xref: /openbmc/qemu/hw/intc/xive.c (revision 277dd3d7712ae056d2614ea164f6560afd5d71d4)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * This code is licensed under the GPL version 2 or later. See the
7  * COPYING file in the top-level directory.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
20 
21 /*
22  * XIVE Thread Interrupt Management context
23  */
24 
25 /*
26  * Convert a priority number to an Interrupt Pending Buffer (IPB)
27  * register, which indicates a pending interrupt at the priority
28  * corresponding to the bit number
29  */
30 static uint8_t priority_to_ipb(uint8_t priority)
31 {
32     return priority > XIVE_PRIORITY_MAX ?
33         0 : 1 << (XIVE_PRIORITY_MAX - priority);
34 }
35 
36 /*
37  * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38  * Interrupt Priority Register (PIPR), which contains the priority of
39  * the most favored pending notification.
40  */
41 static uint8_t ipb_to_pipr(uint8_t ibp)
42 {
43     return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
44 }
45 
46 static void ipb_update(uint8_t *regs, uint8_t priority)
47 {
48     regs[TM_IPB] |= priority_to_ipb(priority);
49     regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
50 }
51 
52 static uint8_t exception_mask(uint8_t ring)
53 {
54     switch (ring) {
55     case TM_QW1_OS:
56         return TM_QW1_NSR_EO;
57     case TM_QW3_HV_PHYS:
58         return TM_QW3_NSR_HE;
59     default:
60         g_assert_not_reached();
61     }
62 }
63 
64 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
65 {
66     uint8_t *regs = &tctx->regs[ring];
67     uint8_t nsr = regs[TM_NSR];
68     uint8_t mask = exception_mask(ring);
69 
70     qemu_irq_lower(tctx->output);
71 
72     if (regs[TM_NSR] & mask) {
73         uint8_t cppr = regs[TM_PIPR];
74 
75         regs[TM_CPPR] = cppr;
76 
77         /* Reset the pending buffer bit */
78         regs[TM_IPB] &= ~priority_to_ipb(cppr);
79         regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
80 
81         /* Drop Exception bit */
82         regs[TM_NSR] &= ~mask;
83     }
84 
85     return (nsr << 8) | regs[TM_CPPR];
86 }
87 
88 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
89 {
90     uint8_t *regs = &tctx->regs[ring];
91 
92     if (regs[TM_PIPR] < regs[TM_CPPR]) {
93         switch (ring) {
94         case TM_QW1_OS:
95             regs[TM_NSR] |= TM_QW1_NSR_EO;
96             break;
97         case TM_QW3_HV_PHYS:
98             regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
99             break;
100         default:
101             g_assert_not_reached();
102         }
103         qemu_irq_raise(tctx->output);
104     }
105 }
106 
107 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
108 {
109     if (cppr > XIVE_PRIORITY_MAX) {
110         cppr = 0xff;
111     }
112 
113     tctx->regs[ring + TM_CPPR] = cppr;
114 
115     /* CPPR has changed, check if we need to raise a pending exception */
116     xive_tctx_notify(tctx, ring);
117 }
118 
119 /*
120  * XIVE Thread Interrupt Management Area (TIMA)
121  */
122 
123 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
124                                 uint64_t value, unsigned size)
125 {
126     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
127 }
128 
129 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
130 {
131     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
132 }
133 
134 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
135                                       unsigned size)
136 {
137     uint64_t ret;
138 
139     ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
140     tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
141     return ret;
142 }
143 
144 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
145                             uint64_t value, unsigned size)
146 {
147     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
148 }
149 
150 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
151 {
152     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
153 }
154 
155 /*
156  * Define an access map for each page of the TIMA that we will use in
157  * the memory region ops to filter values when doing loads and stores
158  * of raw registers values
159  *
160  * Registers accessibility bits :
161  *
162  *    0x0 - no access
163  *    0x1 - write only
164  *    0x2 - read only
165  *    0x3 - read/write
166  */
167 
168 static const uint8_t xive_tm_hw_view[] = {
169     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
170     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
171     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
172     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   3, 3, 3, 0,
173 };
174 
175 static const uint8_t xive_tm_hv_view[] = {
176     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
177     /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
