xref: /openbmc/qemu/hw/intc/xive.c (revision 679cb8e1)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
20 
21 /*
22  * XIVE Thread Interrupt Management context
23  */
24 
25 /*
26  * Convert a priority number to an Interrupt Pending Buffer (IPB)
27  * register, which indicates a pending interrupt at the priority
28  * corresponding to the bit number
29  */
30 static uint8_t priority_to_ipb(uint8_t priority)
31 {
32     return priority > XIVE_PRIORITY_MAX ?
33         0 : 1 << (XIVE_PRIORITY_MAX - priority);
34 }
35 
36 /*
37  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38  * Interrupt Priority Register (PIPR), which contains the priority of
39  * the most favored pending notification.
40  */
41 static uint8_t ipb_to_pipr(uint8_t ibp)
42 {
43     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
44 }
45 
46 static void ipb_update(uint8_t *regs, uint8_t priority)
47 {
48     regs[TM_IPB] |= priority_to_ipb(priority);
49     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
50 }
51 
52 static uint8_t exception_mask(uint8_t ring)
53 {
54     switch (ring) {
55     case TM_QW1_OS:
56         return TM_QW1_NSR_EO;
57     case TM_QW3_HV_PHYS:
58         return TM_QW3_NSR_HE;
59     default:
60         g_assert_not_reached();
61     }
62 }
63 
64 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
65 {
66     uint8_t *regs = &tctx->regs[ring];
67     uint8_t nsr = regs[TM_NSR];
68     uint8_t mask = exception_mask(ring);
69 
70     qemu_irq_lower(tctx->output);
71 
72     if (regs[TM_NSR] & mask) {
73         uint8_t cppr = regs[TM_PIPR];
74 
75         regs[TM_CPPR] = cppr;
76 
77         /* Reset the pending buffer bit */
78         regs[TM_IPB] &= ~priority_to_ipb(cppr);
79         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
80 
81         /* Drop Exception bit */
82         regs[TM_NSR] &= ~mask;
83     }
84 
85     return (nsr << 8) | regs[TM_CPPR];
86 }
87 
88 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
89 {
90     uint8_t *regs = &tctx->regs[ring];
91 
92     if (regs[TM_PIPR] < regs[TM_CPPR]) {
93         switch (ring) {
94         case TM_QW1_OS:
95             regs[TM_NSR] |= TM_QW1_NSR_EO;
96             break;
97         case TM_QW3_HV_PHYS:
98             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
99             break;
100         default:
101             g_assert_not_reached();
102         }
103         qemu_irq_raise(tctx->output);
104     }
105 }
106 
107 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
108 {
109     if (cppr > XIVE_PRIORITY_MAX) {
110         cppr = 0xff;
111     }
112 
113     tctx->regs[ring + TM_CPPR] = cppr;
114 
115     /* CPPR has changed, check if we need to raise a pending exception */
116     xive_tctx_notify(tctx, ring);
117 }
118 
119 /*
120  * XIVE Thread Interrupt Management Area (TIMA)
121  */
122 
123 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
124                                 uint64_t value, unsigned size)
125 {
126     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
127 }
128 
129 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
130 {
131     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
132 }
133 
134 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
135                                       unsigned size)
136 {
137     uint64_t ret;
138 
139     ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
140     tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
141     return ret;
142 }
143 
144 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
145                             uint64_t value, unsigned size)
146 {
147     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
148 }
149 
150 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
151 {
152     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
153 }
154 
155 /*
156  * Define an access map for each page of the TIMA that we will use in
157  * the memory region ops to filter values when doing loads and stores
158  * of raw registers values
159  *
160  * Registers accessibility bits :
161  *
162  *    0x0 - no access
163  *    0x1 - write only
164  *    0x2 - read only
165  *    0x3 - read/write
166  */
167 
168 static const uint8_t xive_tm_hw_view[] = {
169     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
170     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
171     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
172     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   3, 3, 3, 0,
173 };
174 
175 static const uint8_t xive_tm_hv_view[] = {
176     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
177     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
178     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0,
179     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   0, 0, 0, 0,
180 };
181 
182 static const uint8_t xive_tm_os_view[] = {
183     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
184     /* QW-1 OS   */   2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0,
185     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
186     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
187 };
188 
189 static const uint8_t xive_tm_user_view[] = {
190     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
191     /* QW-1 OS   */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
192     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
193     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
194 };
195 
196 /*
197  * Overall TIMA access map for the thread interrupt management context
198  * registers
199  */
200 static const uint8_t *xive_tm_views[] = {
201     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
202     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
203     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
204     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
205 };
206 
207 /*
208  * Computes a register access mask for a given offset in the TIMA
209  */
210 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
211 {
212     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
213     uint8_t reg_offset = offset & 0x3F;
214     uint8_t reg_mask = write ? 0x1 : 0x2;
215     uint64_t mask = 0x0;
216     int i;
217 
218     for (i = 0; i < size; i++) {
219         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
220             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
221         }
222     }
223 
224     return mask;
225 }
226 
227 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
228                               unsigned size)
229 {
230     uint8_t ring_offset = offset & 0x30;
231     uint8_t reg_offset = offset & 0x3F;
232     uint64_t mask = xive_tm_mask(offset, size, true);
233     int i;
234 
235     /*
236      * Only 4 or 8 bytes stores are allowed and the User ring is
237      * excluded
238      */
239     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
240         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
241                       HWADDR_PRIx"\n", offset);
242         return;
243     }
244 
245     /*
246      * Use the register offset for the raw values and filter out
247      * reserved values
248      */
249     for (i = 0; i < size; i++) {
250         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
251         if (byte_mask) {
252             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
253                 byte_mask;
254         }
255     }
256 }
257 
258 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
259 {
260     uint8_t ring_offset = offset & 0x30;
261     uint8_t reg_offset = offset & 0x3F;
262     uint64_t mask = xive_tm_mask(offset, size, false);
263     uint64_t ret;
264     int i;
265 
266     /*
267      * Only 4 or 8 bytes loads are allowed and the User ring is
268      * excluded
269      */
270     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
271         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
272                       HWADDR_PRIx"\n", offset);
273         return -1;
274     }
275 
276     /* Use the register offset for the raw values */
277     ret = 0;
278     for (i = 0; i < size; i++) {
279         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
280     }
281 
282     /* filter out reserved values */
283     return ret & mask;
284 }
285 
286 /*
287  * The TM context is mapped twice within each page. Stores and loads
288  * to the first mapping below 2K write and read the specified values
289  * without modification. The second mapping above 2K performs specific
290  * state changes (side effects) in addition to setting/returning the
291  * interrupt management area context of the processor thread.
