xref: /openbmc/qemu/hw/intc/xive.c (revision 411c2a619e713bbfa175e72ed6d754a673e299fc)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 
29 /*
30  * Convert a priority number to an Interrupt Pending Buffer (IPB)
31  * register, which indicates a pending interrupt at the priority
32  * corresponding to the bit number
33  */
34 static uint8_t priority_to_ipb(uint8_t priority)
35 {
36     return priority > XIVE_PRIORITY_MAX ?
37         0 : 1 << (XIVE_PRIORITY_MAX - priority);
38 }
39 
40 /*
41  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
42  * Interrupt Priority Register (PIPR), which contains the priority of
43  * the most favored pending notification.
44  */
45 static uint8_t ipb_to_pipr(uint8_t ibp)
46 {
47     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
48 }
49 
50 static void ipb_update(uint8_t *regs, uint8_t priority)
51 {
52     regs[TM_IPB] |= priority_to_ipb(priority);
53     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
54 }
55 
56 static uint8_t exception_mask(uint8_t ring)
57 {
58     switch (ring) {
59     case TM_QW1_OS:
60         return TM_QW1_NSR_EO;
61     case TM_QW3_HV_PHYS:
62         return TM_QW3_NSR_HE;
63     default:
64         g_assert_not_reached();
65     }
66 }
67 
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
69 {
70         switch (ring) {
71         case TM_QW0_USER:
72                 return 0; /* Not supported */
73         case TM_QW1_OS:
74                 return tctx->os_output;
75         case TM_QW2_HV_POOL:
76         case TM_QW3_HV_PHYS:
77                 return tctx->hv_output;
78         default:
79                 return 0;
80         }
81 }
82 
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
84 {
85     uint8_t *regs = &tctx->regs[ring];
86     uint8_t nsr = regs[TM_NSR];
87     uint8_t mask = exception_mask(ring);
88 
89     qemu_irq_lower(xive_tctx_output(tctx, ring));
90 
91     if (regs[TM_NSR] & mask) {
92         uint8_t cppr = regs[TM_PIPR];
93 
94         regs[TM_CPPR] = cppr;
95 
96         /* Reset the pending buffer bit */
97         regs[TM_IPB] &= ~priority_to_ipb(cppr);
98         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
99 
100         /* Drop Exception bit */
101         regs[TM_NSR] &= ~mask;
102     }
103 
104     return (nsr << 8) | regs[TM_CPPR];
105 }
106 
107 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
108 {
109     uint8_t *regs = &tctx->regs[ring];
110 
111     if (regs[TM_PIPR] < regs[TM_CPPR]) {
112         switch (ring) {
113         case TM_QW1_OS:
114             regs[TM_NSR] |= TM_QW1_NSR_EO;
115             break;
116         case TM_QW3_HV_PHYS:
117             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
118             break;
119         default:
120             g_assert_not_reached();
121         }
122         qemu_irq_raise(xive_tctx_output(tctx, ring));
123     }
124 }
125 
126 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
127 {
128     if (cppr > XIVE_PRIORITY_MAX) {
129         cppr = 0xff;
130     }
131 
132     tctx->regs[ring + TM_CPPR] = cppr;
133 
134     /* CPPR has changed, check if we need to raise a pending exception */
135     xive_tctx_notify(tctx, ring);
136 }
137 
138 static inline uint32_t xive_tctx_word2(uint8_t *ring)
139 {
140     return *((uint32_t *) &ring[TM_WORD2]);
141 }
142 
143 /*
144  * XIVE Thread Interrupt Management Area (TIMA)
145  */
146 
147 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
148                                 uint64_t value, unsigned size)
149 {
150     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
151 }
152 
153 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
154 {
155     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
156 }
157 
158 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
159                                       unsigned size)
160 {
161     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
162     uint32_t qw2w2;
163 
164     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
165     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
166     return qw2w2;
167 }
168 
169 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
170                             uint64_t value, unsigned size)
171 {
172     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
173 }
174 
175 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
176 {
177     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
178 }
179 
180 /*
181  * Define an access map for each page of the TIMA that we will use in
182  * the memory region ops to filter values when doing loads and stores
183  * of raw registers values
184  *
185  * Registers accessibility bits :
186  *
187  *    0x0 - no access
188  *    0x1 - write only
189  *    0x2 - read only
190  *    0x3 - read/write
191  */
192 
193 static const uint8_t xive_tm_hw_view[] = {
194     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
195     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
196     0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
197     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
198 };
199 
200 static const uint8_t xive_tm_hv_view[] = {
201     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
202     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
203     0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
204     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
205 };
206 
207 static const uint8_t xive_tm_os_view[] = {
208     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
209     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
210     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
211     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
212 };
213 
214 static const uint8_t xive_tm_user_view[] = {
215     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
216     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
217     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
218     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
219 };
220 
221 /*
222  * Overall TIMA access map for the thread interrupt management context
223  * registers
224  */
225 static const uint8_t *xive_tm_views[] = {
226     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
227     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
228     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
229     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
230 };
231 
232 /*
233  * Computes a register access mask for a given offset in the TIMA
234  */
235 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
236 {
237     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
238     uint8_t reg_offset = offset & 0x3F;
239     uint8_t reg_mask = write ? 0x1 : 0x2;
240     uint64_t mask = 0x0;
241     int i;
242 
243     for (i = 0; i < size; i++) {
244         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
245             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
246         }
247     }
248 
249     return mask;
250 }
251 
252 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
253                               unsigned size)
254 {
255     uint8_t ring_offset = offset & 0x30;
256     uint8_t reg_offset = offset & 0x3F;
257     uint64_t mask = xive_tm_mask(offset, size, true);
258     int i;
259 
260     /*
261      * Only 4 or 8 bytes stores are allowed and the User ring is
262      * excluded
263      */
264     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
265         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
266                       HWADDR_PRIx"\n", offset);
267         return;
268     }
269 
270     /*
271      * Use the register offset for the raw values and filter out
272      * reserved values
273      */
274     for (i = 0; i < size; i++) {
275         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
276         if (byte_mask) {
277             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
278                 byte_mask;
279         }
280     }
281 }
282 
283 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
284 {
285     uint8_t ring_offset = offset & 0x30;
286     uint8_t reg_offset = offset & 0x3F;
287     uint64_t mask = xive_tm_mask(offset, size, false);
288     uint64_t ret;
289     int i;
290 
291     /*
292      * Only 4 or 8 bytes loads are allowed and the User ring is
293      * excluded
294      */
295     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
296         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
297                       HWADDR_PRIx"\n", offset);
298         return -1;
299     }
300 
301     /* Use the register offset for the raw values */
302     ret = 0;
303     for (i = 0; i < size; i++) {
304         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
305     }
306 
307     /* filter out reserved values */
308     return ret & mask;
309 }
310 
311 /*
312  * The TM context is mapped twice within each page. Stores and loads
313  * to the first mapping below 2K write and read the specified values
314  * without modification. The second mapping above 2K performs specific
315  * state changes (side effects) in addition to setting/returning the
316  * interrupt management area context of the processor thread.