178     /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0,
179     /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   0, 0, 0, 0,
180 };
181 
182 static const uint8_t xive_tm_os_view[] = {
183     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
184     /* QW-1 OS   */   2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0,
185     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
186     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
187 };
188 
189 static const uint8_t xive_tm_user_view[] = {
190     /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
191     /* QW-1 OS   */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
192     /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
193     /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
194 };
195 
196 /*
197  * Overall TIMA access map for the thread interrupt management context
198  * registers
199  */
200 static const uint8_t *xive_tm_views[] = {
201     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
202     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
203     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
204     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
205 };
206 
207 /*
208  * Computes a register access mask for a given offset in the TIMA
209  */
210 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
211 {
212     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
213     uint8_t reg_offset = offset & 0x3F;
214     uint8_t reg_mask = write ? 0x1 : 0x2;
215     uint64_t mask = 0x0;
216     int i;
217 
218     for (i = 0; i < size; i++) {
219         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
220             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
221         }
222     }
223 
224     return mask;
225 }
226 
227 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
228                               unsigned size)
229 {
230     uint8_t ring_offset = offset & 0x30;
231     uint8_t reg_offset = offset & 0x3F;
232     uint64_t mask = xive_tm_mask(offset, size, true);
233     int i;
234 
235     /*
236      * Only 4 or 8 bytes stores are allowed and the User ring is
237      * excluded
238      */
239     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
240         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
241                       HWADDR_PRIx"\n", offset);
242         return;
243     }
244 
245     /*
246      * Use the register offset for the raw values and filter out
247      * reserved values
248      */
249     for (i = 0; i < size; i++) {
250         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
251         if (byte_mask) {
252             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
253                 byte_mask;
254         }
255     }
256 }
257 
258 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
259 {
260     uint8_t ring_offset = offset & 0x30;
261     uint8_t reg_offset = offset & 0x3F;
262     uint64_t mask = xive_tm_mask(offset, size, false);
263     uint64_t ret;
264     int i;
265 
266     /*
267      * Only 4 or 8 bytes loads are allowed and the User ring is
268      * excluded
269      */
270     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
271         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
272                       HWADDR_PRIx"\n", offset);
273         return -1;
274     }
275 
276     /* Use the register offset for the raw values */
277     ret = 0;
278     for (i = 0; i < size; i++) {
279         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
280     }
281 
282     /* filter out reserved values */
283     return ret & mask;
284 }
285 
286 /*
287  * The TM context is mapped twice within each page. Stores and loads
288  * to the first mapping below 2K write and read the specified values
289  * without modification. The second mapping above 2K performs specific
290  * state changes (side effects) in addition to setting/returning the
291  * interrupt management area context of the processor thread.
292  */
293 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
294 {
295     return xive_tctx_accept(tctx, TM_QW1_OS);
296 }
297 
298 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
299                                 uint64_t value, unsigned size)
300 {
301     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
302 }
303 
304 /*
305  * Adjust the IPB to allow a CPU to process event queues of other
306  * priorities during one physical interrupt cycle.
307  */
308 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
309                                    uint64_t value, unsigned size)
310 {
311     ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
312     xive_tctx_notify(tctx, TM_QW1_OS);
313 }
314 
315 /*
316  * Define a mapping of "special" operations depending on the TIMA page
317  * offset and the size of the operation.
