irq_lower(tctx->output);
69 
70     if (regs[TM_NSR] & mask) {
71         uint8_t cppr = regs[TM_PIPR];
72 
73         regs[TM_CPPR] = cppr;
74 
75         /* Reset the pending buffer bit */
76         regs[TM_IPB] &= ~priority_to_ipb(cppr);
77         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
78 
79         /* Drop Exception bit */
80         regs[TM_NSR] &= ~mask;
81     }
82 
83     return (nsr << 8) | regs[TM_CPPR];
84 }
85 
86 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
87 {
88     uint8_t *regs = &tctx->regs[ring];
89 
90     if (regs[TM_PIPR] < regs[TM_CPPR]) {
91         regs[TM_NSR] |= exception_mask(ring);
92         qemu_irq_raise(tctx->output);
93     }
94 }
95 
96 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
97 {
98     if (cppr > XIVE_PRIORITY_MAX) {
99         cppr = 0xff;
100     }
101 
102     tctx->regs[ring + TM_CPPR] = cppr;
103 
104     /* CPPR has changed, check if we need to raise a pending exception */
105     xive_tctx_notify(tctx, ring);
106 }
107 
108 /*
109  * XIVE Thread Interrupt Management Area (TIMA)
110  */
111 
112 /*
113  * Define an access map for each page of the TIMA that we will use in
114  * the memory region ops to filter values when doing loads and stores
115  * of raw registers values
116  *
117  * Registers accessibility bits :
118  *
119  *    0x0 - no access
120  *    0x1 - write only
121  *    0x2 - read only
122  *    0x3 - read/write
123  */
124 
125 static const uint8_t xive_tm_hw_view[] = {
126     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
127     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
128     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
129     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   3, 3, 3, 0,
130 };
131 
132 static const uint8_t xive_tm_hv_view[] = {
133     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
134     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
135     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0,
136     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   0, 0, 0, 0,
137 };
138 
139 static const uint8_t xive_tm_os_view[] = {
140     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
141     /* QW-1 OS   */   2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0,
142     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
143     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
144 };
145 
146 static const uint8_t xive_tm_user_view[] = {
147     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
148     /* QW-1 OS   */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
149     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
150     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
151 };
152 
153 /*
154  * Overall TIMA access map for the thread interrupt management context
155  * registers
156  */
157 static const uint8_t *xive_tm_views[] = {
158     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
159     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
160     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
161     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
162 };
163 
164 /*
165  * Computes a register access mask for a given offset in the TIMA
166  */
167 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
168 {
169     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
170     uint8_t reg_offset = offset & 0x3F;
171     uint8_t reg_mask = write ? 0x1 : 0x2;
172     uint64_t mask = 0x0;
173     int i;
174 
175     for (i = 0; i < size; i++) {
176         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
177             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
178         }
179     }
180 
181     return mask;
182 }
183 
184 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
185                               unsigned size)
186 {
187     uint8_t ring_offset = offset & 0x30;
188     uint8_t reg_offset = offset & 0x3F;
189     uint64_t mask = xive_tm_mask(offset, size, true);
190     int i;
191 
192     /*
193      * Only 4 or 8 bytes stores are allowed and the User ring is
194      * excluded
195      */
196     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
197         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
198                       HWADDR_PRIx"\n", offset);
199         return;
200     }
201 
202     /*
203      * Use the register offset for the raw values and filter out
204      * reserved values
205      */
206     for (i = 0; i < size; i++) {
207         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
208         if (byte_mask) {
209             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
210                 byte_mask;
211         }
212     }
213 }
214 
215 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
216 {
217     uint8_t ring_offset = offset & 0x30;
218     uint8_t reg_offset = offset & 0x3F;
219     uint64_t mask = xive_tm_mask(offset, size, false);
220     uint64_t ret;
221     int i;
222 
223     /*
224      * Only 4 or 8 bytes loads are allowed and the User ring is
225      * excluded
226      */
227     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
228         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
229                       HWADDR_PRIx"\n", offset);
230         return -1;
231     }
232 
233     /* Use the register offset for the raw values */
234     ret = 0;
235     for (i = 0; i < size; i++) {
236         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
237     }
238 
239     /* filter out reserved values */
240     return ret & mask;
241 }
242 
243 /*
244  * The TM context is mapped twice within each page. Stores and loads
245  * to the first mapping below 2K write and read the specified values
246  * without modification. The second mapping above 2K performs specific
247  * state changes (side effects) in addition to setting/returning the
248  * interrupt management area context of the processor thread.
249  */
250 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
251 {
252     return xive_tctx_accept(tctx, TM_QW1_OS);
253 }
254 
255 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
256                                 uint64_t value, unsigned size)
257 {
258     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
259 }
260 
261 /*
262  * Adjust the IPB to allow a CPU to process event queues of other
263  * priorities during one physical interrupt cycle.
264  */
265 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
266                                    uint64_t value, unsigned size)
267 {
268     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
269     xive_tctx_notify(tctx, TM_QW1_OS);
270 }
271 
272 /*
273  * Define a mapping of "special" operations depending on the TIMA page
274  * offset and the size of the operation.