317  */
318 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
319 {
320     return xive_tctx_accept(tctx, TM_QW1_OS);
321 }
322 
323 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
324                                 uint64_t value, unsigned size)
325 {
326     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
327 }
328 
329 /*
330  * Adjust the IPB to allow a CPU to process event queues of other
331  * priorities during one physical interrupt cycle.
332  */
333 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
334                                    uint64_t value, unsigned size)
335 {
336     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
337     xive_tctx_notify(tctx, TM_QW1_OS);
338 }
339 
340 static uint64_t xive_tm_pull_os_ctx(XiveTCTX *tctx, hwaddr offset,
341                                     unsigned size)
342 {
343     uint32_t qw1w2_prev = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
344     uint32_t qw1w2;
345 
346     qw1w2 = xive_set_field32(TM_QW1W2_VO, qw1w2_prev, 0);
347     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
348     return qw1w2;
349 }
350 
351 /*
352  * Define a mapping of "special" operations depending on the TIMA page
353  * offset and the size of the operation.
354  */
355 typedef struct XiveTmOp {
356     uint8_t  page_offset;
357     uint32_t op_offset;
358     unsigned size;
359     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
360                               unsigned size);
361     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
362 } XiveTmOp;
363 
364 static const XiveTmOp xive_tm_operations[] = {
365     /*
366      * MMIOs below 2K : raw values and special operations without side
367      * effects
368      */
369     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
370     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
371     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
372     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
373 
374     /* MMIOs above 2K : special operations with side effects */
375     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
376     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
377     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    4, NULL, xive_tm_pull_os_ctx },
378     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,    8, NULL, xive_tm_pull_os_ctx },
379     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
380     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
381     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
382 };
383 
384 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
385 {
386     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
387     uint32_t op_offset = offset & 0xFFF;
388     int i;
389 
390     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
391         const XiveTmOp *xto = &xive_tm_operations[i];
392 
393         /* Accesses done from a more privileged TIMA page is allowed */
394         if (xto->page_offset >= page_offset &&
395             xto->op_offset == op_offset &&
396             xto->size == size &&
397             ((write && xto->write_handler) || (!write && xto->read_handler))) {
398             return xto;
399         }
400     }
401     return NULL;
402 }
403 
404 /*
405  * TIMA MMIO handlers
406  */
407 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
408                         unsigned size)
409 {
410     const XiveTmOp *xto;
411 
412     /*
413      * TODO: check V bit in Q[0-3]W2
414      */
415 
416     /*
417      * First, check for special operations in the 2K region
418      */
419     if (offset & 0x800) {
420         xto = xive_tm_find_op(offset, size, true);
421         if (!xto) {
422             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
423                           "@%"HWADDR_PRIx"\n", offset);
424         } else {
425             xto->write_handler(tctx, offset, value, size);
426         }
427         return;
428     }
429 
430     /*
431      * Then, for special operations in the region below 2K.
432      */
433     xto = xive_tm_find_op(offset, size, true);
434     if (xto) {
435         xto->write_handler(tctx, offset, value, size);
436         return;
437     }
438 
439     /*
440      * Finish with raw access to the register values
441      */
442     xive_tm_raw_write(tctx, offset, value, size);
443 }
444 
445 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
446 {
447     const XiveTmOp *xto;
448 
449     /*
450      * TODO: check V bit in Q[0-3]W2
451      */
452 
453     /*
454      * First, check for special operations in the 2K region
455      */
456     if (offset & 0x800) {
457         xto = xive_tm_find_op(offset, size, false);
458         if (!xto) {
459             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
460                           "@%"HWADDR_PRIx"\n", offset);
461             return -1;
462         }
463         return xto->read_handler(tctx, offset, size);
464     }
465 
466     /*
467      * Then, for special operations in the region below 2K.
468      */
469     xto = xive_tm_find_op(offset, size, false);
470     if (xto) {
471         return xto->read_handler(tctx, offset, size);
472     }
473 
474     /*
475      * Finish with raw access to the register values
476      */
477     return xive_tm_raw_read(tctx, offset, size);
478 }
479 
480 static void xive_tm_write(void *opaque, hwaddr offset,
481                           uint64_t value, unsigned size)
482 {
483     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
484 
485     xive_tctx_tm_write(tctx, offset, value, size);
486 }
487 
488 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
489 {
490     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
491 
492     return xive_tctx_tm_read(tctx, offset, size);
493 }
494 
495 const MemoryRegionOps xive_tm_ops = {
496     .read = xive_tm_read,
497     .write = xive_tm_write,
498     .endianness = DEVICE_BIG_ENDIAN,
499     .valid = {
500         .min_access_size = 1,
501         .max_access_size = 8,
502     },
503     .impl = {
504         .min_access_size = 1,
505         .max_access_size = 8,
506     },
507 };
508 
509 static char *xive_tctx_ring_print(uint8_t *ring)
510 {
511     uint32_t w2 = xive_tctx_word2(ring);
512 
513     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
514                    "%02x  %02x   %02x  %08x",
515                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
516                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
517                    be32_to_cpu(w2));
518 }
519 
520 static const char * const xive_tctx_ring_names[] = {
521     "USER", "OS", "POOL", "PHYS",
522 };
523 
524 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
525 {
526     int cpu_index;
527     int i;
528 
529     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
530      * are hot plugged or unplugged.