318  */
319 typedef struct XiveTmOp {
320     uint8_t  page_offset;
321     uint32_t op_offset;
322     unsigned size;
323     void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
324                               unsigned size);
325     uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
326 } XiveTmOp;
327 
328 static const XiveTmOp xive_tm_operations[] = {
329     /*
330      * MMIOs below 2K : raw values and special operations without side
331      * effects
332      */
333     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
334     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
335     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
336     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
337 
338     /* MMIOs above 2K : special operations with side effects */
339     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
340     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
341     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
342     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
343     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
344 };
345 
346 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
347 {
348     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
349     uint32_t op_offset = offset & 0xFFF;
350     int i;
351 
352     for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
353         const XiveTmOp *xto = &xive_tm_operations[i];
354 
355         /* Accesses done from a more privileged TIMA page is allowed */
356         if (xto->page_offset >= page_offset &&
357             xto->op_offset == op_offset &&
358             xto->size == size &&
359             ((write && xto->write_handler) || (!write && xto->read_handler))) {
360             return xto;
361         }
362     }
363     return NULL;
364 }
365 
366 /*
367  * TIMA MMIO handlers
368  */
369 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
370                         unsigned size)
371 {
372     const XiveTmOp *xto;
373 
374     /*
375      * TODO: check V bit in Q[0-3]W2
376      */
377 
378     /*
379      * First, check for special operations in the 2K region
380      */
381     if (offset & 0x800) {
382         xto = xive_tm_find_op(offset, size, true);
383         if (!xto) {
384             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
385                           "@%"HWADDR_PRIx"\n", offset);
386         } else {
387             xto->write_handler(tctx, offset, value, size);
388         }
389         return;
390     }
391 
392     /*
393      * Then, for special operations in the region below 2K.
394      */
395     xto = xive_tm_find_op(offset, size, true);
396     if (xto) {
397         xto->write_handler(tctx, offset, value, size);
398         return;
399     }
400 
401     /*
402      * Finish with raw access to the register values
403      */
404     xive_tm_raw_write(tctx, offset, value, size);
405 }
406 
407 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
408 {
409     const XiveTmOp *xto;
410 
411     /*
412      * TODO: check V bit in Q[0-3]W2
413      */
414 
415     /*
416      * First, check for special operations in the 2K region
417      */
418     if (offset & 0x800) {
419         xto = xive_tm_find_op(offset, size, false);
420         if (!xto) {
421             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
422                           "@%"HWADDR_PRIx"\n", offset);
423             return -1;
424         }
425         return xto->read_handler(tctx, offset, size);
426     }
427 
428     /*
429      * Then, for special operations in the region below 2K.
430      */
431     xto = xive_tm_find_op(offset, size, false);
432     if (xto) {
433         return xto->read_handler(tctx, offset, size);
434     }
435 
436     /*
437      * Finish with raw access to the register values
438      */
439     return xive_tm_raw_read(tctx, offset, size);
440 }
441 
442 static void xive_tm_write(void *opaque, hwaddr offset,
443                           uint64_t value, unsigned size)
444 {
445     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
446 
447     xive_tctx_tm_write(tctx, offset, value, size);
448 }
449 
450 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
451 {
452     XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
453 
454     return xive_tctx_tm_read(tctx, offset, size);
455 }
456 
457 const MemoryRegionOps xive_tm_ops = {
458     .read = xive_tm_read,
459     .write = xive_tm_write,
460     .endianness = DEVICE_BIG_ENDIAN,
461     .valid = {
462         .min_access_size = 1,
463         .max_access_size = 8,
464     },
465     .impl = {
466         .min_access_size = 1,
467         .max_access_size = 8,
468     },
469 };
470 
471 static inline uint32_t xive_tctx_word2(uint8_t *ring)
472 {
473     return *((uint32_t *) &ring[TM_WORD2]);
474 }
475 
476 static char *xive_tctx_ring_print(uint8_t *ring)
477 {
478     uint32_t w2 = xive_tctx_word2(ring);
479 
480     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
481                    "%02x  %02x   %02x  %08x",
482                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
483                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
484                    be32_to_cpu(w2));
485 }
486 
487 static const char * const xive_tctx_ring_names[] = {
488     "USER", "OS", "POOL", "PHYS",
489 };
490 
491 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
492 {
493     int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
494     int i;
495 
496     if (kvm_irqchip_in_kernel()) {
497         Error *local_err = NULL;
498 
499         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
500         if (local_err) {
501             error_report_err(local_err);
502             return;
503         }
504     }
505 
506     monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
507                    "  W2\n", cpu_index);
508 
509     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
510         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
511         monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
512                        xive_tctx_ring_names[i], s);
513         g_free(s);
514     }
515 }
516 
517 static void xive_tctx_reset(void *dev)
518 {
519     XiveTCTX *tctx = XIVE_TCTX(dev);
520 
521     memset(tctx->regs, 0, sizeof(tctx->regs));
522 
523     /* Set some defaults */
524     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
525     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
526     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
527 
528     /*
529      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
530      * CPPR is first set.
