1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive2.h" 24 #include "hw/ppc/xive_regs.h" 25 #include "trace.h" 26 27 /* 28 * XIVE Thread Interrupt Management context 29 */ 30 31 /* 32 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 33 * Interrupt Priority Register (PIPR), which contains the priority of 34 * the most favored pending notification. 35 */ 36 static uint8_t ipb_to_pipr(uint8_t ibp) 37 { 38 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 39 } 40 41 static uint8_t exception_mask(uint8_t ring) 42 { 43 switch (ring) { 44 case TM_QW1_OS: 45 return TM_QW1_NSR_EO; 46 case TM_QW3_HV_PHYS: 47 return TM_QW3_NSR_HE; 48 default: 49 g_assert_not_reached(); 50 } 51 } 52 53 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 54 { 55 switch (ring) { 56 case TM_QW0_USER: 57 return 0; /* Not supported */ 58 case TM_QW1_OS: 59 return tctx->os_output; 60 case TM_QW2_HV_POOL: 61 case TM_QW3_HV_PHYS: 62 return tctx->hv_output; 63 default: 64 return 0; 65 } 66 } 67 68 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 69 { 70 uint8_t *regs = &tctx->regs[ring]; 71 uint8_t nsr = regs[TM_NSR]; 72 uint8_t mask = exception_mask(ring); 73 74 qemu_irq_lower(xive_tctx_output(tctx, ring)); 75 76 if (regs[TM_NSR] & mask) { 77 uint8_t cppr = regs[TM_PIPR]; 78 79 regs[TM_CPPR] = cppr; 80 81 /* Reset the pending buffer bit */ 82 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 83 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 84 85 /* Drop Exception bit */ 86 regs[TM_NSR] &= ~mask; 87 88 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 89 regs[TM_IPB], regs[TM_PIPR], 90 regs[TM_CPPR], regs[TM_NSR]); 91 } 92 93 return (nsr << 8) | regs[TM_CPPR]; 94 } 95 96 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 97 { 98 uint8_t *regs = &tctx->regs[ring]; 99 100 if (regs[TM_PIPR] < regs[TM_CPPR]) { 101 switch (ring) { 102 case TM_QW1_OS: 103 regs[TM_NSR] |= TM_QW1_NSR_EO; 104 break; 105 case TM_QW3_HV_PHYS: 106 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 107 break; 108 default: 109 g_assert_not_reached(); 110 } 111 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 112 regs[TM_IPB], regs[TM_PIPR], 113 regs[TM_CPPR], regs[TM_NSR]); 114 qemu_irq_raise(xive_tctx_output(tctx, ring)); 115 } 116 } 117 118 void xive_tctx_reset_os_signal(XiveTCTX *tctx) 119 { 120 /* 121 * Lower the External interrupt. Used when pulling an OS 122 * context. It is necessary to avoid catching it in the hypervisor 123 * context. It should be raised again when re-pushing the OS 124 * context. 125 */ 126 qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS)); 127 } 128 129 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 130 { 131 uint8_t *regs = &tctx->regs[ring]; 132 133 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 134 regs[TM_IPB], regs[TM_PIPR], 135 cppr, regs[TM_NSR]); 136 137 if (cppr > XIVE_PRIORITY_MAX) { 138 cppr = 0xff; 139 } 140 141 tctx->regs[ring + TM_CPPR] = cppr; 142 143 /* CPPR has changed, check if we need to raise a pending exception */ 144 xive_tctx_notify(tctx, ring); 145 } 146 147 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 148 { 149 uint8_t *regs = &tctx->regs[ring]; 150 151 regs[TM_IPB] |= ipb; 152 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 153 xive_tctx_notify(tctx, ring); 154 } 155 156 /* 157 * XIVE Thread Interrupt Management Area (TIMA) 158 */ 159 160 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 161 hwaddr offset, uint64_t value, unsigned size) 162 { 163 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 164 } 165 166 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 167 hwaddr offset, unsigned size) 168 { 169 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 170 } 171 172 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 173 hwaddr offset, unsigned size) 174 { 175 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 176 uint32_t qw2w2; 177 178 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 179 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 180 return qw2w2; 181 } 182 183 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 184 uint64_t value, unsigned size) 185 { 186 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 187 } 188 189 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 190 hwaddr offset, unsigned size) 191 { 192 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 193 } 194 195 /* 196 * Define an access map for each page of the TIMA that we will use in 197 * the memory region ops to filter values when doing loads and stores 198 * of raw registers values 199 * 200 * Registers accessibility bits : 201 * 202 * 0x0 - no access 203 * 0x1 - write only 204 * 0x2 - read only 205 * 0x3 - read/write 206 */ 207 208 static const uint8_t xive_tm_hw_view[] = { 209 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 210 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 211 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 212 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 213 }; 214 215 static const uint8_t xive_tm_hv_view[] = { 216 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 217 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 218 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 219 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 220 }; 221 222 static const uint8_t xive_tm_os_view[] = { 223 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 224 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 226 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 227 }; 228 229 static const uint8_t xive_tm_user_view[] = { 230 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 231 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 233 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 234 }; 235 236 /* 237 * Overall TIMA access map for the thread interrupt management context 238 * registers 239 */ 240 static const uint8_t *xive_tm_views[] = { 241 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 242 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 243 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 244 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 245 }; 246 247 /* 248 * Computes a register access mask for a given offset in the TIMA 249 */ 250 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 251 { 252 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 253 uint8_t reg_offset = offset & TM_REG_OFFSET; 254 uint8_t reg_mask = write ? 