531      */
532     if (!tctx) {
533         return;
534     }
535 
536     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
537 
538     if (kvm_irqchip_in_kernel()) {
539         Error *local_err = NULL;
540 
541         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
542         if (local_err) {
543             error_report_err(local_err);
544             return;
545         }
546     }
547 
548     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
549                    "  W2\n", cpu_index);
550 
551     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
552         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
553         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
554                        xive_tctx_ring_names[i], s);
555         g_free(s);
556     }
557 }
558 
559 void xive_tctx_reset(XiveTCTX *tctx)
560 {
561     memset(tctx->regs, 0, sizeof(tctx->regs));
562 
563     /* Set some defaults */
564     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
565     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
566     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
567 
568     /*
569      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
570      * CPPR is first set.
571      */
572     tctx->regs[TM_QW1_OS + TM_PIPR] =
573         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
574     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
575         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
576 }
577 
578 static void xive_tctx_realize(DeviceState *dev, Error **errp)
579 {
580     XiveTCTX *tctx = XIVE_TCTX(dev);
581     PowerPCCPU *cpu;
582     CPUPPCState *env;
583     Error *local_err = NULL;
584 
585     assert(tctx->cs);
586 
587     cpu = POWERPC_CPU(tctx->cs);
588     env = &cpu->env;
589     switch (PPC_INPUT(env)) {
590     case PPC_FLAGS_INPUT_POWER9:
591         tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
592         tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
593         break;
594 
595     default:
596         error_setg(errp, "XIVE interrupt controller does not support "
597                    "this CPU bus model");
598         return;
599     }
600 
601     /* Connect the presenter to the VCPU (required for CPU hotplug) */
602     if (kvm_irqchip_in_kernel()) {
603         kvmppc_xive_cpu_connect(tctx, &local_err);
604         if (local_err) {
605             error_propagate(errp, local_err);
606             return;
607         }
608     }
609 }
610 
611 static int vmstate_xive_tctx_pre_save(void *opaque)
612 {
613     Error *local_err = NULL;
614 
615     if (kvm_irqchip_in_kernel()) {
616         kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
617         if (local_err) {
618             error_report_err(local_err);
619             return -1;
620         }
621     }
622 
623     return 0;
624 }
625 
626 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
627 {
628     Error *local_err = NULL;
629 
630     if (kvm_irqchip_in_kernel()) {
631         /*
632          * Required for hotplugged CPU, for which the state comes
633          * after all states of the machine.
634          */
635         kvmppc_xive_cpu_set_state(XIVE_TCTX(opaque), &local_err);
636         if (local_err) {
637             error_report_err(local_err);
638             return -1;
639         }
640     }
641 
642     return 0;
643 }
644 
645 static const VMStateDescription vmstate_xive_tctx = {
646     .name = TYPE_XIVE_TCTX,
647     .version_id = 1,
648     .minimum_version_id = 1,
649     .pre_save = vmstate_xive_tctx_pre_save,
650     .post_load = vmstate_xive_tctx_post_load,
651     .fields = (VMStateField[]) {
652         VMSTATE_BUFFER(regs, XiveTCTX),
653         VMSTATE_END_OF_LIST()
654     },
655 };
656 
657 static Property xive_tctx_properties[] = {
658     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
659     DEFINE_PROP_END_OF_LIST(),
660 };
661 
662 static void xive_tctx_class_init(ObjectClass *klass, void *data)
663 {
664     DeviceClass *dc = DEVICE_CLASS(klass);
665 
666     dc->desc = "XIVE Interrupt Thread Context";
667     dc->realize = xive_tctx_realize;
668     dc->vmsd = &vmstate_xive_tctx;
669     dc->props = xive_tctx_properties;
670     /*
671      * Reason: part of XIVE interrupt controller, needs to be wired up
672      * by xive_tctx_create().
673      */
674     dc->user_creatable = false;
675 }
676 
677 static const TypeInfo xive_tctx_info = {
678     .name          = TYPE_XIVE_TCTX,
679     .parent        = TYPE_DEVICE,
680     .instance_size = sizeof(XiveTCTX),
681     .class_init    = xive_tctx_class_init,
682 };
683 
684 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
685 {
686     Error *local_err = NULL;
687     Object *obj;
688 
689     obj = object_new(TYPE_XIVE_TCTX);
690     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
691     object_unref(obj);
692     object_property_set_link(obj, cpu, "cpu", &error_abort);
693     object_property_set_bool(obj, true, "realized", &local_err);
694     if (local_err) {
695         goto error;
696     }
697 
698     return obj;
699 
700 error:
701     object_unparent(obj);
702     error_propagate(errp, local_err);
703     return NULL;
704 }
705 
706 void xive_tctx_destroy(XiveTCTX *tctx)
707 {
708     Object *obj = OBJECT(tctx);
709 
710     object_unparent(obj);
711 }
712 
713 /*
714  * XIVE ESB helpers
715  */
716 
717 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
718 {
719     uint8_t old_pq = *pq & 0x3;
720 
721     *pq &= ~0x3;
722     *pq |= value & 0x3;
723 
724     return old_pq;
725 }
726 
727 static bool xive_esb_trigger(uint8_t *pq)
728 {
729     uint8_t old_pq = *pq & 0x3;
730 
731     switch (old_pq) {
732     case XIVE_ESB_RESET:
733         xive_esb_set(pq, XIVE_ESB_PENDING);
734         return true;
735     case XIVE_ESB_PENDING:
736     case XIVE_ESB_QUEUED:
737         xive_esb_set(pq, XIVE_ESB_QUEUED);
738         return false;
739     case XIVE_ESB_OFF:
740         xive_esb_set(pq, XIVE_ESB_OFF);
741         return false;
742     default:
743          g_assert_not_reached();
744     }
745 }
746 
747 static bool xive_esb_eoi(uint8_t *pq)
748 {
749     uint8_t old_pq = *pq & 0x3;
750 
751     switch (old_pq) {
752     case XIVE_ESB_RESET:
753     case XIVE_ESB_PENDING:
754         xive_esb_set(pq, XIVE_ESB_RESET);
755         return false;
756     case XIVE_ESB_QUEUED:
757         xive_esb_set(pq, XIVE_ESB_PENDING);
758         return true;
759     case XIVE_ESB_OFF:
760         xive_esb_set(pq, XIVE_ESB_OFF);
761         return false;
762     default:
763          g_assert_not_reached();
764     }
765 }
766 
767 /*
768  * XIVE Interrupt Source (or IVSE)
769  */
770 
771 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
772 {
773     assert(srcno < xsrc->nr_irqs);
774 
775     return xsrc->status[srcno] & 0x3;
776 }
777 
778 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
779 {
780     assert(srcno < xsrc->nr_irqs);
781 
782     return xive_esb_set(&xsrc->status[srcno], pq);
783 }
784 
785 /*
786  * Returns whether the event notification should be forwarded.