275  */
276 typedef struct XiveTmOp {
277     uint8_t  page_offset;
278     uint32_t op_offset;
279     unsigned size;
280     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
281                               unsigned size);
282     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
283 } XiveTmOp;
284 
285 static const XiveTmOp xive_tm_operations[] = {
286     /*
287      * MMIOs below 2K : raw values and special operations without side
288      * effects
289      */
290     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
291 
292     /* MMIOs above 2K : special operations with side effects */
293     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
294     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
295 };
296 
297 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
298 {
299     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
300     uint32_t op_offset = offset & 0xFFF;
301     int i;
302 
303     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
304         const XiveTmOp *xto = &xive_tm_operations[i];
305 
306         /* Accesses done from a more privileged TIMA page is allowed */
307         if (xto->page_offset >= page_offset &&
308             xto->op_offset == op_offset &&
309             xto->size == size &&
310             ((write && xto->write_handler) || (!write && xto->read_handler))) {
311             return xto;
312         }
313     }
314     return NULL;
315 }
316 
317 /*
318  * TIMA MMIO handlers
319  */
320 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
321                         unsigned size)
322 {
323     const XiveTmOp *xto;
324 
325     /*
326      * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
327      */
328 
329     /*
330      * First, check for special operations in the 2K region
331      */
332     if (offset & 0x800) {
333         xto = xive_tm_find_op(offset, size, true);
334         if (!xto) {
335             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
336                           "@%"HWADDR_PRIx"\n", offset);
337         } else {
338             xto->write_handler(tctx, offset, value, size);
339         }
340         return;
341     }
342 
343     /*
344      * Then, for special operations in the region below 2K.
345      */
346     xto = xive_tm_find_op(offset, size, true);
347     if (xto) {
348         xto->write_handler(tctx, offset, value, size);
349         return;
350     }
351 
352     /*
353      * Finish with raw access to the register values
354      */
355     xive_tm_raw_write(tctx, offset, value, size);
356 }
357 
358 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
359 {
360     const XiveTmOp *xto;
361 
362     /*
363      * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
364      */
365 
366     /*
367      * First, check for special operations in the 2K region
368      */
369     if (offset & 0x800) {
370         xto = xive_tm_find_op(offset, size, false);
371         if (!xto) {
372             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
373                           "@%"HWADDR_PRIx"\n", offset);
374             return -1;
375         }
376         return xto->read_handler(tctx, offset, size);
377     }
378 
379     /*
380      * Then, for special operations in the region below 2K.
381      */
382     xto = xive_tm_find_op(offset, size, false);
383     if (xto) {
384         return xto->read_handler(tctx, offset, size);
385     }
386 
387     /*
388      * Finish with raw access to the register values
389      */
390     return xive_tm_raw_read(tctx, offset, size);
391 }
392 
393 static void xive_tm_write(void *opaque, hwaddr offset,
394                           uint64_t value, unsigned size)
395 {
396     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
397 
398     xive_tctx_tm_write(tctx, offset, value, size);
399 }
400 
401 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
402 {
403     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
404 
405     return xive_tctx_tm_read(tctx, offset, size);
406 }
407 
408 const MemoryRegionOps xive_tm_ops = {
409     .read = xive_tm_read,
410     .write = xive_tm_write,
411     .endianness = DEVICE_BIG_ENDIAN,
412     .valid = {
413         .min_access_size = 1,
414         .max_access_size = 8,
415     },
416     .impl = {
417         .min_access_size = 1,
418         .max_access_size = 8,
419     },
420 };
421 
422 static inline uint32_t xive_tctx_word2(uint8_t *ring)
423 {
424     return *((uint32_t *) &ring[TM_WORD2]);
425 }
426 
427 static char *xive_tctx_ring_print(uint8_t *ring)
428 {
429     uint32_t w2 = xive_tctx_word2(ring);
430 
431     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
432                    "%02x  %02x   %02x  %08x",
433                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
434                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
435                    be32_to_cpu(w2));
436 }
437 
438 static const char * const xive_tctx_ring_names[] = {
439     "USER", "OS", "POOL", "PHYS",
440 };
441 
442 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
443 {
444     int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
445     int i;
446 
447     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
448                    "  W2\n", cpu_index);
449 
450     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
451         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
452         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
453                        xive_tctx_ring_names[i], s);
454         g_free(s);
455     }
456 }
457 
458 static void xive_tctx_reset(void *dev)
459 {
460     XiveTCTX *tctx = XIVE_TCTX(dev);
461 
462     memset(tctx->regs, 0, sizeof(tctx->regs));
463 
464     /* Set some defaults */
465     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
466     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
467     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
468 
469     /*
470      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
471      * CPPR is first set.