0x1 : 0x2; 255 uint64_t mask = 0x0; 256 int i; 257 258 for (i = 0; i < size; i++) { 259 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 260 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 261 } 262 } 263 264 return mask; 265 } 266 267 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 268 unsigned size) 269 { 270 uint8_t ring_offset = offset & TM_RING_OFFSET; 271 uint8_t reg_offset = offset & TM_REG_OFFSET; 272 uint64_t mask = xive_tm_mask(offset, size, true); 273 int i; 274 275 /* 276 * Only 4 or 8 bytes stores are allowed and the User ring is 277 * excluded 278 */ 279 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 280 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 281 HWADDR_PRIx"\n", offset); 282 return; 283 } 284 285 /* 286 * Use the register offset for the raw values and filter out 287 * reserved values 288 */ 289 for (i = 0; i < size; i++) { 290 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 291 if (byte_mask) { 292 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 293 byte_mask; 294 } 295 } 296 } 297 298 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 299 { 300 uint8_t ring_offset = offset & TM_RING_OFFSET; 301 uint8_t reg_offset = offset & TM_REG_OFFSET; 302 uint64_t mask = xive_tm_mask(offset, size, false); 303 uint64_t ret; 304 int i; 305 306 /* 307 * Only 4 or 8 bytes loads are allowed and the User ring is 308 * excluded 309 */ 310 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 311 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 312 HWADDR_PRIx"\n", offset); 313 return -1; 314 } 315 316 /* Use the register offset for the raw values */ 317 ret = 0; 318 for (i = 0; i < size; i++) { 319 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 320 } 321 322 /* filter out reserved values */ 323 return ret & mask; 324 } 325 326 /* 327 * The TM context is mapped twice within each page. Stores and loads 328 * to the first mapping below 2K write and read the specified values 329 * without modification. The second mapping above 2K performs specific 330 * state changes (side effects) in addition to setting/returning the 331 * interrupt management area context of the processor thread. 332 */ 333 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 334 hwaddr offset, unsigned size) 335 { 336 return xive_tctx_accept(tctx, TM_QW1_OS); 337 } 338 339 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 340 hwaddr offset, uint64_t value, unsigned size) 341 { 342 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 343 } 344 345 /* 346 * Adjust the IPB to allow a CPU to process event queues of other 347 * priorities during one physical interrupt cycle. 348 */ 349 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 350 hwaddr offset, uint64_t value, unsigned size) 351 { 352 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff)); 353 } 354 355 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 356 uint32_t *nvt_idx, bool *vo) 357 { 358 if (nvt_blk) { 359 *nvt_blk = xive_nvt_blk(cam); 360 } 361 if (nvt_idx) { 362 *nvt_idx = xive_nvt_idx(cam); 363 } 364 if (vo) { 365 *vo = !!(cam & TM_QW1W2_VO); 366 } 367 } 368 369 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 370 uint32_t *nvt_idx, bool *vo) 371 { 372 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 373 uint32_t cam = be32_to_cpu(qw1w2); 374 375 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 376 return qw1w2; 377 } 378 379 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 380 { 381 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 382 } 383 384 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 385 hwaddr offset, unsigned size) 386 { 387 uint32_t qw1w2; 388 uint32_t qw1w2_new; 389 uint8_t nvt_blk; 390 uint32_t nvt_idx; 391 bool vo; 392 393 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 394 395 if (!vo) { 396 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 397 nvt_blk, nvt_idx); 398 } 399 400 /* Invalidate CAM line */ 401 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 402 xive_tctx_set_os_cam(tctx, qw1w2_new); 403 404 xive_tctx_reset_os_signal(tctx); 405 return qw1w2; 406 } 407 408 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 409 uint8_t nvt_blk, uint32_t nvt_idx) 410 { 411 XiveNVT nvt; 412 uint8_t ipb; 413 414 /* 415 * Grab the associated NVT to pull the pending bits, and merge 416 * them with the IPB of the thread interrupt context registers 417 */ 418 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 419 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 420 nvt_blk, nvt_idx); 421 return; 422 } 423 424 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 425 426 if (ipb) { 427 /* Reset the NVT value */ 428 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 429 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 430 } 431 /* 432 * Always call xive_tctx_ipb_update(). Even if there were no 433 * escalation triggered, there could be a pending interrupt which 434 * was saved when the context was pulled and that we need to take 435 * into account by recalculating the PIPR (which is not 436 * saved/restored). 437 * It will also raise the External interrupt signal if needed. 438 */ 439 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 440 } 441 442 /* 443 * Updating the OS CAM line can trigger a resend of interrupt 444 */ 445 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 446 hwaddr offset, uint64_t value, unsigned size) 447 { 448 uint32_t cam = value; 449 uint32_t qw1w2 = cpu_to_be32(cam); 450 uint8_t nvt_blk; 451 uint32_t nvt_idx; 452 bool vo; 453 454 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 455 456 /* First update the registers */ 457 xive_tctx_set_os_cam(tctx, qw1w2); 458 459 /* Check the interrupt pending bits */ 460 if (vo) { 461 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 462 } 463 } 464 465 static uint32_t xive_presenter_get_config(XivePresenter *xptr) 466 { 467 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 468 469 return xpc->get_config(xptr); 470 } 471 472 /* 473 * Define a mapping of "special" operations depending on the TIMA page 474 * offset and the size of the operation. 475 */ 476 typedef struct XiveTmOp { 477 uint8_t page_offset; 478 uint32_t op_offset; 479 unsigned size; 480 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 481 hwaddr offset, 482 uint64_t value, unsigned size); 483 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 484 unsigned size); 485 } XiveTmOp; 486 487 static const XiveTmOp xive_tm_operations[] = { 488 /* 489 * MMIOs below 2K : raw values and special operations without side 490 * effects 491 */ 492 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 493 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 494 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 495 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 496 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 497 498 /* MMIOs above 2K : special operations with side effects */ 499 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 500 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 501 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 502 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 503 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 504 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 505 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 506 }; 507 508 static const XiveTmOp xive2_tm_operations[] = { 509 /* 510 * MMIOs below 2K : raw values and special operations without side 511 * effects 512 */ 513 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 514 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive2_tm_push_os_ctx, NULL }, 515 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 516 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 517 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 518 519 /* MMIOs above 2K : special operations with side effects */ 520 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 521 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 522 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive2_tm_pull_os_ctx }, 523 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive2_tm_pull_os_ctx }, 524 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 525 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 526 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 527 }; 528 529 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset, 530 unsigned size, bool write) 531 { 532 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 