292  */
293 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
294 {
295     return xive_tctx_accept(tctx, TM_QW1_OS);
296 }
297 
298 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
299                                 uint64_t value, unsigned size)
300 {
301     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
302 }
303 
304 /*
305  * Adjust the IPB to allow a CPU to process event queues of other
306  * priorities during one physical interrupt cycle.
307  */
308 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
309                                    uint64_t value, unsigned size)
310 {
311     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
312     xive_tctx_notify(tctx, TM_QW1_OS);
313 }
314 
315 /*
316  * Define a mapping of "special" operations depending on the TIMA page
317  * offset and the size of the operation.
318  */
319 typedef struct XiveTmOp {
320     uint8_t  page_offset;
321     uint32_t op_offset;
322     unsigned size;
323     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
324                               unsigned size);
325     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
326 } XiveTmOp;
327 
328 static const XiveTmOp xive_tm_operations[] = {
329     /*
330      * MMIOs below 2K : raw values and special operations without side
331      * effects
332      */
333     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
334     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
335     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
336     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
337 
338     /* MMIOs above 2K : special operations with side effects */
339     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
340     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
341     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
342     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
343     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
344 };
345 
346 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
347 {
348     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
349     uint32_t op_offset = offset & 0xFFF;
350     int i;
351 
352     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
353         const XiveTmOp *xto = &xive_tm_operations[i];
354 
355         /* Accesses done from a more privileged TIMA page is allowed */
356         if (xto->page_offset >= page_offset &&
357             xto->op_offset == op_offset &&
358             xto->size == size &&
359             ((write && xto->write_handler) || (!write && xto->read_handler))) {
360             return xto;
361         }
362     }
363     return NULL;
364 }
365 
366 /*
367  * TIMA MMIO handlers
368  */
369 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
370                         unsigned size)
371 {
372     const XiveTmOp *xto;
373 
374     /*
375      * TODO: check V bit in Q[0-3]W2
376      */
377 
378     /*
379      * First, check for special operations in the 2K region
380      */
381     if (offset & 0x800) {
382         xto = xive_tm_find_op(offset, size, true);
383         if (!xto) {
384             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
385                           "@%"HWADDR_PRIx"\n", offset);
386         } else {
387             xto->write_handler(tctx, offset, value, size);
388         }
389         return;
390     }
391 
392     /*
393      * Then, for special operations in the region below 2K.
394      */
395     xto = xive_tm_find_op(offset, size, true);
396     if (xto) {
397         xto->write_handler(tctx, offset, value, size);
398         return;
399     }
400 
401     /*
402      * Finish with raw access to the register values
403      */
404     xive_tm_raw_write(tctx, offset, value, size);
405 }
406 
407 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
408 {
409     const XiveTmOp *xto;
410 
411     /*
412      * TODO: check V bit in Q[0-3]W2
413      */
414 
415     /*
416      * First, check for special operations in the 2K region
417      */
418     if (offset & 0x800) {
419         xto = xive_tm_find_op(offset, size, false);
420         if (!xto) {
421             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
422                           "@%"HWADDR_PRIx"\n", offset);
423             return -1;
424         }
425         return xto->read_handler(tctx, offset, size);
426     }
427 
428     /*
429      * Then, for special operations in the region below 2K.