787  */
788 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
789 {
790     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
791 
792     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
793 
794     switch (old_pq) {
795     case XIVE_ESB_RESET:
796         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
797         return true;
798     default:
799         return false;
800     }
801 }
802 
803 /*
804  * Returns whether the event notification should be forwarded.
805  */
806 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
807 {
808     bool ret;
809 
810     assert(srcno < xsrc->nr_irqs);
811 
812     ret = xive_esb_trigger(&xsrc->status[srcno]);
813 
814     if (xive_source_irq_is_lsi(xsrc, srcno) &&
815         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
816         qemu_log_mask(LOG_GUEST_ERROR,
817                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
818     }
819 
820     return ret;
821 }
822 
823 /*
824  * Returns whether the event notification should be forwarded.
825  */
826 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
827 {
828     bool ret;
829 
830     assert(srcno < xsrc->nr_irqs);
831 
832     ret = xive_esb_eoi(&xsrc->status[srcno]);
833 
834     /*
835      * LSI sources do not set the Q bit but they can still be
836      * asserted, in which case we should forward a new event
837      * notification
838      */
839     if (xive_source_irq_is_lsi(xsrc, srcno) &&
840         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
841         ret = xive_source_lsi_trigger(xsrc, srcno);
842     }
843 
844     return ret;
845 }
846 
847 /*
848  * Forward the source event notification to the Router
849  */
850 static void xive_source_notify(XiveSource *xsrc, int srcno)
851 {
852     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
853 
854     if (xnc->notify) {
855         xnc->notify(xsrc->xive, srcno);
856     }
857 }
858 
859 /*
860  * In a two pages ESB MMIO setting, even page is the trigger page, odd
861  * page is for management
862  */
863 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
864 {
865     return !((addr >> shift) & 1);
866 }
867 
868 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
869 {
870     return xive_source_esb_has_2page(xsrc) &&
871         addr_is_even(addr, xsrc->esb_shift - 1);
872 }
873 
874 /*
875  * ESB MMIO loads
876  *                      Trigger page    Management/EOI page
877  *
878  * ESB MMIO setting     2 pages         1 or 2 pages
879  *
880  * 0x000 .. 0x3FF       -1              EOI and return 0|1
881  * 0x400 .. 0x7FF       -1              EOI and return 0|1
882  * 0x800 .. 0xBFF       -1              return PQ
883  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
884  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
885  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
886  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
887  */
888 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
889 {
890     XiveSource *xsrc = XIVE_SOURCE(opaque);
891     uint32_t offset = addr & 0xFFF;
892     uint32_t srcno = addr >> xsrc->esb_shift;
893     uint64_t ret = -1;
894 
895     /* In a two pages ESB MMIO setting, trigger page should not be read */
896     if (xive_source_is_trigger_page(xsrc, addr)) {
897         qemu_log_mask(LOG_GUEST_ERROR,
898                       "XIVE: invalid load on IRQ %d trigger page at "
899                       "0x%"HWADDR_PRIx"\n", srcno, addr);
900         return -1;
901     }
902 
903     switch (offset) {
904     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
905         ret = xive_source_esb_eoi(xsrc, srcno);
906 
907         /* Forward the source event notification for routing */
908         if (ret) {
909             xive_source_notify(xsrc, srcno);
910         }
911         break;
912 
913     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
914         ret = xive_source_esb_get(xsrc, srcno);
915         break;
916 
917     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
918     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
919     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
920     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
921         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
922         break;
923     default:
924         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
925                       offset);
926     }
927 
928     return ret;
929 }
930 
931 /*
932  * ESB MMIO stores
933  *                      Trigger page    Management/EOI page
934  *
935  * ESB MMIO setting     2 pages         1 or 2 pages
936  *
937  * 0x000 .. 0x3FF       Trigger         Trigger
938  * 0x400 .. 0x7FF       Trigger         EOI
939  * 0x800 .. 0xBFF       Trigger         undefined
940  * 0xC00 .. 0xCFF       Trigger         PQ=00
941  * 0xD00 .. 0xDFF       Trigger         PQ=01
942  * 0xE00 .. 0xDFF       Trigger         PQ=10
943  * 0xF00 .. 0xDFF       Trigger         PQ=11
944  */
945 static void xive_source_esb_write(void *opaque, hwaddr addr,
946                                   uint64_t value, unsigned size)
947 {
948     XiveSource *xsrc = XIVE_SOURCE(opaque);
949     uint32_t offset = addr & 0xFFF;
950     uint32_t srcno = addr >> xsrc->esb_shift;
951     bool notify = false;
952 
953     /* In a two pages ESB MMIO setting, trigger page only triggers */
954     if (xive_source_is_trigger_page(xsrc, addr)) {
955         notify = xive_source_esb_trigger(xsrc, srcno);
956         goto out;
957     }
958 
959     switch (offset) {
960     case 0 ... 0x3FF:
961         notify = xive_source_esb_trigger(xsrc, srcno);
962         break;
963 
964     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
965         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
966             qemu_log_mask(LOG_GUEST_ERROR,
967                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
968             return;
969         }
970 
971         notify = xive_source_esb_eoi(xsrc, srcno);
972         break;
973 
974     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
975     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
976     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
977     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
978         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
979         break;
980 
981     default:
982         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
983                       offset);
984         return;
985     }
986 
987 out:
988     /* Forward the source event notification for routing */
989     if (notify) {
990         xive_source_notify(xsrc, srcno);
991     }
992 }
993 
994 static const MemoryRegionOps xive_source_esb_ops = {
995     .read = xive_source_esb_read,
996     .write = xive_source_esb_write,
997     .endianness = DEVICE_BIG_ENDIAN,
998     .valid = {
999         .min_access_size = 8,
1000         .max_access_size = 8,
1001     },
1002     .impl = {
1003         .min_access_size = 8,
1004         .max_access_size = 8,
1005     },
1006 };
1007 
1008 void xive_source_set_irq(void *opaque, int srcno, int val)
1009 {
1010     XiveSource *xsrc = XIVE_SOURCE(opaque);
1011     bool notify = false;
1012 
1013     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1014         if (val) {
1015             notify = xive_source_lsi_trigger(xsrc, srcno);
1016         } else {
1017             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1018         }
1019     } else {
1020         if (val) {
1021             notify = xive_source_esb_trigger(xsrc, srcno);
1022         }
1023     }
1024 
1025     /* Forward the source event notification for routing */
1026     if (notify) {