531      */
532     tctx->regs[TM_QW1_OS + TM_PIPR] =
533         ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
534     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
535         ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
536 }
537 
538 static void xive_tctx_realize(DeviceState *dev, Error **errp)
539 {
540     XiveTCTX *tctx = XIVE_TCTX(dev);
541     PowerPCCPU *cpu;
542     CPUPPCState *env;
543     Object *obj;
544     Error *local_err = NULL;
545 
546     obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
547     if (!obj) {
548         error_propagate(errp, local_err);
549         error_prepend(errp, "required link 'cpu' not found: ");
550         return;
551     }
552 
553     cpu = POWERPC_CPU(obj);
554     tctx->cs = CPU(obj);
555 
556     env = &cpu->env;
557     switch (PPC_INPUT(env)) {
558     case PPC_FLAGS_INPUT_POWER9:
559         tctx->output = env->irq_inputs[POWER9_INPUT_INT];
560         break;
561 
562     default:
563         error_setg(errp, "XIVE interrupt controller does not support "
564                    "this CPU bus model");
565         return;
566     }
567 
568     /* Connect the presenter to the VCPU (required for CPU hotplug) */
569     if (kvm_irqchip_in_kernel()) {
570         kvmppc_xive_cpu_connect(tctx, &local_err);
571         if (local_err) {
572             error_propagate(errp, local_err);
573             return;
574         }
575     }
576 
577     qemu_register_reset(xive_tctx_reset, dev);
578 }
579 
580 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
581 {
582     qemu_unregister_reset(xive_tctx_reset, dev);
583 }
584 
585 static int vmstate_xive_tctx_pre_save(void *opaque)
586 {
587     Error *local_err = NULL;
588 
589     if (kvm_irqchip_in_kernel()) {
590         kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
591         if (local_err) {
592             error_report_err(local_err);
593             return -1;
594         }
595     }
596 
597     return 0;
598 }
599 
600 static const VMStateDescription vmstate_xive_tctx = {
601     .name = TYPE_XIVE_TCTX,
602     .version_id = 1,
603     .minimum_version_id = 1,
604     .pre_save = vmstate_xive_tctx_pre_save,
605     .post_load = NULL, /* handled by the sPAPRxive model */
606     .fields = (VMStateField[]) {
607         VMSTATE_BUFFER(regs, XiveTCTX),
608         VMSTATE_END_OF_LIST()
609     },
610 };
611 
612 static void xive_tctx_class_init(ObjectClass *klass, void *data)
613 {
614     DeviceClass *dc = DEVICE_CLASS(klass);
615 
616     dc->desc = "XIVE Interrupt Thread Context";
617     dc->realize = xive_tctx_realize;
618     dc->unrealize = xive_tctx_unrealize;
619     dc->vmsd = &vmstate_xive_tctx;
620 }
621 
622 static const TypeInfo xive_tctx_info = {
623     .name          = TYPE_XIVE_TCTX,
624     .parent        = TYPE_DEVICE,
625     .instance_size = sizeof(XiveTCTX),
626     .class_init    = xive_tctx_class_init,
627 };
628 
629 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
630 {
631     Error *local_err = NULL;
632     Object *obj;
633 
634     obj = object_new(TYPE_XIVE_TCTX);
635     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
636     object_unref(obj);
637     object_property_add_const_link(obj, "cpu", cpu, &error_abort);
638     object_property_set_bool(obj, true, "realized", &local_err);
639     if (local_err) {
640         goto error;
641     }
642 
643     return obj;
644 
645 error:
646     object_unparent(obj);
647     error_propagate(errp, local_err);
648     return NULL;
649 }
650 
651 /*
652  * XIVE ESB helpers
653  */
654 
655 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
656 {
657     uint8_t old_pq = *pq & 0x3;
658 
659     *pq &= ~0x3;
660     *pq |= value & 0x3;
661 
662     return old_pq;
663 }
664 
665 static bool xive_esb_trigger(uint8_t *pq)
666 {
667     uint8_t old_pq = *pq & 0x3;
668 
669     switch (old_pq) {
670     case XIVE_ESB_RESET:
671         xive_esb_set(pq, XIVE_ESB_PENDING);
672         return true;
673     case XIVE_ESB_PENDING:
674     case XIVE_ESB_QUEUED:
675         xive_esb_set(pq, XIVE_ESB_QUEUED);
676         return false;
677     case XIVE_ESB_OFF:
678         xive_esb_set(pq, XIVE_ESB_OFF);
679         return false;
680     default:
681          g_assert_not_reached();
682     }
683 }
684 
685 static bool xive_esb_eoi(uint8_t *pq)
686 {
687     uint8_t old_pq = *pq & 0x3;