533 uint32_t op_offset = offset & TM_ADDRESS_MASK; 534 const XiveTmOp *tm_ops; 535 int i, tm_ops_count; 536 uint32_t cfg; 537 538 cfg = xive_presenter_get_config(xptr); 539 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) { 540 tm_ops = xive_tm_operations; 541 tm_ops_count = ARRAY_SIZE(xive_tm_operations); 542 } else { 543 tm_ops = xive2_tm_operations; 544 tm_ops_count = ARRAY_SIZE(xive2_tm_operations); 545 } 546 547 for (i = 0; i < tm_ops_count; i++) { 548 const XiveTmOp *xto = &tm_ops[i]; 549 550 /* Accesses done from a more privileged TIMA page is allowed */ 551 if (xto->page_offset >= page_offset && 552 xto->op_offset == op_offset && 553 xto->size == size && 554 ((write && xto->write_handler) || (!write && xto->read_handler))) { 555 return xto; 556 } 557 } 558 return NULL; 559 } 560 561 /* 562 * TIMA MMIO handlers 563 */ 564 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 565 uint64_t value, unsigned size) 566 { 567 const XiveTmOp *xto; 568 569 trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value); 570 571 /* 572 * TODO: check V bit in Q[0-3]W2 573 */ 574 575 /* 576 * First, check for special operations in the 2K region 577 */ 578 if (offset & TM_SPECIAL_OP) { 579 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 580 if (!xto) { 581 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 582 "@%"HWADDR_PRIx"\n", offset); 583 } else { 584 xto->write_handler(xptr, tctx, offset, value, size); 585 } 586 return; 587 } 588 589 /* 590 * Then, for special operations in the region below 2K. 591 */ 592 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 593 if (xto) { 594 xto->write_handler(xptr, tctx, offset, value, size); 595 return; 596 } 597 598 /* 599 * Finish with raw access to the register values 600 */ 601 xive_tm_raw_write(tctx, offset, value, size); 602 } 603 604 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 605 unsigned size) 606 { 607 const XiveTmOp *xto; 608 uint64_t ret; 609 610 /* 611 * TODO: check V bit in Q[0-3]W2 612 */ 613 614 /* 615 * First, check for special operations in the 2K region 616 */ 617 if (offset & TM_SPECIAL_OP) { 618 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 619 if (!xto) { 620 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 621 "@%"HWADDR_PRIx"\n", offset); 622 return -1; 623 } 624 ret = xto->read_handler(xptr, tctx, offset, size); 625 goto out; 626 } 627 628 /* 629 * Then, for special operations in the region below 2K. 630 */ 631 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 632 if (xto) { 633 ret = xto->read_handler(xptr, tctx, offset, size); 634 goto out; 635 } 636 637 /* 638 * Finish with raw access to the register values 639 */ 640 ret = xive_tm_raw_read(tctx, offset, size); 641 out: 642 trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret); 643 return ret; 644 } 645 646 static char *xive_tctx_ring_print(uint8_t *ring) 647 { 648 uint32_t w2 = xive_tctx_word2(ring); 649 650 return g_strdup_printf("%02x %02x %02x %02x %02x " 651 "%02x %02x %02x %08x", 652 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 653 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 654 be32_to_cpu(w2)); 655 } 656 657 static const char * const xive_tctx_ring_names[] = { 658 "USER", "OS", "POOL", "PHYS", 659 }; 660 661 /* 662 * kvm_irqchip_in_kernel() will cause the compiler to turn this 663 * info a nop if CONFIG_KVM isn't defined. 664 */ 665 #define xive_in_kernel(xptr) \ 666 (kvm_irqchip_in_kernel() && \ 667 ({ \ 668 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 669 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 670 })) 671 672 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 673 { 674 int cpu_index; 675 int i; 676 677 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 678 * are hot plugged or unplugged. 679 */ 680 if (!tctx) { 681 return; 682 } 683 684 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 685 686 if (xive_in_kernel(tctx->xptr)) { 687 Error *local_err = NULL; 688 689 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 690 if (local_err) { 691 error_report_err(local_err); 692 return; 693 } 694 } 695 696 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 697 " W2\n", cpu_index); 698 699 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 700 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 701 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 702 xive_tctx_ring_names[i], s); 703 g_free(s); 704 } 705 } 706 707 void xive_tctx_reset(XiveTCTX *tctx) 708 { 709 memset(tctx->regs, 0, sizeof(tctx->regs)); 710 711 /* Set some defaults */ 712 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 713 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 714 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 715 716 /* 717 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 718 * CPPR is first set. 719 */ 720 tctx->regs[TM_QW1_OS + TM_PIPR] = 721 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 722 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 723 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 724 } 725 726 static void xive_tctx_realize(DeviceState *dev, Error **errp) 727 { 728 XiveTCTX *tctx = XIVE_TCTX(dev); 729 PowerPCCPU *cpu; 730 CPUPPCState *env; 731 732 assert(tctx->cs); 733 assert(tctx->xptr); 734 735 cpu = POWERPC_CPU(tctx->cs); 736 env = &cpu->env; 737 switch (PPC_INPUT(env)) { 738 case PPC_FLAGS_INPUT_POWER9: 739 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT); 740 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT); 741 break; 742 743 default: 744 error_setg(errp, "XIVE interrupt controller does not support " 745 "this CPU bus model"); 746 return; 747 } 748 749 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 750 if (xive_in_kernel(tctx->xptr)) { 751 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 752 return; 753 } 754 } 755 } 756 757 static int vmstate_xive_tctx_pre_save(void *opaque) 758 { 759 XiveTCTX *tctx = XIVE_TCTX(opaque); 760 Error *local_err = NULL; 761 int ret; 762 763 if (xive_in_kernel(tctx->xptr)) { 764 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 765 if (ret < 0) { 766 error_report_err(local_err); 767 return ret; 768 } 769 } 770 771 return 0; 772 } 773 774 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 775 { 776 XiveTCTX *tctx = XIVE_TCTX(opaque); 777 Error *local_err = NULL; 778 int ret; 779 780 if (xive_in_kernel(tctx->xptr)) { 781 /* 782 * Required for hotplugged CPU, for which the state comes 783 * after all states of the machine. 784 */ 785 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 786 if (ret < 0) { 787 error_report_err(local_err); 788 return ret; 789 } 790 } 791 792 return 0; 793 } 794 795 static const VMStateDescription vmstate_xive_tctx = { 796 .name = TYPE_XIVE_TCTX, 797 .version_id = 1, 798 .minimum_version_id = 1, 799 .pre_save = vmstate_xive_tctx_pre_save, 800 .post_load = vmstate_xive_tctx_post_load, 801 .fields = (VMStateField[]) { 802 VMSTATE_BUFFER(regs, XiveTCTX), 803 VMSTATE_END_OF_LIST() 804 }, 805 }; 806 807 static Property xive_tctx_properties[] = { 808 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 809 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 810 XivePresenter *), 811 DEFINE_PROP_END_OF_LIST(), 812 }; 813 814 static void xive_tctx_class_init(ObjectClass *klass, void *data) 815 { 816 DeviceClass *dc = DEVICE_CLASS(klass); 817 818 dc->desc = "XIVE Interrupt Thread Context"; 819 dc->realize = xive_tctx_realize; 820 dc->vmsd = &vmstate_xive_tctx; 821 device_class_set_props(dc, xive_tctx_properties); 822 /* 823 * Reason: part of XIVE interrupt controller, needs to be wired up 824 * by xive_tctx_create(). 