472      */
473     tctx->regs[TM_QW1_OS + TM_PIPR] =
474         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
475 }
476 
477 static void xive_tctx_realize(DeviceState *dev, Error **errp)
478 {
479     XiveTCTX *tctx = XIVE_TCTX(dev);
480     PowerPCCPU *cpu;
481     CPUPPCState *env;
482     Object *obj;
483     Error *local_err = NULL;
484 
485     obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
486     if (!obj) {
487         error_propagate(errp, local_err);
488         error_prepend(errp, "required link 'cpu' not found: ");
489         return;
490     }
491 
492     cpu = POWERPC_CPU(obj);
493     tctx->cs = CPU(obj);
494 
495     env = &cpu->env;
496     switch (PPC_INPUT(env)) {
497     case PPC_FLAGS_INPUT_POWER9:
498         tctx->output = env->irq_inputs[POWER9_INPUT_INT];
499         break;
500 
501     default:
502         error_setg(errp, "XIVE interrupt controller does not support "
503                    "this CPU bus model");
504         return;
505     }
506 
507     qemu_register_reset(xive_tctx_reset, dev);
508 }
509 
510 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
511 {
512     qemu_unregister_reset(xive_tctx_reset, dev);
513 }
514 
515 static const VMStateDescription vmstate_xive_tctx = {
516     .name = TYPE_XIVE_TCTX,
517     .version_id = 1,
518     .minimum_version_id = 1,
519     .fields = (VMStateField[]) {
520         VMSTATE_BUFFER(regs, XiveTCTX),
521         VMSTATE_END_OF_LIST()
522     },
523 };
524 
525 static void xive_tctx_class_init(ObjectClass *klass, void *data)
526 {
527     DeviceClass *dc = DEVICE_CLASS(klass);
528 
529     dc->desc = "XIVE Interrupt Thread Context";
530     dc->realize = xive_tctx_realize;
531     dc->unrealize = xive_tctx_unrealize;
532     dc->vmsd = &vmstate_xive_tctx;
533 }
534 
535 static const TypeInfo xive_tctx_info = {
536     .name          = TYPE_XIVE_TCTX,
537     .parent        = TYPE_DEVICE,
538     .instance_size = sizeof(XiveTCTX),
539     .class_init    = xive_tctx_class_init,
540 };
541 
542 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
543 {
544     Error *local_err = NULL;
545     Object *obj;
546 
547     obj = object_new(TYPE_XIVE_TCTX);
548     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
549     object_unref(obj);
550     object_property_add_const_link(obj, "cpu", cpu, &error_abort);
551     object_property_set_bool(obj, true, "realized", &local_err);
552     if (local_err) {
553         goto error;
554     }
555 
556     return obj;
557 
558 error:
559     object_unparent(obj);
560     error_propagate(errp, local_err);
561     return NULL;
562 }
563 
564 /*
565  * XIVE ESB helpers
566  */
567 
568 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
569 {
570     uint8_t old_pq = *pq & 0x3;
571 
572     *pq &= ~0x3;
573     *pq |= value & 0x3;
574 
575     return old_pq;
576 }
577 
578 static bool xive_esb_trigger(uint8_t *pq)
579 {
580     uint8_t old_pq = *pq & 0x3;
581 
582     switch (old_pq) {
583     case XIVE_ESB_RESET:
584         xive_esb_set(pq, XIVE_ESB_PENDING);
585         return true;
586     case XIVE_ESB_PENDING:
587     case XIVE_ESB_QUEUED:
588         xive_esb_set(pq, XIVE_ESB_QUEUED);
589         return false;
590     case XIVE_ESB_OFF:
591         xive_esb_set(pq, XIVE_ESB_OFF);
592         return false;
593     default:
594          g_assert_not_reached();
595     }
596 }
597 
598 static bool xive_esb_eoi(uint8_t *pq)
599 {
600     uint8_t old_pq = *pq & 0x3;
601 
602     switch (old_pq) {
603     case XIVE_ESB_RESET:
604     case XIVE_ESB_PENDING:
605         xive_esb_set(pq, XIVE_ESB_RESET);
606         return false;
607     case XIVE_ESB_QUEUED:
608         xive_esb_set(pq, XIVE_ESB_PENDING);
609         return true;
610     case XIVE_ESB_OFF:
611         xive_esb_set(pq, XIVE_ESB_OFF);
612         return false;
613     default:
614          g_assert_not_reached();
615     }
616 }
617 
618 /*
619  * XIVE Interrupt Source (or IVSE)
620  */
621 
622 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
623 {
624     assert(srcno < xsrc->nr_irqs);
625 
626     return xsrc->status[srcno] & 0x3;
627 }
628 
629 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
630 {
631     assert(srcno < xsrc->nr_irqs);
632 
633     return xive_esb_set(&xsrc->status[srcno], pq);
634 }
635 
636 /*
637  * Returns whether the event notification should be forwarded.
638  */
639 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
640 {
641     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
642 
643     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
644 
645     switch (old_pq) {
646     case XIVE_ESB_RESET:
647         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
648         return true;
649     default:
650         return false;
651     }
652 }
653 
654 /*
655  * Returns whether the event notification should be forwarded.
656  */
657 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
658 {
659     bool ret;
660 
661     assert(srcno < xsrc->nr_irqs);
662 
663     ret = xive_esb_trigger(&xsrc->status[srcno]);
664 
665     if (xive_source_irq_is_lsi(xsrc, srcno) &&
666         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
667         qemu_log_mask(LOG_GUEST_ERROR,
668                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
669     }
670 
671     return ret;
672 }
673 
674 /*
675  * Returns whether the event notification should be forwarded.