1027         xive_source_notify(xsrc, srcno);
1028     }
1029 }
1030 
1031 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1032 {
1033     int i;
1034 
1035     for (i = 0; i < xsrc->nr_irqs; i++) {
1036         uint8_t pq = xive_source_esb_get(xsrc, i);
1037 
1038         if (pq == XIVE_ESB_OFF) {
1039             continue;
1040         }
1041 
1042         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
1043                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1044                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
1045                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1046                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1047     }
1048 }
1049 
1050 static void xive_source_reset(void *dev)
1051 {
1052     XiveSource *xsrc = XIVE_SOURCE(dev);
1053 
1054     /* Do not clear the LSI bitmap */
1055 
1056     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1057     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1058 }
1059 
1060 static void xive_source_realize(DeviceState *dev, Error **errp)
1061 {
1062     XiveSource *xsrc = XIVE_SOURCE(dev);
1063     Object *obj;
1064     Error *local_err = NULL;
1065 
1066     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1067     if (!obj) {
1068         error_propagate(errp, local_err);
1069         error_prepend(errp, "required link 'xive' not found: ");
1070         return;
1071     }
1072 
1073     xsrc->xive = XIVE_NOTIFIER(obj);
1074 
1075     if (!xsrc->nr_irqs) {
1076         error_setg(errp, "Number of interrupt needs to be greater than 0");
1077         return;
1078     }
1079 
1080     if (xsrc->esb_shift != XIVE_ESB_4K &&
1081         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1082         xsrc->esb_shift != XIVE_ESB_64K &&
1083         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1084         error_setg(errp, "Invalid ESB shift setting");
1085         return;
1086     }
1087 
1088     xsrc->status = g_malloc0(xsrc->nr_irqs);
1089     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1090 
1091     if (!kvm_irqchip_in_kernel()) {
1092         memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1093                               &xive_source_esb_ops, xsrc, "xive.esb",
1094                               (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1095     }
1096 
1097     qemu_register_reset(xive_source_reset, dev);
1098 }
1099 
1100 static const VMStateDescription vmstate_xive_source = {
1101     .name = TYPE_XIVE_SOURCE,
1102     .version_id = 1,
1103     .minimum_version_id = 1,
1104     .fields = (VMStateField[]) {
1105         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1106         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1107         VMSTATE_END_OF_LIST()
1108     },
1109 };
1110 
1111 /*
1112  * The default XIVE interrupt source setting for the ESB MMIOs is two
1113  * 64k pages without Store EOI, to be in sync with KVM.
1114  */
1115 static Property xive_source_properties[] = {
1116     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1117     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1118     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1119     DEFINE_PROP_END_OF_LIST(),
1120 };
1121 
1122 static void xive_source_class_init(ObjectClass *klass, void *data)
1123 {
1124     DeviceClass *dc = DEVICE_CLASS(klass);
1125 
1126     dc->desc    = "XIVE Interrupt Source";
1127     dc->props   = xive_source_properties;
1128     dc->realize = xive_source_realize;
1129     dc->vmsd    = &vmstate_xive_source;
1130     /*
1131      * Reason: part of XIVE interrupt controller, needs to be wired up,
1132      * e.g. by spapr_xive_instance_init().
1133      */
1134     dc->user_creatable = false;
1135 }
1136 
1137 static const TypeInfo xive_source_info = {
1138     .name          = TYPE_XIVE_SOURCE,
1139     .parent        = TYPE_DEVICE,
1140     .instance_size = sizeof(XiveSource),
1141     .class_init    = xive_source_class_init,
1142 };
1143 
1144 /*
1145  * XiveEND helpers
1146  */
1147 
1148 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1149 {
1150     uint64_t qaddr_base = xive_end_qaddr(end);
1151     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1152     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1153     uint32_t qentries = 1 << (qsize + 10);
1154     int i;
1155 
1156     /*
1157      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1158      */
1159     monitor_printf(mon, " [ ");
1160     qindex = (qindex - (width - 1)) & (qentries - 1);
1161     for (i = 0; i < width; i++) {
1162         uint64_t qaddr = qaddr_base + (qindex << 2);
1163         uint32_t qdata = -1;
1164 
1165         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1166                             sizeof(qdata))) {
1167             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1168                           HWADDR_PRIx "\n", qaddr);
1169             return;
1170         }
1171         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1172                        be32_to_cpu(qdata));
1173         qindex = (qindex + 1) & (qentries - 1);
1174     }
1175     monitor_printf(mon, "]");
1176 }
1177 
1178 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1179 {
1180     uint64_t qaddr_base = xive_end_qaddr(end);
1181     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1182     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1183     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1184     uint32_t qentries = 1 << (qsize + 10);
1185 
1186     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1187     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1188     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1189     uint8_t pq;
1190 
1191     if (!xive_end_is_valid(end)) {
1192         return;
1193     }
1194 
1195     pq = xive_get_field32(END_W1_ESn, end->w1);
1196 
1197     monitor_printf(mon, "  %08x %c%c %c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1198                    end_idx,
1199                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1200                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1201                    xive_end_is_valid(end)    ? 'v' : '-',
1202                    xive_end_is_enqueue(end)  ? 'q' : '-',
1203                    xive_end_is_notify(end)   ? 'n' : '-',
1204                    xive_end_is_backlog(end)  ? 'b' : '-',
1205                    xive_end_is_escalate(end) ? 'e' : '-',
1206                    xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1207                    xive_end_is_silent_escalation(end)   ? 's' : '-',
1208                    priority, nvt_blk, nvt_idx);
1209 
1210     if (qaddr_base) {
1211         monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1212                        qaddr_base, qindex, qentries, qgen);
1213         xive_end_queue_pic_print_info(end, 6, mon);
1214     }
1215     monitor_printf(mon, "\n");
1216 }
1217 
1218 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1219 {
1220     uint64_t qaddr_base = xive_end_qaddr(end);
1221     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1222     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1223     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1224 
1225     uint64_t qaddr = qaddr_base + (qindex << 2);
1226     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1227     uint32_t qentries = 1 << (qsize + 10);
1228 
1229     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1230         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1231                       HWADDR_PRIx "\n", qaddr);
1232         return;
1233     }
1234 
1235     qindex = (qindex + 1) & (qentries - 1);
1236     if (qindex == 0) {