825 */ 826 dc->user_creatable = false; 827 } 828 829 static const TypeInfo xive_tctx_info = { 830 .name = TYPE_XIVE_TCTX, 831 .parent = TYPE_DEVICE, 832 .instance_size = sizeof(XiveTCTX), 833 .class_init = xive_tctx_class_init, 834 }; 835 836 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 837 { 838 Object *obj; 839 840 obj = object_new(TYPE_XIVE_TCTX); 841 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 842 object_unref(obj); 843 object_property_set_link(obj, "cpu", cpu, &error_abort); 844 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 845 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 846 object_unparent(obj); 847 return NULL; 848 } 849 return obj; 850 } 851 852 void xive_tctx_destroy(XiveTCTX *tctx) 853 { 854 Object *obj = OBJECT(tctx); 855 856 object_unparent(obj); 857 } 858 859 /* 860 * XIVE ESB helpers 861 */ 862 863 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 864 { 865 uint8_t old_pq = *pq & 0x3; 866 867 *pq &= ~0x3; 868 *pq |= value & 0x3; 869 870 return old_pq; 871 } 872 873 bool xive_esb_trigger(uint8_t *pq) 874 { 875 uint8_t old_pq = *pq & 0x3; 876 877 switch (old_pq) { 878 case XIVE_ESB_RESET: 879 xive_esb_set(pq, XIVE_ESB_PENDING); 880 return true; 881 case XIVE_ESB_PENDING: 882 case XIVE_ESB_QUEUED: 883 xive_esb_set(pq, XIVE_ESB_QUEUED); 884 return false; 885 case XIVE_ESB_OFF: 886 xive_esb_set(pq, XIVE_ESB_OFF); 887 return false; 888 default: 889 g_assert_not_reached(); 890 } 891 } 892 893 bool xive_esb_eoi(uint8_t *pq) 894 { 895 uint8_t old_pq = *pq & 0x3; 896 897 switch (old_pq) { 898 case XIVE_ESB_RESET: 899 case XIVE_ESB_PENDING: 900 xive_esb_set(pq, XIVE_ESB_RESET); 901 return false; 902 case XIVE_ESB_QUEUED: 903 xive_esb_set(pq, XIVE_ESB_PENDING); 904 return true; 905 case XIVE_ESB_OFF: 906 xive_esb_set(pq, XIVE_ESB_OFF); 907 return false; 908 default: 909 g_assert_not_reached(); 910 } 911 } 912 913 /* 914 * XIVE Interrupt Source (or IVSE) 915 */ 916 917 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 918 { 919 assert(srcno < xsrc->nr_irqs); 920 921 return xsrc->status[srcno] & 0x3; 922 } 923 924 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 925 { 926 assert(srcno < xsrc->nr_irqs); 927 928 return xive_esb_set(&xsrc->status[srcno], pq); 929 } 930 931 /* 932 * Returns whether the event notification should be forwarded. 933 */ 934 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 935 { 936 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 937 938 xive_source_set_asserted(xsrc, srcno, true); 939 940 switch (old_pq) { 941 case XIVE_ESB_RESET: 942 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 943 return true; 944 default: 945 return false; 946 } 947 } 948 949 /* 950 * Sources can be configured with PQ offloading in which case the check 951 * on the PQ state bits of MSIs is disabled 952 */ 953 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno) 954 { 955 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) && 956 !xive_source_irq_is_lsi(xsrc, srcno); 957 } 958 959 /* 960 * Returns whether the event notification should be forwarded. 961 */ 962 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 963 { 964 bool ret; 965 966 assert(srcno < xsrc->nr_irqs); 967 968 if (xive_source_esb_disabled(xsrc, srcno)) { 969 return true; 970 } 971 972 ret = xive_esb_trigger(&xsrc->status[srcno]); 973 974 if (xive_source_irq_is_lsi(xsrc, srcno) && 975 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 976 qemu_log_mask(LOG_GUEST_ERROR, 977 "XIVE: queued an event on LSI IRQ %d\n", srcno); 978 } 979 980 return ret; 981 } 982 983 /* 984 * Returns whether the event notification should be forwarded. 985 */ 986 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 987 { 988 bool ret; 989 990 assert(srcno < xsrc->nr_irqs); 991 992 if (xive_source_esb_disabled(xsrc, srcno)) { 993 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno); 994 return false; 995 } 996 997 ret = xive_esb_eoi(&xsrc->status[srcno]); 998 999 /* 1000 * LSI sources do not set the Q bit but they can still be 1001 * asserted, in which case we should forward a new event 1002 * notification 1003 */ 1004 if (xive_source_irq_is_lsi(xsrc, srcno) && 1005 xive_source_is_asserted(xsrc, srcno)) { 1006 ret = xive_source_lsi_trigger(xsrc, srcno); 1007 } 1008 1009 return ret; 1010 } 1011 1012 /* 1013 * Forward the source event notification to the Router 1014 */ 1015 static void xive_source_notify(XiveSource *xsrc, int srcno) 1016 { 1017 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 1018 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno); 1019 1020 if (xnc->notify) { 1021 xnc->notify(xsrc->xive, srcno, pq_checked); 1022 } 1023 } 1024 1025 /* 1026 * In a two pages ESB MMIO setting, even page is the trigger page, odd 1027 * page is for management 1028 */ 1029 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 1030 { 1031 return !((addr >> shift) & 1); 1032 } 1033 1034 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 1035 { 1036 return xive_source_esb_has_2page(xsrc) && 1037 addr_is_even(addr, xsrc->esb_shift - 1); 1038 } 1039 1040 /* 1041 * ESB MMIO loads 1042 * Trigger page Management/EOI page 1043 * 1044 * ESB MMIO setting 2 pages 1 or 2 pages 1045 * 1046 * 0x000 .. 0x3FF -1 EOI and return 0|1 1047 * 0x400 .. 0x7FF -1 EOI and return 0|1 1048 * 0x800 .. 0xBFF -1 return PQ 1049 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 1050 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 1051 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 1052 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 1053 */ 1054 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 1055 { 1056 XiveSource *xsrc = XIVE_SOURCE(opaque); 1057 uint32_t offset = addr & 0xFFF; 1058 uint32_t srcno = addr >> xsrc->esb_shift; 1059 uint64_t ret = -1; 1060 1061 /* In a two pages ESB MMIO setting, trigger page should not be read */ 1062 if (xive_source_is_trigger_page(xsrc, addr)) { 1063 qemu_log_mask(LOG_GUEST_ERROR, 1064 "XIVE: invalid load on IRQ %d trigger page at " 1065 "0x%"HWADDR_PRIx"\n", srcno, addr); 1066 return -1; 1067 } 1068 1069 switch (offset) { 1070 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1071 ret = xive_source_esb_eoi(xsrc, srcno); 1072 1073 /* Forward the source event notification for routing */ 1074 if (ret) { 1075 xive_source_notify(xsrc, srcno); 1076 } 1077 break; 1078 1079 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1080 ret = xive_source_esb_get(xsrc, srcno); 1081 break; 1082 1083 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1084 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1085 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1086 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1087 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1088 break; 1089 default: 1090 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1091 offset); 1092 } 1093 1094 trace_xive_source_esb_read(addr, srcno, ret); 1095 1096 return ret; 1097 } 1098 1099 /* 1100 * ESB MMIO stores 1101 * Trigger page Management/EOI page 1102 * 1103 * ESB MMIO setting 2 pages 1 or 2 pages 1104 * 1105 * 0x000 .. 0x3FF Trigger Trigger 1106 * 0x400 .. 0x7FF Trigger EOI 1107 * 0x800 .. 0xBFF Trigger undefined 1108 * 0xC00 .. 0xCFF Trigger PQ=00 1109 * 0xD00 .. 0xDFF Trigger PQ=01 1110 * 0xE00 .. 