430      */
431     xto = xive_tm_find_op(offset, size, false);
432     if (xto) {
433         return xto->read_handler(tctx, offset, size);
434     }
435 
436     /*
437      * Finish with raw access to the register values
438      */
439     return xive_tm_raw_read(tctx, offset, size);
440 }
441 
442 static void xive_tm_write(void *opaque, hwaddr offset,
443                           uint64_t value, unsigned size)
444 {
445     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
446 
447     xive_tctx_tm_write(tctx, offset, value, size);
448 }
449 
450 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
451 {
452     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
453 
454     return xive_tctx_tm_read(tctx, offset, size);
455 }
456 
457 const MemoryRegionOps xive_tm_ops = {
458     .read = xive_tm_read,
459     .write = xive_tm_write,
460     .endianness = DEVICE_BIG_ENDIAN,
461     .valid = {
462         .min_access_size = 1,
463         .max_access_size = 8,
464     },
465     .impl = {
466         .min_access_size = 1,
467         .max_access_size = 8,
468     },
469 };
470 
471 static inline uint32_t xive_tctx_word2(uint8_t *ring)
472 {
473     return *((uint32_t *) &ring[TM_WORD2]);
474 }
475 
476 static char *xive_tctx_ring_print(uint8_t *ring)
477 {
478     uint32_t w2 = xive_tctx_word2(ring);
479 
480     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
481                    "%02x  %02x   %02x  %08x",
482                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
483                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
484                    be32_to_cpu(w2));
485 }
486 
487 static const char * const xive_tctx_ring_names[] = {
488     "USER", "OS", "POOL", "PHYS",
489 };
490 
491 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
492 {
493     int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
494     int i;
495 
496     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
497                    "  W2\n", cpu_index);
498 
499     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
500         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
501         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
502                        xive_tctx_ring_names[i], s);
503         g_free(s);
504     }
505 }
506 
507 static void xive_tctx_reset(void *dev)
508 {
509     XiveTCTX *tctx = XIVE_TCTX(dev);
510 
511     memset(tctx->regs, 0, sizeof(tctx->regs));
512 
513     /* Set some defaults */
514     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
515     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
516     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
517 
518     /*
519      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
520      * CPPR is first set.
521      */
522     tctx->regs[TM_QW1_OS + TM_PIPR] =
523         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
524     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
525         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
526 }
527 
528 static void xive_tctx_realize(DeviceState *dev, Error **errp)
529 {
530     XiveTCTX *tctx = XIVE_TCTX(dev);
531     PowerPCCPU *cpu;
532     CPUPPCState *env;
533     Object *obj;
534     Error *local_err = NULL;
535 
536     obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
537     if (!obj) {
538         error_propagate(errp, local_err);
539         error_prepend(errp, "required link 'cpu' not found: ");
540         return;
541     }
542 
543     cpu = POWERPC_CPU(obj);
544     tctx->cs = CPU(obj);
545 
546     env = &cpu->env;
547     switch (PPC_INPUT(env)) {
548     case PPC_FLAGS_INPUT_POWER9:
549         tctx->output = env->irq_inputs[POWER9_INPUT_INT];
550         break;
551 
552     default:
553         error_setg(errp, "XIVE interrupt controller does not support "
554                    "this CPU bus model");
555         return;
556     }
557 
558     qemu_register_reset(xive_tctx_reset, dev);
559 }
560 
561 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
562 {
563     qemu_unregister_reset(xive_tctx_reset, dev);
564 }
565 
566 static const VMStateDescription vmstate_xive_tctx = {
567     .name = TYPE_XIVE_TCTX,
568     .version_id = 1,
569     .minimum_version_id = 1,
570     .fields = (VMStateField[]) {
571         VMSTATE_BUFFER(regs, XiveTCTX),
572         VMSTATE_END_OF_LIST()
573     },
574 };
575 
576 static void xive_tctx_class_init(ObjectClass *klass, void *data)
577 {
578     DeviceClass *dc = DEVICE_CLASS(klass);
579 
580     dc->desc = "XIVE Interrupt Thread Context";
581     dc->realize = xive_tctx_realize;
582     dc->unrealize = xive_tctx_unrealize;
583     dc->vmsd = &vmstate_xive_tctx;
584 }
585 
586 static const TypeInfo xive_tctx_info = {
587     .name          = TYPE_XIVE_TCTX,
588     .parent        = TYPE_DEVICE,
589     .instance_size = sizeof(XiveTCTX),
590     .class_init    = xive_tctx_class_init,
591 };
592 
593 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
594 {
595     Error *local_err = NULL;
596     Object *obj;
597 
598     obj = object_new(TYPE_XIVE_TCTX);
599     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
600     object_unref(obj);
601     object_property_add_const_link(obj, "cpu", cpu, &error_abort);
602     object_property_set_bool(obj, true, "realized", &local_err);
603     if (local_err) {
604         goto error;
605     }
606 
607     return obj;
608 
609 error:
610     object_unparent(obj);
611     error_propagate(errp, local_err);
612     return NULL;
613 }
614 
615 /*
616  * XIVE ESB helpers
617  */
618 
619 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
620 {
621     uint8_t old_pq = *pq & 0x3;
622 
623     *pq &= ~0x3;
624     *pq |= value & 0x3;
625 
626     return old_pq;
627 }
628 
629 static bool xive_esb_trigger(uint8_t *pq)
630 {
631     uint8_t old_pq = *pq & 0x3;
632 
633     switch (old_pq) {
634     case XIVE_ESB_RESET:
635         xive_esb_set(pq, XIVE_ESB_PENDING);
636         return true;
637     case XIVE_ESB_PENDING:
638     case XIVE_ESB_QUEUED:
639         xive_esb_set(pq, XIVE_ESB_QUEUED);
640         return false;
641     case XIVE_ESB_OFF:
642         xive_esb_set(pq, XIVE_ESB_OFF);
643         return false;
644     default:
645          g_assert_not_reached();
646     }
647 }
648 
649 static bool xive_esb_eoi(uint8_t *pq)
650 {
651     uint8_t old_pq = *pq & 0x3;
652 
653     switch (old_pq) {
654     case XIVE_ESB_RESET:
655     case XIVE_ESB_PENDING:
656         xive_esb_set(pq, XIVE_ESB_RESET);
657         return false;
658     case XIVE_ESB_QUEUED:
659         xive_esb_set(pq, XIVE_ESB_PENDING);
660         return true;
661     case XIVE_ESB_OFF:
662         xive_esb_set(pq, XIVE_ESB_OFF);
663         return false;
664     default:
665          g_assert_not_reached();
666     }
667 }
668 
669 /*
670  * XIVE Interrupt Source (or IVSE)
671  */
672 
673 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
674 {
675     assert(srcno < xsrc->nr_irqs);
676 
677     return xsrc->status[srcno] & 0x3;
678 }
679 
680 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
681 {
682     assert(srcno < xsrc->nr_irqs);
683 
684     return xive_esb_set(&xsrc->status[srcno], pq);
685 }
686 
687 /*
688  * Returns whether the event notification should be forwarded.