1237         qgen ^= 1;
1238         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1239     }
1240     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1241 }
1242 
1243 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1244                                    Monitor *mon)
1245 {
1246     XiveEAS *eas = (XiveEAS *) &end->w4;
1247     uint8_t pq;
1248 
1249     if (!xive_end_is_escalate(end)) {
1250         return;
1251     }
1252 
1253     pq = xive_get_field32(END_W1_ESe, end->w1);
1254 
1255     monitor_printf(mon, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1256                    end_idx,
1257                    pq & XIVE_ESB_VAL_P ? 'P' : '-',
1258                    pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1259                    xive_eas_is_valid(eas) ? 'V' : ' ',
1260                    xive_eas_is_masked(eas) ? 'M' : ' ',
1261                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1262                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1263                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1264 }
1265 
1266 /*
1267  * XIVE Router (aka. Virtualization Controller or IVRE)
1268  */
1269 
1270 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1271                         XiveEAS *eas)
1272 {
1273     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1274 
1275     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1276 }
1277 
1278 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1279                         XiveEND *end)
1280 {
1281    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1282 
1283    return xrc->get_end(xrtr, end_blk, end_idx, end);
1284 }
1285 
1286 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1287                           XiveEND *end, uint8_t word_number)
1288 {
1289    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1290 
1291    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1292 }
1293 
1294 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1295                         XiveNVT *nvt)
1296 {
1297    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1298 
1299    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1300 }
1301 
1302 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1303                         XiveNVT *nvt, uint8_t word_number)
1304 {
1305    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1306 
1307    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1308 }
1309 
1310 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1311 {
1312     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1313 
1314     return xrc->get_tctx(xrtr, cs);
1315 }
1316 
1317 /*
1318  * Encode the HW CAM line in the block group mode format :
1319  *
1320  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1321  */
1322 static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
1323 {
1324     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1325     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1326 
1327     return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
1328 }
1329 
1330 /*
1331  * The thread context register words are in big-endian format.
1332  */
1333 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1334                                      uint8_t nvt_blk, uint32_t nvt_idx,
1335                                      bool cam_ignore, uint32_t logic_serv)
1336 {
1337     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1338     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1339     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1340     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1341     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1342 
1343     /*
1344      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1345      * identifier are ignored in the "CAM" match.
1346      */
1347 
1348     if (format == 0) {
1349         if (cam_ignore == true) {
1350             /*
1351              * F=0 & i=1: Logical server notification (bits ignored at
1352              * the end of the NVT identifier)
1353              */
1354             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1355                           nvt_blk, nvt_idx);
1356              return -1;
1357         }
1358 
1359         /* F=0 & i=0: Specific NVT notification */
1360 
1361         /* PHYS ring */
1362         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1363             cam == xive_tctx_hw_cam_line(tctx)) {
1364             return TM_QW3_HV_PHYS;
1365         }
1366 
1367         /* HV POOL ring */
1368         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1369             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1370             return TM_QW2_HV_POOL;
1371         }
1372 
1373         /* OS ring */
1374         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1375             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1376             return TM_QW1_OS;
1377         }
1378     } else {
1379         /* F=1 : User level Event-Based Branch (EBB) notification */
1380 
1381         /* USER ring */
1382         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1383              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1384              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1385              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1386             return TM_QW0_USER;
1387         }
1388     }
1389     return -1;
1390 }
1391 
1392 typedef struct XiveTCTXMatch {
1393     XiveTCTX *tctx;
1394     uint8_t ring;
1395 } XiveTCTXMatch;
1396 
1397 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1398                                  uint8_t nvt_blk, uint32_t nvt_idx,
1399                                  bool cam_ignore, uint8_t priority,
1400                                  uint32_t logic_serv, XiveTCTXMatch *match)
1401 {
1402     CPUState *cs;
1403 
1404     /*
1405      * TODO (PowerNV): handle chip_id overwrite of block field for
1406      * hardwired CAM compares
1407      */
1408 
1409     CPU_FOREACH(cs) {
1410         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1411         int ring;
1412 
1413         /*
1414          * Skip partially initialized vCPUs. This can happen when
1415          * vCPUs are hotplugged.
1416          */
1417         if (!tctx) {
1418             continue;
1419         }
1420 
1421         /*
1422          * HW checks that the CPU is enabled in the Physical Thread
1423          * Enable Register (PTER).
1424          */
1425 
1426         /*
1427          * Check the thread context CAM lines and record matches. We
1428          * will handle CPU exception delivery later
1429          */
1430         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1431                                          cam_ignore, logic_serv);
1432         /*
1433          * Save the context and follow on to catch duplicates, that we
1434          * don't support yet.
1435          */
1436         if (ring != -1) {
1437             if (match->tctx) {
1438                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1439                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1440                 return false;
1441             }
1442 
1443             match->ring = ring;
1444             match->tctx = tctx;
1445         }
1446     }
1447 
1448     if (!match->tctx) {
1449         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1450                       nvt_blk, nvt_idx);
1451         return false;
1452     }
1453 
1454     return true;
1455 }
1456 
1457 /*
1458  * This is our simple Xive Presenter Engine model. It is merged in the
1459  * Router as it does not require an extra object.