0xDFF Trigger PQ=10 1111 * 0xF00 .. 0xDFF Trigger PQ=11 1112 */ 1113 static void xive_source_esb_write(void *opaque, hwaddr addr, 1114 uint64_t value, unsigned size) 1115 { 1116 XiveSource *xsrc = XIVE_SOURCE(opaque); 1117 uint32_t offset = addr & 0xFFF; 1118 uint32_t srcno = addr >> xsrc->esb_shift; 1119 bool notify = false; 1120 1121 trace_xive_source_esb_write(addr, srcno, value); 1122 1123 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1124 if (xive_source_is_trigger_page(xsrc, addr)) { 1125 notify = xive_source_esb_trigger(xsrc, srcno); 1126 goto out; 1127 } 1128 1129 switch (offset) { 1130 case 0 ... 0x3FF: 1131 notify = xive_source_esb_trigger(xsrc, srcno); 1132 break; 1133 1134 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1135 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1136 qemu_log_mask(LOG_GUEST_ERROR, 1137 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1138 return; 1139 } 1140 1141 notify = xive_source_esb_eoi(xsrc, srcno); 1142 break; 1143 1144 /* 1145 * This is an internal offset used to inject triggers when the PQ 1146 * state bits are not controlled locally. Such as for LSIs when 1147 * under ABT mode. 1148 */ 1149 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1150 notify = true; 1151 break; 1152 1153 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1154 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1155 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1156 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1157 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1158 break; 1159 1160 default: 1161 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1162 offset); 1163 return; 1164 } 1165 1166 out: 1167 /* Forward the source event notification for routing */ 1168 if (notify) { 1169 xive_source_notify(xsrc, srcno); 1170 } 1171 } 1172 1173 static const MemoryRegionOps xive_source_esb_ops = { 1174 .read = xive_source_esb_read, 1175 .write = xive_source_esb_write, 1176 .endianness = DEVICE_BIG_ENDIAN, 1177 .valid = { 1178 .min_access_size = 1, 1179 .max_access_size = 8, 1180 }, 1181 .impl = { 1182 .min_access_size = 1, 1183 .max_access_size = 8, 1184 }, 1185 }; 1186 1187 void xive_source_set_irq(void *opaque, int srcno, int val) 1188 { 1189 XiveSource *xsrc = XIVE_SOURCE(opaque); 1190 bool notify = false; 1191 1192 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1193 if (val) { 1194 notify = xive_source_lsi_trigger(xsrc, srcno); 1195 } else { 1196 xive_source_set_asserted(xsrc, srcno, false); 1197 } 1198 } else { 1199 if (val) { 1200 notify = xive_source_esb_trigger(xsrc, srcno); 1201 } 1202 } 1203 1204 /* Forward the source event notification for routing */ 1205 if (notify) { 1206 xive_source_notify(xsrc, srcno); 1207 } 1208 } 1209 1210 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1211 { 1212 int i; 1213 1214 for (i = 0; i < xsrc->nr_irqs; i++) { 1215 uint8_t pq = xive_source_esb_get(xsrc, i); 1216 1217 if (pq == XIVE_ESB_OFF) { 1218 continue; 1219 } 1220 1221 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1222 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1223 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1224 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1225 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1226 } 1227 } 1228 1229 static void xive_source_reset(void *dev) 1230 { 1231 XiveSource *xsrc = XIVE_SOURCE(dev); 1232 1233 /* Do not clear the LSI bitmap */ 1234 1235 memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs); 1236 } 1237 1238 static void xive_source_realize(DeviceState *dev, Error **errp) 1239 { 1240 XiveSource *xsrc = XIVE_SOURCE(dev); 1241 size_t esb_len = xive_source_esb_len(xsrc); 1242 1243 assert(xsrc->xive); 1244 1245 if (!xsrc->nr_irqs) { 1246 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1247 return; 1248 } 1249 1250 if (xsrc->esb_shift != XIVE_ESB_4K && 1251 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1252 xsrc->esb_shift != XIVE_ESB_64K && 1253 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1254 error_setg(errp, "Invalid ESB shift setting"); 1255 return; 1256 } 1257 1258 xsrc->status = g_malloc0(xsrc->nr_irqs); 1259 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1260 1261 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1262 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1263 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1264 esb_len); 1265 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1266 1267 qemu_register_reset(xive_source_reset, dev); 1268 } 1269 1270 static const VMStateDescription vmstate_xive_source = { 1271 .name = TYPE_XIVE_SOURCE, 1272 .version_id = 1, 1273 .minimum_version_id = 1, 1274 .fields = (VMStateField[]) { 1275 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1276 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1277 VMSTATE_END_OF_LIST() 1278 }, 1279 }; 1280 1281 /* 1282 * The default XIVE interrupt source setting for the ESB MMIOs is two 1283 * 64k pages without Store EOI, to be in sync with KVM. 1284 */ 1285 static Property xive_source_properties[] = { 1286 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1287 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1288 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1289 /* 1290 * By default, PQs are initialized to 0b01 (Q=1) which corresponds 1291 * to "ints off" 1292 */ 1293 DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF), 1294 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1295 XiveNotifier *), 1296 DEFINE_PROP_END_OF_LIST(), 1297 }; 1298 1299 static void xive_source_class_init(ObjectClass *klass, void *data) 1300 { 1301 DeviceClass *dc = DEVICE_CLASS(klass); 1302 1303 dc->desc = "XIVE Interrupt Source"; 1304 device_class_set_props(dc, xive_source_properties); 1305 dc->realize = xive_source_realize; 1306 dc->vmsd = &vmstate_xive_source; 1307 /* 1308 * Reason: part of XIVE interrupt controller, needs to be wired up, 1309 * e.g. by spapr_xive_instance_init(). 1310 */ 1311 dc->user_creatable = false; 1312 } 1313 1314 static const TypeInfo xive_source_info = { 1315 .name = TYPE_XIVE_SOURCE, 1316 .parent = TYPE_DEVICE, 1317 .instance_size = sizeof(XiveSource), 1318 .class_init = xive_source_class_init, 1319 }; 1320 1321 /* 1322 * XiveEND helpers 1323 */ 1324 1325 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1326 { 1327 uint64_t qaddr_base = xive_end_qaddr(end); 1328 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1329 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1330 uint32_t qentries = 1 << (qsize + 10); 1331 int i; 1332 1333 /* 1334 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1335 */ 1336 monitor_printf(mon, " [ "); 1337 qindex = (qindex - (width - 1)) & (qentries - 1); 1338 for (i = 0; i < width; i++) { 1339 uint64_t qaddr = qaddr_base + (qindex << 2); 1340 uint32_t qdata = -1; 1341 1342 if (dma_memory_read(&address_space_memory, qaddr, 1343 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1344 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1345 HWADDR_PRIx "\n", qaddr); 1346 return; 1347 } 1348 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1349 be32_to_cpu(qdata)); 1350 qindex = (qindex + 1) & (qentries - 1); 1351 } 1352 monitor_printf(mon, "]"); 1353 } 1354 1355 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1356 { 1357 uint64_t qaddr_base = xive_end_qaddr(end); 1358 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1359 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1360 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1361 uint32_t qentries = 1 << (qsize + 10); 1362 1363 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1364 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1365 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1366 uint8_t pq; 1367 1368 if (!xive_end_is_valid(end)) { 1369 return; 1370 } 1371 1372 pq = xive_get_field32(END_W1_ESn, end->w1); 1373 1374 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1375 end_idx, 1376 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1377 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1378 xive_end_is_valid(end) ? 