689  */
690 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
691 {
692     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
693 
694     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
695 
696     switch (old_pq) {
697     case XIVE_ESB_RESET:
698         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
699         return true;
700     default:
701         return false;
702     }
703 }
704 
705 /*
706  * Returns whether the event notification should be forwarded.
707  */
708 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
709 {
710     bool ret;
711 
712     assert(srcno < xsrc->nr_irqs);
713 
714     ret = xive_esb_trigger(&xsrc->status[srcno]);
715 
716     if (xive_source_irq_is_lsi(xsrc, srcno) &&
717         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
718         qemu_log_mask(LOG_GUEST_ERROR,
719                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
720     }
721 
722     return ret;
723 }
724 
725 /*
726  * Returns whether the event notification should be forwarded.
727  */
728 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
729 {
730     bool ret;
731 
732     assert(srcno < xsrc->nr_irqs);
733 
734     ret = xive_esb_eoi(&xsrc->status[srcno]);
735 
736     /*
737      * LSI sources do not set the Q bit but they can still be
738      * asserted, in which case we should forward a new event
739      * notification
740      */
741     if (xive_source_irq_is_lsi(xsrc, srcno) &&
742         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
743         ret = xive_source_lsi_trigger(xsrc, srcno);
744     }
745 
746     return ret;
747 }
748 
749 /*
750  * Forward the source event notification to the Router
751  */
752 static void xive_source_notify(XiveSource *xsrc, int srcno)
753 {
754     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
755 
756     if (xnc->notify) {
757         xnc->notify(xsrc->xive, srcno);
758     }
759 }
760 
761 /*
762  * In a two pages ESB MMIO setting, even page is the trigger page, odd
763  * page is for management
764  */
765 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
766 {
767     return !((addr >> shift) & 1);
768 }
769 
770 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
771 {
772     return xive_source_esb_has_2page(xsrc) &&
773         addr_is_even(addr, xsrc->esb_shift - 1);
774 }
775 
776 /*
777  * ESB MMIO loads
778  *                      Trigger page    Management/EOI page
779  *
780  * ESB MMIO setting     2 pages         1 or 2 pages
781  *
782  * 0x000 .. 0x3FF       -1              EOI and return 0|1
783  * 0x400 .. 0x7FF       -1              EOI and return 0|1
784  * 0x800 .. 0xBFF       -1              return PQ
785  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
786  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
787  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
788  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
789  */
790 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
791 {
792     XiveSource *xsrc = XIVE_SOURCE(opaque);
793     uint32_t offset = addr & 0xFFF;
794     uint32_t srcno = addr >> xsrc->esb_shift;
795     uint64_t ret = -1;
796 
797     /* In a two pages ESB MMIO setting, trigger page should not be read */
798     if (xive_source_is_trigger_page(xsrc, addr)) {
799         qemu_log_mask(LOG_GUEST_ERROR,
800                       "XIVE: invalid load on IRQ %d trigger page at "
801                       "0x%"HWADDR_PRIx"\n", srcno, addr);
802         return -1;
803     }
804 
805     switch (offset) {
806     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
807         ret = xive_source_esb_eoi(xsrc, srcno);
808 
809         /* Forward the source event notification for routing */
810         if (ret) {
811             xive_source_notify(xsrc, srcno);
812         }
813         break;
814 
815     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
816         ret = xive_source_esb_get(xsrc, srcno);
817         break;
818 
819     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
820     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
821     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
822     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
823         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
824         break;
825     default:
826         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
827                       offset);
828     }
829 
830     return ret;
831 }
832 
833 /*
834  * ESB MMIO stores
835  *                      Trigger page    Management/EOI page
836  *
837  * ESB MMIO setting     2 pages         1 or 2 pages
838  *
839  * 0x000 .. 0x3FF       Trigger         Trigger
840  * 0x400 .. 0x7FF       Trigger         EOI
841  * 0x800 .. 0xBFF       Trigger         undefined
842  * 0xC00 .. 0xCFF       Trigger         PQ=00
843  * 0xD00 .. 0xDFF       Trigger         PQ=01
844  * 0xE00 .. 0xDFF       Trigger         PQ=10
845  * 0xF00 .. 0xDFF       Trigger         PQ=11
846  */
847 static void xive_source_esb_write(void *opaque, hwaddr addr,
848                                   uint64_t value, unsigned size)
849 {
850     XiveSource *xsrc = XIVE_SOURCE(opaque);
851     uint32_t offset = addr & 0xFFF;
852     uint32_t srcno = addr >> xsrc->esb_shift;
853     bool notify = false;
854 
855     /* In a two pages ESB MMIO setting, trigger page only triggers */
856     if (xive_source_is_trigger_page(xsrc, addr)) {
857         notify = xive_source_esb_trigger(xsrc, srcno);
858         goto out;
859     }
860 
861     switch (offset) {
862     case 0 ... 0x3FF:
863         notify = xive_source_esb_trigger(xsrc, srcno);
864         break;
865 
866     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
867         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
868             qemu_log_mask(LOG_GUEST_ERROR,
869                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
870             return;
871         }
872 
873         notify = xive_source_esb_eoi(xsrc, srcno);
874         break;
875 
876     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
877     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
878     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
879     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
880         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
881         break;
882 
883     default:
884         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
885                       offset);
886         return;
887     }
888 
889 out:
890     /* Forward the source event notification for routing */
891     if (notify) {
892         xive_source_notify(xsrc, srcno);
893     }
894 }
895 
896 static const MemoryRegionOps xive_source_esb_ops = {
897     .read = xive_source_esb_read,
898     .write = xive_source_esb_write,
899     .endianness = DEVICE_BIG_ENDIAN,
900     .valid = {
901         .min_access_size = 8,
902         .max_access_size = 8,
903     },
904     .impl = {