1460  *
1461  * It receives notification requests sent by the IVRE to find one
1462  * matching NVT (or more) dispatched on the processor threads. In case
1463  * of a single NVT notification, the process is abreviated and the
1464  * thread is signaled if a match is found. In case of a logical server
1465  * notification (bits ignored at the end of the NVT identifier), the
1466  * IVPE and IVRE select a winning thread using different filters. This
1467  * involves 2 or 3 exchanges on the PowerBus that the model does not
1468  * support.
1469  *
1470  * The parameters represent what is sent on the PowerBus
1471  */
1472 static bool xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1473                                   uint8_t nvt_blk, uint32_t nvt_idx,
1474                                   bool cam_ignore, uint8_t priority,
1475                                   uint32_t logic_serv)
1476 {
1477     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1478     bool found;
1479 
1480     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1481                                  priority, logic_serv, &match);
1482     if (found) {
1483         ipb_update(&match.tctx->regs[match.ring], priority);
1484         xive_tctx_notify(match.tctx, match.ring);
1485     }
1486 
1487     return found;
1488 }
1489 
1490 /*
1491  * Notification using the END ESe/ESn bit (Event State Buffer for
1492  * escalation and notification). Profide futher coalescing in the
1493  * Router.
1494  */
1495 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1496                                       uint32_t end_idx, XiveEND *end,
1497                                       uint32_t end_esmask)
1498 {
1499     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1500     bool notify = xive_esb_trigger(&pq);
1501 
1502     if (pq != xive_get_field32(end_esmask, end->w1)) {
1503         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1504         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1505     }
1506 
1507     /* ESe/n[Q]=1 : end of notification */
1508     return notify;
1509 }
1510 
1511 /*
1512  * An END trigger can come from an event trigger (IPI or HW) or from
1513  * another chip. We don't model the PowerBus but the END trigger
1514  * message has the same parameters than in the function below.
1515  */
1516 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1517                                    uint32_t end_idx, uint32_t end_data)
1518 {
1519     XiveEND end;
1520     uint8_t priority;
1521     uint8_t format;
1522     uint8_t nvt_blk;
1523     uint32_t nvt_idx;
1524     XiveNVT nvt;
1525     bool found;
1526 
1527     /* END cache lookup */
1528     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1529         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1530                       end_idx);
1531         return;
1532     }
1533 
1534     if (!xive_end_is_valid(&end)) {
1535         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1536                       end_blk, end_idx);
1537         return;
1538     }
1539 
1540     if (xive_end_is_enqueue(&end)) {
1541         xive_end_enqueue(&end, end_data);
1542         /* Enqueuing event data modifies the EQ toggle and index */
1543         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1544     }
1545 
1546     /*
1547      * When the END is silent, we skip the notification part.
1548      */
1549     if (xive_end_is_silent_escalation(&end)) {
1550         goto do_escalation;
1551     }
1552 
1553     /*
1554      * The W7 format depends on the F bit in W6. It defines the type
1555      * of the notification :
1556      *
1557      *   F=0 : single or multiple NVT notification
1558      *   F=1 : User level Event-Based Branch (EBB) notification, no
1559      *         priority
1560      */
1561     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1562     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1563 
1564     /* The END is masked */
1565     if (format == 0 && priority == 0xff) {
1566         return;
1567     }
1568 
1569     /*
1570      * Check the END ESn (Event State Buffer for notification) for
1571      * even futher coalescing in the Router
1572      */
1573     if (!xive_end_is_notify(&end)) {
1574         /* ESn[Q]=1 : end of notification */
1575         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1576                                        &end, END_W1_ESn)) {
1577             return;
1578         }
1579     }
1580 
1581     /*
1582      * Follows IVPE notification
1583      */
1584     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1585     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1586 
1587     /* NVT cache lookup */
1588     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1589         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1590                       nvt_blk, nvt_idx);
1591         return;
1592     }
1593 
1594     if (!xive_nvt_is_valid(&nvt)) {
1595         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1596                       nvt_blk, nvt_idx);
1597         return;
1598     }
1599 
1600     found = xive_presenter_notify(xrtr, format, nvt_blk, nvt_idx,
1601                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1602                           priority,
1603                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1604 
1605     /* TODO: Auto EOI. */
1606 
1607     if (found) {
1608         return;
1609     }
1610 
1611     /*
1612      * If no matching NVT is dispatched on a HW thread :
1613      * - specific VP: update the NVT structure if backlog is activated
1614      * - logical server : forward request to IVPE (not supported)
1615      */
1616     if (xive_end_is_backlog(&end)) {
1617         if (format == 1) {
1618             qemu_log_mask(LOG_GUEST_ERROR,
1619                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1620                           end_blk, end_idx);
1621             return;
1622         }
1623         /* Record the IPB in the associated NVT structure */
1624         ipb_update((uint8_t *) &nvt.w4, priority);
1625         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1626 
1627         /*
1628          * On HW, follows a "Broadcast Backlog" to IVPEs
1629          */
1630     }
1631 
1632 do_escalation:
1633     /*
1634      * If activated, escalate notification using the ESe PQ bits and
1635      * the EAS in w4-5
1636      */
1637     if (!xive_end_is_escalate(&end)) {
1638         return;
1639     }
1640 
1641     /*
1642      * Check the END ESe (Event State Buffer for escalation) for even
1643      * futher coalescing in the Router
1644      */
1645     if (!xive_end_is_uncond_escalation(&end)) {
1646         /* ESe[Q]=1 : end of notification */
1647         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1648                                        &end, END_W1_ESe)) {
1649             return;
1650         }
1651     }
1652 
1653     /*
1654      * The END trigger becomes an Escalation trigger
1655      */
1656     xive_router_end_notify(xrtr,
1657                            xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1658                            xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1659                            xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
1660 }
1661 
1662 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1663 {
1664     XiveRouter *xrtr = XIVE_ROUTER(xn);
1665     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1666     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1667     XiveEAS eas;
1668 
1669     /* EAS cache lookup */
1670     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1671         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1672         return;
1673     }
1674 
1675     /*
1676      * The IVRE checks the State Bit Cache at this point. We skip the
1677      * SBC lookup because the state bits of the sources are modeled
1678      * internally in QEMU.