676  */
677 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
678 {
679     bool ret;
680 
681     assert(srcno < xsrc->nr_irqs);
682 
683     ret = xive_esb_eoi(&xsrc->status[srcno]);
684 
685     /*
686      * LSI sources do not set the Q bit but they can still be
687      * asserted, in which case we should forward a new event
688      * notification
689      */
690     if (xive_source_irq_is_lsi(xsrc, srcno) &&
691         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
692         ret = xive_source_lsi_trigger(xsrc, srcno);
693     }
694 
695     return ret;
696 }
697 
698 /*
699  * Forward the source event notification to the Router
700  */
701 static void xive_source_notify(XiveSource *xsrc, int srcno)
702 {
703     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
704 
705     if (xnc->notify) {
706         xnc->notify(xsrc->xive, srcno);
707     }
708 }
709 
710 /*
711  * In a two pages ESB MMIO setting, even page is the trigger page, odd
712  * page is for management
713  */
714 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
715 {
716     return !((addr >> shift) & 1);
717 }
718 
719 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
720 {
721     return xive_source_esb_has_2page(xsrc) &&
722         addr_is_even(addr, xsrc->esb_shift - 1);
723 }
724 
725 /*
726  * ESB MMIO loads
727  *                      Trigger page    Management/EOI page
728  *
729  * ESB MMIO setting     2 pages         1 or 2 pages
730  *
731  * 0x000 .. 0x3FF       -1              EOI and return 0|1
732  * 0x400 .. 0x7FF       -1              EOI and return 0|1
733  * 0x800 .. 0xBFF       -1              return PQ
734  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
735  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
736  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
737  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
738  */
739 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
740 {
741     XiveSource *xsrc = XIVE_SOURCE(opaque);
742     uint32_t offset = addr & 0xFFF;
743     uint32_t srcno = addr >> xsrc->esb_shift;
744     uint64_t ret = -1;
745 
746     /* In a two pages ESB MMIO setting, trigger page should not be read */
747     if (xive_source_is_trigger_page(xsrc, addr)) {
748         qemu_log_mask(LOG_GUEST_ERROR,
749                       "XIVE: invalid load on IRQ %d trigger page at "
750                       "0x%"HWADDR_PRIx"\n", srcno, addr);
751         return -1;
752     }
753 
754     switch (offset) {
755     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
756         ret = xive_source_esb_eoi(xsrc, srcno);
757 
758         /* Forward the source event notification for routing */
759         if (ret) {
760             xive_source_notify(xsrc, srcno);
761         }
762         break;
763 
764     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
765         ret = xive_source_esb_get(xsrc, srcno);
766         break;
767 
768     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
769     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
770     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
771     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
772         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
773         break;
774     default:
775         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
776                       offset);
777     }
778 
779     return ret;
780 }
781 
782 /*
783  * ESB MMIO stores
784  *                      Trigger page    Management/EOI page
785  *
786  * ESB MMIO setting     2 pages         1 or 2 pages
787  *
788  * 0x000 .. 0x3FF       Trigger         Trigger
789  * 0x400 .. 0x7FF       Trigger         EOI
790  * 0x800 .. 0xBFF       Trigger         undefined
791  * 0xC00 .. 0xCFF       Trigger         PQ=00
792  * 0xD00 .. 0xDFF       Trigger         PQ=01
793  * 0xE00 .. 0xDFF       Trigger         PQ=10
794  * 0xF00 .. 0xDFF       Trigger         PQ=11
795  */
796 static void xive_source_esb_write(void *opaque, hwaddr addr,
797                                   uint64_t value, unsigned size)
798 {
799     XiveSource *xsrc = XIVE_SOURCE(opaque);
800     uint32_t offset = addr & 0xFFF;
801     uint32_t srcno = addr >> xsrc->esb_shift;
802     bool notify = false;
803 
804     /* In a two pages ESB MMIO setting, trigger page only triggers */
805     if (xive_source_is_trigger_page(xsrc, addr)) {
806         notify = xive_source_esb_trigger(xsrc, srcno);
807         goto out;
808     }
809 
810     switch (offset) {
811     case 0 ... 0x3FF:
812         notify = xive_source_esb_trigger(xsrc, srcno);
813         break;
814 
815     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
816         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
817             qemu_log_mask(LOG_GUEST_ERROR,
818                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
819             return;
820         }
821 
822         notify = xive_source_esb_eoi(xsrc, srcno);
823         break;
824 
825     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
826     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
827     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
828     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
829         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
830         break;
831 
832     default:
833         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
834                       offset);
835         return;
836     }
837 
838 out:
839     /* Forward the source event notification for routing */
840     if (notify) {
841         xive_source_notify(xsrc, srcno);
842     }
843 }
844 
845 static const MemoryRegionOps xive_source_esb_ops = {
846     .read = xive_source_esb_read,
847     .write = xive_source_esb_write,
848     .endianness = DEVICE_BIG_ENDIAN,
849     .valid = {
850         .min_access_size = 8,
851         .max_access_size = 8,
852     },
853     .impl = {
854         .min_access_size = 8,
855         .max_access_size = 8,
856     },
857 };
858 
859 void xive_source_set_irq(void *opaque, int srcno, int val)
860 {
861     XiveSource *xsrc = XIVE_SOURCE(opaque);
862     bool notify = false;
863 
864     if (xive_source_irq_is_lsi(xsrc, srcno)) {
865         if (val) {
866             notify = xive_source_lsi_trigger(xsrc, srcno);
867         } else {
868             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
869         }
870     } else {
871         if (val) {
872             notify = xive_source_esb_trigger(xsrc, srcno);
873         }
874     }
875 
876     /* Forward the source event notification for routing */
877     if (notify) {
878         xive_source_notify(xsrc, srcno);
879     }
880 }
881 
882 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
883 {
884     int i;
885 
886     for (i = 0; i < xsrc->nr_irqs; i++) {