905         .min_access_size = 8,
906         .max_access_size = 8,
907     },
908 };
909 
910 void xive_source_set_irq(void *opaque, int srcno, int val)
911 {
912     XiveSource *xsrc = XIVE_SOURCE(opaque);
913     bool notify = false;
914 
915     if (xive_source_irq_is_lsi(xsrc, srcno)) {
916         if (val) {
917             notify = xive_source_lsi_trigger(xsrc, srcno);
918         } else {
919             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
920         }
921     } else {
922         if (val) {
923             notify = xive_source_esb_trigger(xsrc, srcno);
924         }
925     }
926 
927     /* Forward the source event notification for routing */
928     if (notify) {
929         xive_source_notify(xsrc, srcno);
930     }
931 }
932 
933 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
934 {
935     int i;
936 
937     for (i = 0; i < xsrc->nr_irqs; i++) {
938         uint8_t pq = xive_source_esb_get(xsrc, i);
939 
940         if (pq == XIVE_ESB_OFF) {
941             continue;
942         }
943 
944         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
945                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
946                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
947                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
948                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
949     }
950 }
951 
952 static void xive_source_reset(void *dev)
953 {
954     XiveSource *xsrc = XIVE_SOURCE(dev);
955 
956     /* Do not clear the LSI bitmap */
957 
958     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
959     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
960 }
961 
962 static void xive_source_realize(DeviceState *dev, Error **errp)
963 {
964     XiveSource *xsrc = XIVE_SOURCE(dev);
965     Object *obj;
966     Error *local_err = NULL;
967 
968     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
969     if (!obj) {
970         error_propagate(errp, local_err);
971         error_prepend(errp, "required link 'xive' not found: ");
972         return;
973     }
974 
975     xsrc->xive = XIVE_NOTIFIER(obj);
976 
977     if (!xsrc->nr_irqs) {
978         error_setg(errp, "Number of interrupt needs to be greater than 0");
979         return;
980     }
981 
982     if (xsrc->esb_shift != XIVE_ESB_4K &&
983         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
984         xsrc->esb_shift != XIVE_ESB_64K &&
985         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
986         error_setg(errp, "Invalid ESB shift setting");
987         return;
988     }
989 
990     xsrc->status = g_malloc0(xsrc->nr_irqs);
991     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
992 
993     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
994                           &xive_source_esb_ops, xsrc, "xive.esb",
995                           (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
996 
997     qemu_register_reset(xive_source_reset, dev);
998 }
999 
1000 static const VMStateDescription vmstate_xive_source = {
1001     .name = TYPE_XIVE_SOURCE,
1002     .version_id = 1,
1003     .minimum_version_id = 1,
1004     .fields = (VMStateField[]) {
1005         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1006         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1007         VMSTATE_END_OF_LIST()
1008     },
1009 };
1010 
1011 /*
1012  * The default XIVE interrupt source setting for the ESB MMIOs is two
1013  * 64k pages without Store EOI, to be in sync with KVM.
1014  */
1015 static Property xive_source_properties[] = {
1016     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1017     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1018     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1019     DEFINE_PROP_END_OF_LIST(),
1020 };
1021 
1022 static void xive_source_class_init(ObjectClass *klass, void *data)
1023 {
1024     DeviceClass *dc = DEVICE_CLASS(klass);
1025 
1026     dc->desc    = "XIVE Interrupt Source";
1027     dc->props   = xive_source_properties;
1028     dc->realize = xive_source_realize;
1029     dc->vmsd    = &vmstate_xive_source;
1030 }
1031 
1032 static const TypeInfo xive_source_info = {
1033     .name          = TYPE_XIVE_SOURCE,
1034     .parent        = TYPE_DEVICE,
1035     .instance_size = sizeof(XiveSource),
1036     .class_init    = xive_source_class_init,
1037 };
1038 
1039 /*
1040  * XiveEND helpers
1041  */
1042 
1043 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1044 {
1045     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1046         | be32_to_cpu(end->w3);
1047     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1048     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1049     uint32_t qentries = 1 << (qsize + 10);
1050     int i;
1051 
1052     /*
1053      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1054      */
1055     monitor_printf(mon, " [ ");
1056     qindex = (qindex - (width - 1)) & (qentries - 1);
1057     for (i = 0; i < width; i++) {
1058         uint64_t qaddr = qaddr_base + (qindex << 2);
1059         uint32_t qdata = -1;
1060 
1061         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1062                             sizeof(qdata))) {
1063             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1064                           HWADDR_PRIx "\n", qaddr);
1065             return;
1066         }
1067         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1068                        be32_to_cpu(qdata));
1069         qindex = (qindex + 1) & (qentries - 1);
1070     }
1071 }
1072 
1073 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1074 {
1075     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1076         | be32_to_cpu(end->w3);
1077     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1078     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1079     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1080     uint32_t qentries = 1 << (qsize + 10);
1081 
1082     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1083     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1084 
1085     if (!xive_end_is_valid(end)) {
1086         return;
1087     }
1088 
1089     monitor_printf(mon, "  %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1090                    "% 6d/%5d ^%d", end_idx,
1091                    xive_end_is_valid(end)    ? 'v' : '-',
1092                    xive_end_is_enqueue(end)  ? 'q' : '-',
1093                    xive_end_is_notify(end)   ? 'n' : '-',
1094                    xive_end_is_backlog(end)  ? 'b' : '-',
1095                    xive_end_is_escalate(end) ? 'e' : '-',
1096                    priority, nvt, qaddr_base, qindex, qentries, qgen);
1097 
1098     xive_end_queue_pic_print_info(end, 6, mon);
1099     monitor_printf(mon, "]\n");
1100 }
1101 
1102 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1103 {