1679      */
1680 
1681     if (!xive_eas_is_valid(&eas)) {
1682         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1683         return;
1684     }
1685 
1686     if (xive_eas_is_masked(&eas)) {
1687         /* Notification completed */
1688         return;
1689     }
1690 
1691     /*
1692      * The event trigger becomes an END trigger
1693      */
1694     xive_router_end_notify(xrtr,
1695                            xive_get_field64(EAS_END_BLOCK, eas.w),
1696                            xive_get_field64(EAS_END_INDEX, eas.w),
1697                            xive_get_field64(EAS_END_DATA,  eas.w));
1698 }
1699 
1700 static void xive_router_class_init(ObjectClass *klass, void *data)
1701 {
1702     DeviceClass *dc = DEVICE_CLASS(klass);
1703     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1704 
1705     dc->desc    = "XIVE Router Engine";
1706     xnc->notify = xive_router_notify;
1707 }
1708 
1709 static const TypeInfo xive_router_info = {
1710     .name          = TYPE_XIVE_ROUTER,
1711     .parent        = TYPE_SYS_BUS_DEVICE,
1712     .abstract      = true,
1713     .class_size    = sizeof(XiveRouterClass),
1714     .class_init    = xive_router_class_init,
1715     .interfaces    = (InterfaceInfo[]) {
1716         { TYPE_XIVE_NOTIFIER },
1717         { }
1718     }
1719 };
1720 
1721 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1722 {
1723     if (!xive_eas_is_valid(eas)) {
1724         return;
1725     }
1726 
1727     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1728                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1729                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1730                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1731                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1732 }
1733 
1734 /*
1735  * END ESB MMIO loads
1736  */
1737 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1738 {
1739     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1740     uint32_t offset = addr & 0xFFF;
1741     uint8_t end_blk;
1742     uint32_t end_idx;
1743     XiveEND end;
1744     uint32_t end_esmask;
1745     uint8_t pq;
1746     uint64_t ret = -1;
1747 
1748     end_blk = xsrc->block_id;
1749     end_idx = addr >> (xsrc->esb_shift + 1);
1750 
1751     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1752         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1753                       end_idx);
1754         return -1;
1755     }
1756 
1757     if (!xive_end_is_valid(&end)) {
1758         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1759                       end_blk, end_idx);
1760         return -1;
1761     }
1762 
1763     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1764     pq = xive_get_field32(end_esmask, end.w1);
1765 
1766     switch (offset) {
1767     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1768         ret = xive_esb_eoi(&pq);
1769 
1770         /* Forward the source event notification for routing ?? */
1771         break;
1772 
1773     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1774         ret = pq;
1775         break;
1776 
1777     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1778     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1779     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1780     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1781         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1782         break;
1783     default:
1784         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1785                       offset);
1786         return -1;
1787     }
1788 
1789     if (pq != xive_get_field32(end_esmask, end.w1)) {
1790         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1791         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1792     }
1793 
1794     return ret;
1795 }
1796 
1797 /*
1798  * END ESB MMIO stores are invalid
1799  */
1800 static void xive_end_source_write(void *opaque, hwaddr addr,
1801                                   uint64_t value, unsigned size)
1802 {
1803     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1804                   HWADDR_PRIx"\n", addr);
1805 }
1806 
1807 static const MemoryRegionOps xive_end_source_ops = {
1808     .read = xive_end_source_read,
1809     .write = xive_end_source_write,
1810     .endianness = DEVICE_BIG_ENDIAN,
1811     .valid = {
1812         .min_access_size = 8,
1813         .max_access_size = 8,
1814     },
1815     .impl = {
1816         .min_access_size = 8,
1817         .max_access_size = 8,
1818     },
1819 };
1820 
1821 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1822 {
1823     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1824     Object *obj;
1825     Error *local_err = NULL;
1826 
1827     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1828     if (!obj) {
1829         error_propagate(errp, local_err);
1830         error_prepend(errp, "required link 'xive' not found: ");
1831         return;
1832     }
1833 
1834     xsrc->xrtr = XIVE_ROUTER(obj);
1835 
1836     if (!xsrc->nr_ends) {
1837         error_setg(errp, "Number of interrupt needs to be greater than 0");
1838         return;
1839     }
1840 
1841     if (xsrc->esb_shift != XIVE_ESB_4K &&
1842         xsrc->esb_shift != XIVE_ESB_64K) {
1843         error_setg(errp, "Invalid ESB shift setting");
1844         return;
1845     }
1846 
1847     /*
1848      * Each END is assigned an even/odd pair of MMIO pages, the even page
1849      * manages the ESn field while the odd page manages the ESe field.
1850      */
1851     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1852                           &xive_end_source_ops, xsrc, "xive.end",
1853                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1854 }
1855 
1856 static Property xive_end_source_properties[] = {
1857     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1858     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1859     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1860     DEFINE_PROP_END_OF_LIST(),
1861 };
1862 
1863 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1864 {
1865     DeviceClass *dc = DEVICE_CLASS(klass);
1866 
1867     dc->desc    = "XIVE END Source";
1868     dc->props   = xive_end_source_properties;
1869     dc->realize = xive_end_source_realize;
1870     /*
1871      * Reason: part of XIVE interrupt controller, needs to be wired up,
1872      * e.g. by spapr_xive_instance_init().
1873      */
1874     dc->user_creatable = false;
1875 }
1876 
1877 static const TypeInfo xive_end_source_info = {
1878     .name          = TYPE_XIVE_END_SOURCE,
1879     .parent        = TYPE_DEVICE,
1880     .instance_size = sizeof(XiveENDSource),
1881     .class_init    = xive_end_source_class_init,
1882 };
1883 
1884 /*
1885  * XIVE Notifier
1886  */
1887 static const TypeInfo xive_notifier_info = {
1888     .name = TYPE_XIVE_NOTIFIER,
1889     .parent = TYPE_INTERFACE,
1890     .class_size = sizeof(XiveNotifierClass),
1891 };
1892 
1893 static void xive_register_types(void)
1894 {
1895     type_register_static(&xive_source_info);
1896     type_register_static(&xive_notifier_info);
1897     type_register_static(&xive_router_info);
1898     type_register_static(&xive_end_source_info);
1899     type_register_static(&xive_tctx_info);
1900 }
1901 
1902 type_init(xive_register_types)
1903