887         uint8_t pq = xive_source_esb_get(xsrc, i);
888 
889         if (pq == XIVE_ESB_OFF) {
890             continue;
891         }
892 
893         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
894                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
895                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
896                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
897                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
898     }
899 }
900 
901 static void xive_source_reset(void *dev)
902 {
903     XiveSource *xsrc = XIVE_SOURCE(dev);
904 
905     /* Do not clear the LSI bitmap */
906 
907     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
908     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
909 }
910 
911 static void xive_source_realize(DeviceState *dev, Error **errp)
912 {
913     XiveSource *xsrc = XIVE_SOURCE(dev);
914     Object *obj;
915     Error *local_err = NULL;
916 
917     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
918     if (!obj) {
919         error_propagate(errp, local_err);
920         error_prepend(errp, "required link 'xive' not found: ");
921         return;
922     }
923 
924     xsrc->xive = XIVE_NOTIFIER(obj);
925 
926     if (!xsrc->nr_irqs) {
927         error_setg(errp, "Number of interrupt needs to be greater than 0");
928         return;
929     }
930 
931     if (xsrc->esb_shift != XIVE_ESB_4K &&
932         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
933         xsrc->esb_shift != XIVE_ESB_64K &&
934         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
935         error_setg(errp, "Invalid ESB shift setting");
936         return;
937     }
938 
939     xsrc->status = g_malloc0(xsrc->nr_irqs);
940     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
941 
942     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
943                           &xive_source_esb_ops, xsrc, "xive.esb",
944                           (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
945 
946     qemu_register_reset(xive_source_reset, dev);
947 }
948 
949 static const VMStateDescription vmstate_xive_source = {
950     .name = TYPE_XIVE_SOURCE,
951     .version_id = 1,
952     .minimum_version_id = 1,
953     .fields = (VMStateField[]) {
954         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
955         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
956         VMSTATE_END_OF_LIST()
957     },
958 };
959 
960 /*
961  * The default XIVE interrupt source setting for the ESB MMIOs is two
962  * 64k pages without Store EOI, to be in sync with KVM.
963  */
964 static Property xive_source_properties[] = {
965     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
966     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
967     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
968     DEFINE_PROP_END_OF_LIST(),
969 };
970 
971 static void xive_source_class_init(ObjectClass *klass, void *data)
972 {
973     DeviceClass *dc = DEVICE_CLASS(klass);
974 
975     dc->desc    = "XIVE Interrupt Source";
976     dc->props   = xive_source_properties;
977     dc->realize = xive_source_realize;
978     dc->vmsd    = &vmstate_xive_source;
979 }
980 
981 static const TypeInfo xive_source_info = {
982     .name          = TYPE_XIVE_SOURCE,
983     .parent        = TYPE_DEVICE,
984     .instance_size = sizeof(XiveSource),
985     .class_init    = xive_source_class_init,
986 };
987 
988 /*
989  * XiveEND helpers
990  */
991 
992 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
993 {
994     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
995         | be32_to_cpu(end->w3);
996     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
997     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
998     uint32_t qentries = 1 << (qsize + 10);
999     int i;
1000 
1001     /*
1002      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1003      */
1004     monitor_printf(mon, " [ ");
1005     qindex = (qindex - (width - 1)) & (qentries - 1);
1006     for (i = 0; i < width; i++) {
1007         uint64_t qaddr = qaddr_base + (qindex << 2);
1008         uint32_t qdata = -1;
1009 
1010         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1011                             sizeof(qdata))) {
1012             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1013                           HWADDR_PRIx "\n", qaddr);
1014             return;
1015         }
1016         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1017                        be32_to_cpu(qdata));
1018         qindex = (qindex + 1) & (qentries - 1);
1019     }
1020 }
1021 
1022 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1023 {
1024     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1025         | be32_to_cpu(end->w3);
1026     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1027     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1028     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1029     uint32_t qentries = 1 << (qsize + 10);
1030 
1031     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1032     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1033 
1034     if (!xive_end_is_valid(end)) {
1035         return;
1036     }
1037 
1038     monitor_printf(mon, "  %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1039                    "% 6d/%5d ^%d", end_idx,
1040                    xive_end_is_valid(end)    ? 'v' : '-',
1041                    xive_end_is_enqueue(end)  ? 'q' : '-',
1042                    xive_end_is_notify(end)   ? 'n' : '-',
1043                    xive_end_is_backlog(end)  ? 'b' : '-',
1044                    xive_end_is_escalate(end) ? 'e' : '-',
1045                    priority, nvt, qaddr_base, qindex, qentries, qgen);
1046 
1047     xive_end_queue_pic_print_info(end, 6, mon);
1048     monitor_printf(mon, "]\n");
1049 }
1050 
1051 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1052 {
1053     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1054         | be32_to_cpu(end->w3);
1055     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1056     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1057     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1058 
1059     uint64_t qaddr = qaddr_base + (qindex << 2);
1060     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1061     uint32_t qentries = 1 << (qsize + 10);
1062 
1063     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1064         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1065                       HWADDR_PRIx "\n", qaddr);
1066         return;
1067     }
1068 
1069     qindex = (qindex + 1) & (qentries - 1);
1070     if (qindex == 0) {
1071         qgen ^= 1;
1072         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1073     }
1074     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1075 }