'v' : '-', 1379 xive_end_is_enqueue(end) ? 'q' : '-', 1380 xive_end_is_notify(end) ? 'n' : '-', 1381 xive_end_is_backlog(end) ? 'b' : '-', 1382 xive_end_is_escalate(end) ? 'e' : '-', 1383 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1384 xive_end_is_silent_escalation(end) ? 's' : '-', 1385 xive_end_is_firmware(end) ? 'f' : '-', 1386 priority, nvt_blk, nvt_idx); 1387 1388 if (qaddr_base) { 1389 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1390 qaddr_base, qindex, qentries, qgen); 1391 xive_end_queue_pic_print_info(end, 6, mon); 1392 } 1393 monitor_printf(mon, "\n"); 1394 } 1395 1396 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1397 { 1398 uint64_t qaddr_base = xive_end_qaddr(end); 1399 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1400 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1401 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1402 1403 uint64_t qaddr = qaddr_base + (qindex << 2); 1404 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1405 uint32_t qentries = 1 << (qsize + 10); 1406 1407 if (dma_memory_write(&address_space_memory, qaddr, 1408 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1409 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1410 HWADDR_PRIx "\n", qaddr); 1411 return; 1412 } 1413 1414 qindex = (qindex + 1) & (qentries - 1); 1415 if (qindex == 0) { 1416 qgen ^= 1; 1417 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1418 } 1419 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1420 } 1421 1422 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1423 Monitor *mon) 1424 { 1425 XiveEAS *eas = (XiveEAS *) &end->w4; 1426 uint8_t pq; 1427 1428 if (!xive_end_is_escalate(end)) { 1429 return; 1430 } 1431 1432 pq = xive_get_field32(END_W1_ESe, end->w1); 1433 1434 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1435 end_idx, 1436 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1437 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1438 xive_eas_is_valid(eas) ? 'V' : ' ', 1439 xive_eas_is_masked(eas) ? 'M' : ' ', 1440 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1441 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1442 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1443 } 1444 1445 /* 1446 * XIVE Router (aka. Virtualization Controller or IVRE) 1447 */ 1448 1449 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1450 XiveEAS *eas) 1451 { 1452 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1453 1454 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1455 } 1456 1457 static 1458 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1459 uint8_t *pq) 1460 { 1461 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1462 1463 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1464 } 1465 1466 static 1467 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1468 uint8_t *pq) 1469 { 1470 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1471 1472 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1473 } 1474 1475 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1476 XiveEND *end) 1477 { 1478 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1479 1480 return xrc->get_end(xrtr, end_blk, end_idx, end); 1481 } 1482 1483 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1484 XiveEND *end, uint8_t word_number) 1485 { 1486 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1487 1488 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1489 } 1490 1491 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1492 XiveNVT *nvt) 1493 { 1494 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1495 1496 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1497 } 1498 1499 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1500 XiveNVT *nvt, uint8_t word_number) 1501 { 1502 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1503 1504 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1505 } 1506 1507 static int xive_router_get_block_id(XiveRouter *xrtr) 1508 { 1509 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1510 1511 return xrc->get_block_id(xrtr); 1512 } 1513 1514 static void xive_router_realize(DeviceState *dev, Error **errp) 1515 { 1516 XiveRouter *xrtr = XIVE_ROUTER(dev); 1517 1518 assert(xrtr->xfb); 1519 } 1520 1521 /* 1522 * Encode the HW CAM line in the block group mode format : 1523 * 1524 * chip << 19 | 0000000 0 0001 thread (7Bit) 1525 */ 1526 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1527 { 1528 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1529 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1530 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1531 1532 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1533 } 1534 1535 /* 1536 * The thread context register words are in big-endian format. 1537 */ 1538 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1539 uint8_t format, 1540 uint8_t nvt_blk, uint32_t nvt_idx, 1541 bool cam_ignore, uint32_t logic_serv) 1542 { 1543 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1544 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1545 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1546 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1547 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1548 1549 /* 1550 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1551 * identifier are ignored in the "CAM" match. 1552 */ 1553 1554 if (format == 0) { 1555 if (cam_ignore == true) { 1556 /* 1557 * F=0 & i=1: Logical server notification (bits ignored at 1558 * the end of the NVT identifier) 1559 */ 1560 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1561 nvt_blk, nvt_idx); 1562 return -1; 1563 } 1564 1565 /* F=0 & i=0: Specific NVT notification */ 1566 1567 /* PHYS ring */ 1568 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1569 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1570 return TM_QW3_HV_PHYS; 1571 } 1572 1573 /* HV POOL ring */ 1574 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1575 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1576 return TM_QW2_HV_POOL; 1577 } 1578 1579 /* OS ring */ 1580 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1581 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1582 return TM_QW1_OS; 1583 } 1584 } else { 1585 /* F=1 : User level Event-Based Branch (EBB) notification */ 1586 1587 /* USER ring */ 1588 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1589 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1590 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1591 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1592 return TM_QW0_USER; 1593 } 1594 } 1595 return -1; 1596 } 1597 1598 /* 1599 * This is our simple Xive Presenter Engine model. It is merged in the 1600 * Router as it does not require an extra object. 