1104     uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1105         | be32_to_cpu(end->w3);
1106     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1107     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1108     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1109 
1110     uint64_t qaddr = qaddr_base + (qindex << 2);
1111     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1112     uint32_t qentries = 1 << (qsize + 10);
1113 
1114     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1115         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1116                       HWADDR_PRIx "\n", qaddr);
1117         return;
1118     }
1119 
1120     qindex = (qindex + 1) & (qentries - 1);
1121     if (qindex == 0) {
1122         qgen ^= 1;
1123         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1124     }
1125     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1126 }
1127 
1128 /*
1129  * XIVE Router (aka. Virtualization Controller or IVRE)
1130  */
1131 
1132 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1133                         XiveEAS *eas)
1134 {
1135     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1136 
1137     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1138 }
1139 
1140 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1141                         XiveEND *end)
1142 {
1143    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1144 
1145    return xrc->get_end(xrtr, end_blk, end_idx, end);
1146 }
1147 
1148 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1149                           XiveEND *end, uint8_t word_number)
1150 {
1151    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1152 
1153    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1154 }
1155 
1156 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1157                         XiveNVT *nvt)
1158 {
1159    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1160 
1161    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1162 }
1163 
1164 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1165                         XiveNVT *nvt, uint8_t word_number)
1166 {
1167    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1168 
1169    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1170 }
1171 
1172 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1173 {
1174     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1175 
1176     return xrc->get_tctx(xrtr, cs);
1177 }
1178 
1179 /*
1180  * By default on P9, the HW CAM line (23bits) is hardwired to :
1181  *
1182  *   0x000||0b1||4Bit chip number||7Bit Thread number.
1183  *
1184  * When the block grouping is enabled, the CAM line is changed to :
1185  *
1186  *   4Bit chip number||0x001||7Bit Thread number.
1187  */
1188 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1189 {
1190     return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1191 }
1192 
1193 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1194                                          uint8_t nvt_blk, uint32_t nvt_idx)
1195 {
1196     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1197     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1198 
1199     return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1200         hw_cam_line(nvt_blk, nvt_idx);
1201 }
1202 
1203 /*
1204  * The thread context register words are in big-endian format.
1205  */
1206 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1207                                      uint8_t nvt_blk, uint32_t nvt_idx,
1208                                      bool cam_ignore, uint32_t logic_serv)
1209 {
1210     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1211     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1212     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1213     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1214     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1215 
1216     /*
1217      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1218      * identifier are ignored in the "CAM" match.
1219      */
1220 
1221     if (format == 0) {
1222         if (cam_ignore == true) {
1223             /*
1224              * F=0 & i=1: Logical server notification (bits ignored at
1225              * the end of the NVT identifier)
1226              */
1227             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1228                           nvt_blk, nvt_idx);
1229              return -1;
1230         }
1231 
1232         /* F=0 & i=0: Specific NVT notification */
1233 
1234         /* PHYS ring */
1235         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1236             xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1237             return TM_QW3_HV_PHYS;
1238         }
1239 
1240         /* HV POOL ring */
1241         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1242             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1243             return TM_QW2_HV_POOL;
1244         }
1245 
1246         /* OS ring */
1247         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1248             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1249             return TM_QW1_OS;
1250         }
1251     } else {
1252         /* F=1 : User level Event-Based Branch (EBB) notification */
1253 
1254         /* USER ring */
1255         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1256              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1257              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1258              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1259             return TM_QW0_USER;
1260         }
1261     }
1262     return -1;
1263 }
1264 
1265 typedef struct XiveTCTXMatch {
1266     XiveTCTX *tctx;
1267     uint8_t ring;
1268 } XiveTCTXMatch;
1269 
1270 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1271                                  uint8_t nvt_blk, uint32_t nvt_idx,
1272                                  bool cam_ignore, uint8_t priority,
1273                                  uint32_t logic_serv, XiveTCTXMatch *match)
1274 {
1275     CPUState *cs;
1276 
1277     /*
1278      * TODO (PowerNV): handle chip_id overwrite of block field for
1279      * hardwired CAM compares
1280      */
1281 
1282     CPU_FOREACH(cs) {
1283         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1284         int ring;
1285 
1286         /*
1287          * HW checks that the CPU is enabled in the Physical Thread
1288          * Enable Register (PTER).
1289          */
1290 
1291         /*
1292          * Check the thread context CAM lines and record matches. We
1293          * will handle CPU exception delivery later
1294          */
1295         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1296                                          cam_ignore, logic_serv);
1297         /*
1298          * Save the context and follow on to catch duplicates, that we
1299          * don't support yet.