1076 
1077 /*
1078  * XIVE Router (aka. Virtualization Controller or IVRE)
1079  */
1080 
1081 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1082                         XiveEAS *eas)
1083 {
1084     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1085 
1086     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1087 }
1088 
1089 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1090                         XiveEND *end)
1091 {
1092    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1093 
1094    return xrc->get_end(xrtr, end_blk, end_idx, end);
1095 }
1096 
1097 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1098                           XiveEND *end, uint8_t word_number)
1099 {
1100    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1101 
1102    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1103 }
1104 
1105 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1106                         XiveNVT *nvt)
1107 {
1108    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1109 
1110    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1111 }
1112 
1113 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1114                         XiveNVT *nvt, uint8_t word_number)
1115 {
1116    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1117 
1118    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1119 }
1120 
1121 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1122 {
1123     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1124 
1125     return xrc->get_tctx(xrtr, cs);
1126 }
1127 
1128 /*
1129  * By default on P9, the HW CAM line (23bits) is hardwired to :
1130  *
1131  *   0x000||0b1||4Bit chip number||7Bit Thread number.
1132  *
1133  * When the block grouping is enabled, the CAM line is changed to :
1134  *
1135  *   4Bit chip number||0x001||7Bit Thread number.
1136  */
1137 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1138 {
1139     return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1140 }
1141 
1142 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1143                                          uint8_t nvt_blk, uint32_t nvt_idx)
1144 {
1145     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1146     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1147 
1148     return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1149         hw_cam_line(nvt_blk, nvt_idx);
1150 }
1151 
1152 /*
1153  * The thread context register words are in big-endian format.
1154  */
1155 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1156                                      uint8_t nvt_blk, uint32_t nvt_idx,
1157                                      bool cam_ignore, uint32_t logic_serv)
1158 {
1159     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1160     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1161     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1162     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1163     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1164 
1165     /*
1166      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1167      * identifier are ignored in the "CAM" match.
1168      */
1169 
1170     if (format == 0) {
1171         if (cam_ignore == true) {
1172             /*
1173              * F=0 & i=1: Logical server notification (bits ignored at
1174              * the end of the NVT identifier)
1175              */
1176             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1177                           nvt_blk, nvt_idx);
1178              return -1;
1179         }
1180 
1181         /* F=0 & i=0: Specific NVT notification */
1182 
1183         /* PHYS ring */
1184         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1185             xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1186             return TM_QW3_HV_PHYS;
1187         }
1188 
1189         /* HV POOL ring */
1190         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1191             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1192             return TM_QW2_HV_POOL;
1193         }
1194 
1195         /* OS ring */
1196         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1197             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1198             return TM_QW1_OS;
1199         }
1200     } else {
1201         /* F=1 : User level Event-Based Branch (EBB) notification */
1202 
1203         /* USER ring */
1204         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1205              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1206              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1207              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1208             return TM_QW0_USER;
1209         }
1210     }
1211     return -1;
1212 }
1213 
1214 typedef struct XiveTCTXMatch {
1215     XiveTCTX *tctx;
1216     uint8_t ring;
1217 } XiveTCTXMatch;
1218 
1219 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1220                                  uint8_t nvt_blk, uint32_t nvt_idx,
1221                                  bool cam_ignore, uint8_t priority,
1222                                  uint32_t logic_serv, XiveTCTXMatch *match)
1223 {
1224     CPUState *cs;
1225 
1226     /*
1227      * TODO (PowerNV): handle chip_id overwrite of block field for
1228      * hardwired CAM compares
1229      */
1230 
1231     CPU_FOREACH(cs) {
1232         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1233         int ring;
1234 
1235         /*
1236          * HW checks that the CPU is enabled in the Physical Thread
1237          * Enable Register (PTER).
1238          */
1239 
1240         /*
1241          * Check the thread context CAM lines and record matches. We
1242          * will handle CPU exception delivery later
1243          */
1244         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1245                                          cam_ignore, logic_serv);
1246         /*
1247          * Save the context and follow on to catch duplicates, that we
1248          * don't support yet.
1249          */
1250         if (ring != -1) {
1251             if (match->tctx) {
1252                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1253                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1254                 return false;
1255             }
1256 
1257             match->ring = ring;
1258             match->tctx = tctx;
1259         }
1260     }
1261 
1262     if (!match->tctx) {
1263         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1264                       nvt_blk, nvt_idx);
1265         return false;
1266     }
1267 
1268     return true;
1269 }
1270 
1271 /*
1272  * This is our simple Xive Presenter Engine model. It is merged in the
1273  * Router as it does not require an extra object.