1601 * 1602 * It receives notification requests sent by the IVRE to find one 1603 * matching NVT (or more) dispatched on the processor threads. In case 1604 * of a single NVT notification, the process is abreviated and the 1605 * thread is signaled if a match is found. In case of a logical server 1606 * notification (bits ignored at the end of the NVT identifier), the 1607 * IVPE and IVRE select a winning thread using different filters. This 1608 * involves 2 or 3 exchanges on the PowerBus that the model does not 1609 * support. 1610 * 1611 * The parameters represent what is sent on the PowerBus 1612 */ 1613 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1614 uint8_t nvt_blk, uint32_t nvt_idx, 1615 bool cam_ignore, uint8_t priority, 1616 uint32_t logic_serv) 1617 { 1618 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1619 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1620 int count; 1621 1622 /* 1623 * Ask the machine to scan the interrupt controllers for a match 1624 */ 1625 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1626 priority, logic_serv, &match); 1627 if (count < 0) { 1628 return false; 1629 } 1630 1631 /* handle CPU exception delivery */ 1632 if (count) { 1633 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1634 xive_tctx_ipb_update(match.tctx, match.ring, 1635 xive_priority_to_ipb(priority)); 1636 } 1637 1638 return !!count; 1639 } 1640 1641 /* 1642 * Notification using the END ESe/ESn bit (Event State Buffer for 1643 * escalation and notification). Provide further coalescing in the 1644 * Router. 1645 */ 1646 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1647 uint32_t end_idx, XiveEND *end, 1648 uint32_t end_esmask) 1649 { 1650 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1651 bool notify = xive_esb_trigger(&pq); 1652 1653 if (pq != xive_get_field32(end_esmask, end->w1)) { 1654 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1655 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1656 } 1657 1658 /* ESe/n[Q]=1 : end of notification */ 1659 return notify; 1660 } 1661 1662 /* 1663 * An END trigger can come from an event trigger (IPI or HW) or from 1664 * another chip. We don't model the PowerBus but the END trigger 1665 * message has the same parameters than in the function below. 1666 */ 1667 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1668 uint32_t end_idx, uint32_t end_data) 1669 { 1670 XiveEND end; 1671 uint8_t priority; 1672 uint8_t format; 1673 uint8_t nvt_blk; 1674 uint32_t nvt_idx; 1675 XiveNVT nvt; 1676 bool found; 1677 1678 /* END cache lookup */ 1679 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1680 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1681 end_idx); 1682 return; 1683 } 1684 1685 if (!xive_end_is_valid(&end)) { 1686 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1687 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1688 end_blk, end_idx); 1689 return; 1690 } 1691 1692 if (xive_end_is_enqueue(&end)) { 1693 xive_end_enqueue(&end, end_data); 1694 /* Enqueuing event data modifies the EQ toggle and index */ 1695 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1696 } 1697 1698 /* 1699 * When the END is silent, we skip the notification part. 1700 */ 1701 if (xive_end_is_silent_escalation(&end)) { 1702 goto do_escalation; 1703 } 1704 1705 /* 1706 * The W7 format depends on the F bit in W6. It defines the type 1707 * of the notification : 1708 * 1709 * F=0 : single or multiple NVT notification 1710 * F=1 : User level Event-Based Branch (EBB) notification, no 1711 * priority 1712 */ 1713 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1714 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1715 1716 /* The END is masked */ 1717 if (format == 0 && priority == 0xff) { 1718 return; 1719 } 1720 1721 /* 1722 * Check the END ESn (Event State Buffer for notification) for 1723 * even further coalescing in the Router 1724 */ 1725 if (!xive_end_is_notify(&end)) { 1726 /* ESn[Q]=1 : end of notification */ 1727 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1728 &end, END_W1_ESn)) { 1729 return; 1730 } 1731 } 1732 1733 /* 1734 * Follows IVPE notification 1735 */ 1736 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1737 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1738 1739 /* NVT cache lookup */ 1740 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1741 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1742 nvt_blk, nvt_idx); 1743 return; 1744 } 1745 1746 if (!xive_nvt_is_valid(&nvt)) { 1747 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1748 nvt_blk, nvt_idx); 1749 return; 1750 } 1751 1752 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1753 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1754 priority, 1755 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1756 1757 /* TODO: Auto EOI. */ 1758 1759 if (found) { 1760 return; 1761 } 1762 1763 /* 1764 * If no matching NVT is dispatched on a HW thread : 1765 * - specific VP: update the NVT structure if backlog is activated 1766 * - logical server : forward request to IVPE (not supported) 1767 */ 1768 if (xive_end_is_backlog(&end)) { 1769 uint8_t ipb; 1770 1771 if (format == 1) { 1772 qemu_log_mask(LOG_GUEST_ERROR, 1773 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1774 end_blk, end_idx); 1775 return; 1776 } 1777 /* 1778 * Record the IPB in the associated NVT structure for later 1779 * use. The presenter will resend the interrupt when the vCPU 1780 * is dispatched again on a HW thread. 1781 */ 1782 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1783 xive_priority_to_ipb(priority); 1784 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1785 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1786 1787 /* 1788 * On HW, follows a "Broadcast Backlog" to IVPEs 1789 */ 1790 } 1791 1792 do_escalation: 1793 /* 1794 * If activated, escalate notification using the ESe PQ bits and 1795 * the EAS in w4-5 1796 */ 1797 if (!xive_end_is_escalate(&end)) { 1798 return; 1799 } 1800 1801 /* 1802 * Check the END ESe (Event State Buffer for escalation) for even 1803 * further coalescing in the Router 1804 */ 1805 if (!xive_end_is_uncond_escalation(&end)) { 1806 /* ESe[Q]=1 : end of notification */ 1807 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1808 &end, END_W1_ESe)) { 1809 return; 1810 } 1811 } 1812 1813 trace_xive_router_end_escalate(end_blk, end_idx, 1814 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1815 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1816 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1817 /* 1818 * The END trigger becomes an Escalation trigger 1819 */ 1820 xive_router_end_notify(xrtr, 1821 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1822 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1823 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1824 } 1825 1826 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 1827 { 1828 XiveRouter *xrtr = XIVE_ROUTER(xn); 1829 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1830 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1831 XiveEAS eas; 1832 1833 /* EAS cache lookup */ 1834 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1835 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1836 return; 1837 } 1838 1839 if (!pq_checked) { 1840 bool notify; 1841 uint8_t pq; 1842 1843 /* PQ cache lookup */ 1844 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 1845 /* Set FIR */ 1846 g_assert_not_reached(); 1847 } 1848 1849 notify = xive_esb_trigger(&pq); 1850 1851 