1300          */
1301         if (ring != -1) {
1302             if (match->tctx) {
1303                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1304                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1305                 return false;
1306             }
1307 
1308             match->ring = ring;
1309             match->tctx = tctx;
1310         }
1311     }
1312 
1313     if (!match->tctx) {
1314         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1315                       nvt_blk, nvt_idx);
1316         return false;
1317     }
1318 
1319     return true;
1320 }
1321 
1322 /*
1323  * This is our simple Xive Presenter Engine model. It is merged in the
1324  * Router as it does not require an extra object.
1325  *
1326  * It receives notification requests sent by the IVRE to find one
1327  * matching NVT (or more) dispatched on the processor threads. In case
1328  * of a single NVT notification, the process is abreviated and the
1329  * thread is signaled if a match is found. In case of a logical server
1330  * notification (bits ignored at the end of the NVT identifier), the
1331  * IVPE and IVRE select a winning thread using different filters. This
1332  * involves 2 or 3 exchanges on the PowerBus that the model does not
1333  * support.
1334  *
1335  * The parameters represent what is sent on the PowerBus
1336  */
1337 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1338                                   uint8_t nvt_blk, uint32_t nvt_idx,
1339                                   bool cam_ignore, uint8_t priority,
1340                                   uint32_t logic_serv)
1341 {
1342     XiveNVT nvt;
1343     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1344     bool found;
1345 
1346     /* NVT cache lookup */
1347     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1348         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1349                       nvt_blk, nvt_idx);
1350         return;
1351     }
1352 
1353     if (!xive_nvt_is_valid(&nvt)) {
1354         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1355                       nvt_blk, nvt_idx);
1356         return;
1357     }
1358 
1359     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1360                                  priority, logic_serv, &match);
1361     if (found) {
1362         ipb_update(&match.tctx->regs[match.ring], priority);
1363         xive_tctx_notify(match.tctx, match.ring);
1364         return;
1365     }
1366 
1367     /* Record the IPB in the associated NVT structure */
1368     ipb_update((uint8_t *) &nvt.w4, priority);
1369     xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1370 
1371     /*
1372      * If no matching NVT is dispatched on a HW thread :
1373      * - update the NVT structure if backlog is activated
1374      * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1375      *   activated
1376      */
1377 }
1378 
1379 /*
1380  * An END trigger can come from an event trigger (IPI or HW) or from
1381  * another chip. We don't model the PowerBus but the END trigger
1382  * message has the same parameters than in the function below.
1383  */
1384 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1385                                    uint32_t end_idx, uint32_t end_data)
1386 {
1387     XiveEND end;
1388     uint8_t priority;
1389     uint8_t format;
1390 
1391     /* END cache lookup */
1392     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1393         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1394                       end_idx);
1395         return;
1396     }
1397 
1398     if (!xive_end_is_valid(&end)) {
1399         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1400                       end_blk, end_idx);
1401         return;
1402     }
1403 
1404     if (xive_end_is_enqueue(&end)) {
1405         xive_end_enqueue(&end, end_data);
1406         /* Enqueuing event data modifies the EQ toggle and index */
1407         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1408     }
1409 
1410     /*
1411      * The W7 format depends on the F bit in W6. It defines the type
1412      * of the notification :
1413      *
1414      *   F=0 : single or multiple NVT notification
1415      *   F=1 : User level Event-Based Branch (EBB) notification, no
1416      *         priority
1417      */
1418     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1419     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1420 
1421     /* The END is masked */
1422     if (format == 0 && priority == 0xff) {
1423         return;
1424     }
1425 
1426     /*
1427      * Check the END ESn (Event State Buffer for notification) for
1428      * even futher coalescing in the Router
1429      */
1430     if (!xive_end_is_notify(&end)) {
1431         uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1432         bool notify = xive_esb_trigger(&pq);
1433 
1434         if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1435             end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1436             xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1437         }
1438 
1439         /* ESn[Q]=1 : end of notification */
1440         if (!notify) {
1441             return;
1442         }
1443     }
1444 
1445     /*
1446      * Follows IVPE notification
1447      */
1448     xive_presenter_notify(xrtr, format,
1449                           xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1450                           xive_get_field32(END_W6_NVT_INDEX, end.w6),
1451                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1452                           priority,
1453                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1454 
1455     /* TODO: Auto EOI. */
1456 }
1457 
1458 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1459 {
1460     XiveRouter *xrtr = XIVE_ROUTER(xn);
1461     uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1462     uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1463     XiveEAS eas;
1464 
1465     /* EAS cache lookup */
1466     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1467         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1468         return;
1469     }
1470 
1471     /*
1472      * The IVRE checks the State Bit Cache at this point. We skip the
1473      * SBC lookup because the state bits of the sources are modeled
1474      * internally in QEMU.