1274  *
1275  * It receives notification requests sent by the IVRE to find one
1276  * matching NVT (or more) dispatched on the processor threads. In case
1277  * of a single NVT notification, the process is abreviated and the
1278  * thread is signaled if a match is found. In case of a logical server
1279  * notification (bits ignored at the end of the NVT identifier), the
1280  * IVPE and IVRE select a winning thread using different filters. This
1281  * involves 2 or 3 exchanges on the PowerBus that the model does not
1282  * support.
1283  *
1284  * The parameters represent what is sent on the PowerBus
1285  */
1286 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1287                                   uint8_t nvt_blk, uint32_t nvt_idx,
1288                                   bool cam_ignore, uint8_t priority,
1289                                   uint32_t logic_serv)
1290 {
1291     XiveNVT nvt;
1292     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1293     bool found;
1294 
1295     /* NVT cache lookup */
1296     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1297         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1298                       nvt_blk, nvt_idx);
1299         return;
1300     }
1301 
1302     if (!xive_nvt_is_valid(&nvt)) {
1303         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1304                       nvt_blk, nvt_idx);
1305         return;
1306     }
1307 
1308     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1309                                  priority, logic_serv, &match);
1310     if (found) {
1311         ipb_update(&match.tctx->regs[match.ring], priority);
1312         xive_tctx_notify(match.tctx, match.ring);
1313         return;
1314     }
1315 
1316     /* Record the IPB in the associated NVT structure */
1317     ipb_update((uint8_t *) &nvt.w4, priority);
1318     xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1319 
1320     /*
1321      * If no matching NVT is dispatched on a HW thread :
1322      * - update the NVT structure if backlog is activated
1323      * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1324      *   activated
1325      */
1326 }
1327 
1328 /*
1329  * An END trigger can come from an event trigger (IPI or HW) or from
1330  * another chip. We don't model the PowerBus but the END trigger
1331  * message has the same parameters than in the function below.
1332  */
1333 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1334                                    uint32_t end_idx, uint32_t end_data)
1335 {
1336     XiveEND end;
1337     uint8_t priority;
1338     uint8_t format;
1339 
1340     /* END cache lookup */
1341     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1342         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1343                       end_idx);
1344         return;
1345     }
1346 
1347     if (!xive_end_is_valid(&end)) {
1348         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1349                       end_blk, end_idx);
1350         return;
1351     }
1352 
1353     if (xive_end_is_enqueue(&end)) {
1354         xive_end_enqueue(&end, end_data);
1355         /* Enqueuing event data modifies the EQ toggle and index */
1356         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1357     }
1358 
1359     /*
1360      * The W7 format depends on the F bit in W6. It defines the type
1361      * of the notification :
1362      *
1363      *   F=0 : single or multiple NVT notification
1364      *   F=1 : User level Event-Based Branch (EBB) notification, no
1365      *         priority
1366      */
1367     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1368     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1369 
1370     /* The END is masked */
1371     if (format == 0 && priority == 0xff) {
1372         return;
1373     }
1374 
1375     /*
1376      * Check the END ESn (Event State Buffer for notification) for
1377      * even futher coalescing in the Router
1378      */
1379     if (!xive_end_is_notify(&end)) {
1380         uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1381         bool notify = xive_esb_trigger(&pq);
1382 
1383         if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1384             end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1385             xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1386         }
1387 
1388         /* ESn[Q]=1 : end of notification */
1389         if (!notify) {
1390             return;
1391         }
1392     }
1393 
1394     /*
1395      * Follows IVPE notification
1396      */
1397     xive_presenter_notify(xrtr, format,
1398                           xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1399                           xive_get_field32(END_W6_NVT_INDEX, end.w6),
1400                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1401                           priority,
1402                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1403 
1404     /* TODO: Auto EOI. */
1405 }
1406 
1407 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1408 {
1409     XiveRouter *xrtr = XIVE_ROUTER(xn);
1410     uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1411     uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1412     XiveEAS eas;
1413 
1414     /* EAS cache lookup */
1415     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1416         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1417         return;
1418     }
1419 
1420     /*
1421      * The IVRE checks the State Bit Cache at this point. We skip the
1422      * SBC lookup because the state bits of the sources are modeled
1423      * internally in QEMU.