688 
689     switch (old_pq) {
690     case XIVE_ESB_RESET:
691     case XIVE_ESB_PENDING:
692         xive_esb_set(pq, XIVE_ESB_RESET);
693         return false;
694     case XIVE_ESB_QUEUED:
695         xive_esb_set(pq, XIVE_ESB_PENDING);
696         return true;
697     case XIVE_ESB_OFF:
698         xive_esb_set(pq, XIVE_ESB_OFF);
699         return false;
700     default:
701          g_assert_not_reached();
702     }
703 }
704 
705 /*
706  * XIVE Interrupt Source (or IVSE)
707  */
708 
709 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
710 {
711     assert(srcno < xsrc->nr_irqs);
712 
713     return xsrc->status[srcno] & 0x3;
714 }
715 
716 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
717 {
718     assert(srcno < xsrc->nr_irqs);
719 
720     return xive_esb_set(&xsrc->status[srcno], pq);
721 }
722 
723 /*
724  * Returns whether the event notification should be forwarded.
725  */
726 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
727 {
728     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
729 
730     xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
731 
732     switch (old_pq) {
733     case XIVE_ESB_RESET:
734         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
735         return true;
736     default:
737         return false;
738     }
739 }
740 
741 /*
742  * Returns whether the event notification should be forwarded.
743  */
744 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
745 {
746     bool ret;
747 
748     assert(srcno < xsrc->nr_irqs);
749 
750     ret = xive_esb_trigger(&xsrc->status[srcno]);
751 
752     if (xive_source_irq_is_lsi(xsrc, srcno) &&
753         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
754         qemu_log_mask(LOG_GUEST_ERROR,
755                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
756     }
757 
758     return ret;
759 }
760 
761 /*
762  * Returns whether the event notification should be forwarded.
763  */
764 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
765 {
766     bool ret;
767 
768     assert(srcno < xsrc->nr_irqs);
769 
770     ret = xive_esb_eoi(&xsrc->status[srcno]);
771 
772     /*
773      * LSI sources do not set the Q bit but they can still be
774      * asserted, in which case we should forward a new event
775      * notification
776      */
777     if (xive_source_irq_is_lsi(xsrc, srcno) &&
778         xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
779         ret = xive_source_lsi_trigger(xsrc, srcno);
780     }
781 
782     return ret;
783 }
784 
785 /*
786  * Forward the source event notification to the Router
787  */
788 static void xive_source_notify(XiveSource *xsrc, int srcno)
789 {
790     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
791 
792     if (xnc->notify) {
793         xnc->notify(xsrc->xive, srcno);
794     }
795 }
796 
797 /*
798  * In a two pages ESB MMIO setting, even page is the trigger page, odd
799  * page is for management
800  */
801 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
802 {
803     return !((addr >> shift) & 1);
804 }
805 
806 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
807 {
808     return xive_source_esb_has_2page(xsrc) &&
809         addr_is_even(addr, xsrc->esb_shift - 1);
810 }
811 
812 /*
813  * ESB MMIO loads
814  *                      Trigger page    Management/EOI page
815  *
816  * ESB MMIO setting     2 pages         1 or 2 pages
817  *
818  * 0x000 .. 0x3FF       -1              EOI and return 0|1
819  * 0x400 .. 0x7FF       -1              EOI and return 0|1
820  * 0x800 .. 0xBFF       -1              return PQ
821  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
822  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
823  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
824  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
825  */
826 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
827 {
828     XiveSource *xsrc = XIVE_SOURCE(opaque);
829     uint32_t offset = addr & 0xFFF;
830     uint32_t srcno = addr >> xsrc->esb_shift;
831     uint64_t ret = -1;
832 
833     /* In a two pages ESB MMIO setting, trigger page should not be read */
834     if (xive_source_is_trigger_page(xsrc, addr)) {
835         qemu_log_mask(LOG_GUEST_ERROR,
836                       "XIVE: invalid load on IRQ %d trigger page at "