1475      */
1476 
1477     if (!xive_eas_is_valid(&eas)) {
1478         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1479         return;
1480     }
1481 
1482     if (xive_eas_is_masked(&eas)) {
1483         /* Notification completed */
1484         return;
1485     }
1486 
1487     /*
1488      * The event trigger becomes an END trigger
1489      */
1490     xive_router_end_notify(xrtr,
1491                            xive_get_field64(EAS_END_BLOCK, eas.w),
1492                            xive_get_field64(EAS_END_INDEX, eas.w),
1493                            xive_get_field64(EAS_END_DATA,  eas.w));
1494 }
1495 
1496 static void xive_router_class_init(ObjectClass *klass, void *data)
1497 {
1498     DeviceClass *dc = DEVICE_CLASS(klass);
1499     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1500 
1501     dc->desc    = "XIVE Router Engine";
1502     xnc->notify = xive_router_notify;
1503 }
1504 
1505 static const TypeInfo xive_router_info = {
1506     .name          = TYPE_XIVE_ROUTER,
1507     .parent        = TYPE_SYS_BUS_DEVICE,
1508     .abstract      = true,
1509     .class_size    = sizeof(XiveRouterClass),
1510     .class_init    = xive_router_class_init,
1511     .interfaces    = (InterfaceInfo[]) {
1512         { TYPE_XIVE_NOTIFIER },
1513         { }
1514     }
1515 };
1516 
1517 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1518 {
1519     if (!xive_eas_is_valid(eas)) {
1520         return;
1521     }
1522 
1523     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1524                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1525                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1526                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1527                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1528 }
1529 
1530 /*
1531  * END ESB MMIO loads
1532  */
1533 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1534 {
1535     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1536     uint32_t offset = addr & 0xFFF;
1537     uint8_t end_blk;
1538     uint32_t end_idx;
1539     XiveEND end;
1540     uint32_t end_esmask;
1541     uint8_t pq;
1542     uint64_t ret = -1;
1543 
1544     end_blk = xsrc->block_id;
1545     end_idx = addr >> (xsrc->esb_shift + 1);
1546 
1547     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1548         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1549                       end_idx);
1550         return -1;
1551     }
1552 
1553     if (!xive_end_is_valid(&end)) {
1554         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1555                       end_blk, end_idx);
1556         return -1;
1557     }
1558 
1559     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1560     pq = xive_get_field32(end_esmask, end.w1);
1561 
1562     switch (offset) {
1563     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1564         ret = xive_esb_eoi(&pq);
1565 
1566         /* Forward the source event notification for routing ?? */
1567         break;
1568 
1569     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1570         ret = pq;
1571         break;
1572 
1573     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1574     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1575     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1576     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1577         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1578         break;
1579     default:
1580         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1581                       offset);
1582         return -1;
1583     }
1584 
1585     if (pq != xive_get_field32(end_esmask, end.w1)) {
1586         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1587         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1588     }
1589 
1590     return ret;
1591 }
1592 
1593 /*
1594  * END ESB MMIO stores are invalid
1595  */
1596 static void xive_end_source_write(void *opaque, hwaddr addr,
1597                                   uint64_t value, unsigned size)
1598 {
1599     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1600                   HWADDR_PRIx"\n", addr);
1601 }
1602 
1603 static const MemoryRegionOps xive_end_source_ops = {
1604     .read = xive_end_source_read,
1605     .write = xive_end_source_write,
1606     .endianness = DEVICE_BIG_ENDIAN,
1607     .valid = {
1608         .min_access_size = 8,
1609         .max_access_size = 8,
1610     },
1611     .impl = {
1612         .min_access_size = 8,
1613         .max_access_size = 8,
1614     },
1615 };
1616 
1617 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1618 {
1619     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1620     Object *obj;
1621     Error *local_err = NULL;
1622 
1623     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1624     if (!obj) {
1625         error_propagate(errp, local_err);
1626         error_prepend(errp, "required link 'xive' not found: ");
1627         return;
1628     }
1629 
1630     xsrc->xrtr = XIVE_ROUTER(obj);
1631 
1632     if (!xsrc->nr_ends) {
1633         error_setg(errp, "Number of interrupt needs to be greater than 0");
1634         return;
1635     }
1636 
1637     if (xsrc->esb_shift != XIVE_ESB_4K &&
1638         xsrc->esb_shift != XIVE_ESB_64K) {
1639         error_setg(errp, "Invalid ESB shift setting");
1640         return;
1641     }
1642 
1643     /*
1644      * Each END is assigned an even/odd pair of MMIO pages, the even page
1645      * manages the ESn field while the odd page manages the ESe field.
1646      */
1647     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1648                           &xive_end_source_ops, xsrc, "xive.end",
1649                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1650 }
1651 
1652 static Property xive_end_source_properties[] = {
1653     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1654     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1655     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1656     DEFINE_PROP_END_OF_LIST(),
1657 };
1658 
1659 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1660 {
1661     DeviceClass *dc = DEVICE_CLASS(klass);
1662 
1663     dc->desc    = "XIVE END Source";
1664     dc->props   = xive_end_source_properties;
1665     dc->realize = xive_end_source_realize;
1666 }
1667 
1668 static const TypeInfo xive_end_source_info = {
1669     .name          = TYPE_XIVE_END_SOURCE,
1670     .parent        = TYPE_DEVICE,
1671     .instance_size = sizeof(XiveENDSource),
1672     .class_init    = xive_end_source_class_init,
1673 };
1674 
1675 /*
1676  * XIVE Notifier
1677  */
1678 static const TypeInfo xive_notifier_info = {
1679     .name = TYPE_XIVE_NOTIFIER,
1680     .parent = TYPE_INTERFACE,
1681     .class_size = sizeof(XiveNotifierClass),
1682 };
1683 
1684 static void xive_register_types(void)
1685 {
1686     type_register_static(&xive_source_info);
1687     type_register_static(&xive_notifier_info);
1688     type_register_static(&xive_router_info);
1689     type_register_static(&xive_end_source_info);
1690     type_register_static(&xive_tctx_info);
1691 }
1692 
1693 type_init(xive_register_types)
1694