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 1852 /* Set FIR */ 1853 g_assert_not_reached(); 1854 } 1855 1856 if (!notify) { 1857 return; 1858 } 1859 } 1860 1861 if (!xive_eas_is_valid(&eas)) { 1862 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1863 return; 1864 } 1865 1866 if (xive_eas_is_masked(&eas)) { 1867 /* Notification completed */ 1868 return; 1869 } 1870 1871 /* 1872 * The event trigger becomes an END trigger 1873 */ 1874 xive_router_end_notify(xrtr, 1875 xive_get_field64(EAS_END_BLOCK, eas.w), 1876 xive_get_field64(EAS_END_INDEX, eas.w), 1877 xive_get_field64(EAS_END_DATA, eas.w)); 1878 } 1879 1880 static Property xive_router_properties[] = { 1881 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1882 TYPE_XIVE_FABRIC, XiveFabric *), 1883 DEFINE_PROP_END_OF_LIST(), 1884 }; 1885 1886 static void xive_router_class_init(ObjectClass *klass, void *data) 1887 { 1888 DeviceClass *dc = DEVICE_CLASS(klass); 1889 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1890 1891 dc->desc = "XIVE Router Engine"; 1892 device_class_set_props(dc, xive_router_properties); 1893 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1894 dc->realize = xive_router_realize; 1895 xnc->notify = xive_router_notify; 1896 } 1897 1898 static const TypeInfo xive_router_info = { 1899 .name = TYPE_XIVE_ROUTER, 1900 .parent = TYPE_SYS_BUS_DEVICE, 1901 .abstract = true, 1902 .instance_size = sizeof(XiveRouter), 1903 .class_size = sizeof(XiveRouterClass), 1904 .class_init = xive_router_class_init, 1905 .interfaces = (InterfaceInfo[]) { 1906 { TYPE_XIVE_NOTIFIER }, 1907 { TYPE_XIVE_PRESENTER }, 1908 { } 1909 } 1910 }; 1911 1912 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1913 { 1914 if (!xive_eas_is_valid(eas)) { 1915 return; 1916 } 1917 1918 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1919 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1920 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1921 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1922 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1923 } 1924 1925 /* 1926 * END ESB MMIO loads 1927 */ 1928 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1929 { 1930 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1931 uint32_t offset = addr & 0xFFF; 1932 uint8_t end_blk; 1933 uint32_t end_idx; 1934 XiveEND end; 1935 uint32_t end_esmask; 1936 uint8_t pq; 1937 uint64_t ret = -1; 1938 1939 /* 1940 * The block id should be deduced from the load address on the END 1941 * ESB MMIO but our model only supports a single block per XIVE chip. 1942 */ 1943 end_blk = xive_router_get_block_id(xsrc->xrtr); 1944 end_idx = addr >> (xsrc->esb_shift + 1); 1945 1946 trace_xive_end_source_read(end_blk, end_idx, addr); 1947 1948 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1949 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1950 end_idx); 1951 return -1; 1952 } 1953 1954 if (!xive_end_is_valid(&end)) { 1955 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1956 end_blk, end_idx); 1957 return -1; 1958 } 1959 1960 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1961 pq = xive_get_field32(end_esmask, end.w1); 1962 1963 switch (offset) { 1964 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1965 ret = xive_esb_eoi(&pq); 1966 1967 /* Forward the source event notification for routing ?? */ 1968 break; 1969 1970 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1971 ret = pq; 1972 break; 1973 1974 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1975 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1976 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1977 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1978 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1979 break; 1980 default: 1981 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1982 offset); 1983 return -1; 1984 } 1985 1986 if (pq != xive_get_field32(end_esmask, end.w1)) { 1987 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1988 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1989 } 1990 1991 return ret; 1992 } 1993 1994 /* 1995 * END ESB MMIO stores are invalid 1996 */ 1997 static void xive_end_source_write(void *opaque, hwaddr addr, 1998 uint64_t value, unsigned size) 1999 { 2000 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 2001 HWADDR_PRIx"\n", addr); 2002 } 2003 2004 static const MemoryRegionOps xive_end_source_ops = { 2005 .read = xive_end_source_read, 2006 .write = xive_end_source_write, 2007 .endianness = DEVICE_BIG_ENDIAN, 2008 .valid = { 2009 .min_access_size = 1, 2010 .max_access_size = 8, 2011 }, 2012 .impl = { 2013 .min_access_size = 1, 2014 .max_access_size = 8, 2015 }, 2016 }; 2017 2018 static void xive_end_source_realize(DeviceState *dev, Error **errp) 2019 { 2020 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 2021 2022 assert(xsrc->xrtr); 2023 2024 if (!xsrc->nr_ends) { 2025 error_setg(errp, "Number of interrupt needs to be greater than 0"); 2026 return; 2027 } 2028 2029 if (xsrc->esb_shift != XIVE_ESB_4K && 2030 xsrc->esb_shift != XIVE_ESB_64K) { 2031 error_setg(errp, "Invalid ESB shift setting"); 2032 return; 2033 } 2034 2035 /* 2036 * Each END is assigned an even/odd pair of MMIO pages, the even page 2037 * manages the ESn field while the odd page manages the ESe field. 2038 */ 2039 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 2040 &xive_end_source_ops, xsrc, "xive.end", 2041 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 2042 } 2043 2044 static Property xive_end_source_properties[] = { 2045 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 2046 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 2047 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 2048 XiveRouter *), 2049 DEFINE_PROP_END_OF_LIST(), 2050 }; 2051 2052 static void xive_end_source_class_init(ObjectClass *klass, void *data) 2053 { 2054 DeviceClass *dc = DEVICE_CLASS(klass); 2055 2056 dc->desc = "XIVE END Source"; 2057 device_class_set_props(dc, xive_end_source_properties); 2058 dc->realize = xive_end_source_realize; 2059 /* 2060 * Reason: part of XIVE interrupt controller, needs to be wired up, 2061 * e.g. by spapr_xive_instance_init(). 2062 */ 2063 dc->user_creatable = false; 2064 } 2065 2066 static const TypeInfo xive_end_source_info = { 2067 .name = TYPE_XIVE_END_SOURCE, 2068 .parent = TYPE_DEVICE, 2069 .instance_size = sizeof(XiveENDSource), 2070 .class_init = xive_end_source_class_init, 2071 }; 2072 2073 /* 2074 * XIVE Notifier 2075 */ 2076 static const TypeInfo xive_notifier_info = { 2077 .name = TYPE_XIVE_NOTIFIER, 2078 .parent = TYPE_INTERFACE, 2079 .class_size = sizeof(XiveNotifierClass), 2080 }; 2081 2082 /* 2083 * XIVE Presenter 2084 */ 2085 static const TypeInfo xive_presenter_info = { 2086 .name = TYPE_XIVE_PRESENTER, 2087 .parent = TYPE_INTERFACE, 2088 .class_size = sizeof(XivePresenterClass), 2089 }; 2090 2091 /* 2092 * XIVE Fabric 2093 */ 2094 static const TypeInfo xive_fabric_info = { 2095 .name = TYPE_XIVE_FABRIC, 2096 .parent = TYPE_INTERFACE, 2097 .class_size = sizeof(XiveFabricClass), 2098 }; 2099 2100 static void xive_register_types(void) 2101 { 2102 type_register_static(&xive_fabric_info); 2103 type_register_static(&xive_source_info); 2104 type_register_static(&xive_notifier_info); 2105 type_register_static(&xive_presenter_info); 2106 type_register_static(&xive_router_info); 2107 type_register_static(&xive_end_source_info); 2108 type_register_static(&xive_tctx_info); 2109 } 2110 2111 type_init(xive_register_types) 2112