837                       "0x%"HWADDR_PRIx"\n", srcno, addr);
838         return -1;
839     }
840 
841     switch (offset) {
842     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
843         ret = xive_source_esb_eoi(xsrc, srcno);
844 
845         /* Forward the source event notification for routing */
846         if (ret) {
847             xive_source_notify(xsrc, srcno);
848         }
849         break;
850 
851     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
852         ret = xive_source_esb_get(xsrc, srcno);
853         break;
854 
855     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
856     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
857     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
858     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
859         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
860         break;
861     default:
862         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
863                       offset);
864     }
865 
866     return ret;
867 }
868 
869 /*
870  * ESB MMIO stores
871  *                      Trigger page    Management/EOI page
872  *
873  * ESB MMIO setting     2 pages         1 or 2 pages
874  *
875  * 0x000 .. 0x3FF       Trigger         Trigger
876  * 0x400 .. 0x7FF       Trigger         EOI
877  * 0x800 .. 0xBFF       Trigger         undefined
878  * 0xC00 .. 0xCFF       Trigger         PQ=00
879  * 0xD00 .. 0xDFF       Trigger         PQ=01
880  * 0xE00 .. 0xDFF       Trigger         PQ=10
881  * 0xF00 .. 0xDFF       Trigger         PQ=11
882  */
883 static void xive_source_esb_write(void *opaque, hwaddr addr,
884                                   uint64_t value, unsigned size)
885 {
886     XiveSource *xsrc = XIVE_SOURCE(opaque);
887     uint32_t offset = addr & 0xFFF;
888     uint32_t srcno = addr >> xsrc->esb_shift;
889     bool notify = false;
890 
891     /* In a two pages ESB MMIO setting, trigger page only triggers */
892     if (xive_source_is_trigger_page(xsrc, addr)) {
893         notify = xive_source_esb_trigger(xsrc, srcno);
894         goto out;
895     }
896 
897     switch (offset) {
898     case 0 ... 0x3FF:
899         notify = xive_source_esb_trigger(xsrc, srcno);
900         break;
901 
902     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
903         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
904             qemu_log_mask(LOG_GUEST_ERROR,
905                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
906             return;
907         }
908 
909         notify = xive_source_esb_eoi(xsrc, srcno);
910         break;
911 
912     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
913     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
914     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
915     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
916         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
917         break;
918 
919     default:
920         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
921                       offset);
922         return;
923     }
924 
925 out:
926     /* Forward the source event notification for routing */
927     if (notify) {
928         xive_source_notify(xsrc, srcno);
929     }
930 }
931 
932 static const MemoryRegionOps xive_source_esb_ops = {
933     .read = xive_source_esb_read,
934     .write = xive_source_esb_write,
935     .endianness = DEVICE_BIG_ENDIAN,
936     .valid = {
937         .min_access_size = 8,
938         .max_access_size = 8,
939     },
940     .impl = {
941         .min_access_size = 8,
942         .max_access_size = 8,
943     },
944 };
945 
946 void xive_source_set_irq(void *opaque, int srcno, int val)
947 {
948     XiveSource *xsrc = XIVE_SOURCE(opaque);
949     bool notify = false;
950 
951     if (xive_source_irq_is_lsi(xsrc, srcno)) {
952         if (val) {
953             notify = xive_source_lsi_trigger(xsrc, srcno);
954         } else {
955             xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
956         }
957     } else {
958         if (val) {
959             notify = xive_source_esb_trigger(xsrc, srcno);
960         }
961     }
962 
963     /* Forward the source event notification for routing */
964     if (notify) {
965         xive_source_notify(xsrc, srcno);
966     }
967 }
968 
969 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