1424      */
1425 
1426     if (!xive_eas_is_valid(&eas)) {
1427         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1428         return;
1429     }
1430 
1431     if (xive_eas_is_masked(&eas)) {
1432         /* Notification completed */
1433         return;
1434     }
1435 
1436     /*
1437      * The event trigger becomes an END trigger
1438      */
1439     xive_router_end_notify(xrtr,
1440                            xive_get_field64(EAS_END_BLOCK, eas.w),
1441                            xive_get_field64(EAS_END_INDEX, eas.w),
1442                            xive_get_field64(EAS_END_DATA,  eas.w));
1443 }
1444 
1445 static void xive_router_class_init(ObjectClass *klass, void *data)
1446 {
1447     DeviceClass *dc = DEVICE_CLASS(klass);
1448     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1449 
1450     dc->desc    = "XIVE Router Engine";
1451     xnc->notify = xive_router_notify;
1452 }
1453 
1454 static const TypeInfo xive_router_info = {
1455     .name          = TYPE_XIVE_ROUTER,
1456     .parent        = TYPE_SYS_BUS_DEVICE,
1457     .abstract      = true,
1458     .class_size    = sizeof(XiveRouterClass),
1459     .class_init    = xive_router_class_init,
1460     .interfaces    = (InterfaceInfo[]) {
1461         { TYPE_XIVE_NOTIFIER },
1462         { }
1463     }
1464 };
1465 
1466 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1467 {
1468     if (!xive_eas_is_valid(eas)) {
1469         return;
1470     }
1471 
1472     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1473                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1474                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1475                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1476                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1477 }
1478 
1479 /*
1480  * END ESB MMIO loads
1481  */
1482 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1483 {
1484     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1485     uint32_t offset = addr & 0xFFF;
1486     uint8_t end_blk;
1487     uint32_t end_idx;
1488     XiveEND end;
1489     uint32_t end_esmask;
1490     uint8_t pq;
1491     uint64_t ret = -1;
1492 
1493     end_blk = xsrc->block_id;
1494     end_idx = addr >> (xsrc->esb_shift + 1);
1495 
1496     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1497         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1498                       end_idx);
1499         return -1;
1500     }
1501 
1502     if (!xive_end_is_valid(&end)) {
1503         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1504                       end_blk, end_idx);
1505         return -1;
1506     }
1507 
1508     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1509     pq = xive_get_field32(end_esmask, end.w1);
1510 
1511     switch (offset) {
1512     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1513         ret = xive_esb_eoi(&pq);
1514 
1515         /* Forward the source event notification for routing ?? */
1516         break;
1517 
1518     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1519         ret = pq;
1520         break;
1521 
1522     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1523     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1524     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1525     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1526         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1527         break;
1528     default:
1529         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1530                       offset);
1531         return -1;
1532     }
1533 
1534     if (pq != xive_get_field32(end_esmask, end.w1)) {
1535         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1536         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1537     }
1538 
1539     return ret;
1540 }
1541 
1542 /*
1543  * END ESB MMIO stores are invalid
1544  */
1545 static void xive_end_source_write(void *opaque, hwaddr addr,
1546                                   uint64_t value, unsigned size)
1547 {
1548     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1549                   HWADDR_PRIx"\n", addr);
1550 }
1551 
1552 static const MemoryRegionOps xive_end_source_ops = {
1553     .read = xive_end_source_read,
1554     .write = xive_end_source_write,
1555     .endianness = DEVICE_BIG_ENDIAN,
1556     .valid = {
1557         .min_access_size = 8,
1558         .max_access_size = 8,
1559     },
1560     .impl = {
1561         .min_access_size = 8,
1562         .max_access_size = 8,
1563     },
1564 };
1565 
1566 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1567 {
1568     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1569     Object *obj;
1570     Error *local_err = NULL;
1571 
1572     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1573     if (!obj) {
1574         error_propagate(errp, local_err);
1575         error_prepend(errp, "required link 'xive' not found: ");
1576         return;
1577     }
1578 
1579     xsrc->xrtr = XIVE_ROUTER(obj);
1580 
1581     if (!xsrc->nr_ends) {
1582         error_setg(errp, "Number of interrupt needs to be greater than 0");
1583         return;
1584     }
1585 
1586     if (xsrc->esb_shift != XIVE_ESB_4K &&
1587         xsrc->esb_shift != XIVE_ESB_64K) {
1588         error_setg(errp, "Invalid ESB shift setting");
1589         return;
1590     }
1591 
1592     /*
1593      * Each END is assigned an even/odd pair of MMIO pages, the even page
1594      * manages the ESn field while the odd page manages the ESe field.
1595      */
1596     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1597                           &xive_end_source_ops, xsrc, "xive.end",
1598                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1599 }
1600 
1601 static Property xive_end_source_properties[] = {
1602     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1603     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1604     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1605     DEFINE_PROP_END_OF_LIST(),
1606 };
1607 
1608 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1609 {
1610     DeviceClass *dc = DEVICE_CLASS(klass);
1611 
1612     dc->desc    = "XIVE END Source";
1613     dc->props   = xive_end_source_properties;
1614     dc->realize = xive_end_source_realize;
1615 }
1616 
1617 static const TypeInfo xive_end_source_info = {
1618     .name          = TYPE_XIVE_END_SOURCE,
1619     .parent        = TYPE_DEVICE,
1620     .instance_size = sizeof(XiveENDSource),
1621     .class_init    = xive_end_source_class_init,
1622 };
1623 
1624 /*
1625  * XIVE Notifier
1626  */
1627 static const TypeInfo xive_notifier_info = {
1628     .name = TYPE_XIVE_NOTIFIER,
1629     .parent = TYPE_INTERFACE,
1630     .class_size = sizeof(XiveNotifierClass),
1631 };
1632 
1633 static void xive_register_types(void)
1634 {
1635     type_register_static(&xive_source_info);
1636     type_register_static(&xive_notifier_info);
1637     type_register_static(&xive_router_info);
1638     type_register_static(&xive_end_source_info);
1639     type_register_static(&xive_tctx_info);
1640 }
1641 
1642 type_init(xive_register_types)
1643