970 {
971     int i;
972 
973     for (i = 0; i < xsrc->nr_irqs; i++) {
974         uint8_t pq = xive_source_esb_get(xsrc, i);
975 
976         if (pq == XIVE_ESB_OFF) {
977             continue;
978         }
979 
980         monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
981                        xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
982                        pq & XIVE_ESB_VAL_P ? 'P' : '-',
983                        pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
984                        xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
985     }
986 }
987 
988 static void xive_source_reset(void *dev)
989 {
990     XiveSource *xsrc = XIVE_SOURCE(dev);
991 
992     /* Do not clear the LSI bitmap */
993 
994     /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
995     memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
996 
997     if (kvm_irqchip_in_kernel()) {
998         kvmppc_xive_source_reset(xsrc, &error_fatal);
999     }
1000 }
1001 
1002 static void xive_source_realize(DeviceState *dev, Error **errp)
1003 {
1004     XiveSource *xsrc = XIVE_SOURCE(dev);
1005     Object *obj;
1006     Error *local_err = NULL;
1007 
1008     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1009     if (!obj) {
1010         error_propagate(errp, local_err);
1011         error_prepend(errp, "required link 'xive' not found: ");
1012         return;
1013     }
1014 
1015     xsrc->xive = XIVE_NOTIFIER(obj);
1016 
1017     if (!xsrc->nr_irqs) {
1018         error_setg(errp, "Number of interrupt needs to be greater than 0");
1019         return;
1020     }
1021 
1022     if (xsrc->esb_shift != XIVE_ESB_4K &&
1023         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1024         xsrc->esb_shift != XIVE_ESB_64K &&
1025         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1026         error_setg(errp, "Invalid ESB shift setting");
1027         return;
1028     }
1029 
1030     xsrc->status = g_malloc0(xsrc->nr_irqs);
1031     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1032 
1033     if (!kvm_irqchip_in_kernel()) {
1034         memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1035                               &xive_source_esb_ops, xsrc, "xive.esb",
1036                               (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1037     }
1038 
1039     qemu_register_reset(xive_source_reset, dev);
1040 }
1041 
1042 static const VMStateDescription vmstate_xive_source = {
1043     .name = TYPE_XIVE_SOURCE,
1044     .version_id = 1,
1045     .minimum_version_id = 1,
1046     .fields = (VMStateField[]) {
1047         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1048         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1049         VMSTATE_END_OF_LIST()
1050     },
1051 };
1052 
1053 /*
1054  * The default XIVE interrupt source setting for the ESB MMIOs is two
1055  * 64k pages without Store EOI, to be in sync with KVM.
1056  */
1057 static Property xive_source_properties[] = {
1058     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1059     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1060     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1061     DEFINE_PROP_END_OF_LIST(),
1062 };
1063 
1064 static void xive_source_class_init(ObjectClass *klass, void *data)
1065 {
1066     DeviceClass *dc = DEVICE_CLASS(klass);
1067 
1068     dc->desc    = "XIVE Interrupt Source";
1069     dc->props   = xive_source_properties;
1070     dc->realize = xive_source_realize;
1071     dc->vmsd    = &vmstate_xive_source;
1072 }
1073 
1074 static const TypeInfo xive_source_info = {
1075     .name          = TYPE_XIVE_SOURCE,
1076     .parent        = TYPE_DEVICE,
1077     .instance_size = sizeof(XiveSource),
1078     .class_init    = xive_source_class_init,
1079 };
1080 
1081 /*
1082  * XiveEND helpers
1083  */
1084 
1085 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1086 {
1087     uint64_t qaddr_base = xive_end_qaddr(end);
1088     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1089     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1090     uint32_t qentries = 1 << (qsize + 10);
1091     int i;
1092 
1093     /*
1094      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1095      */
1096     monitor_printf(mon, " [ ");
1097     qindex = (qindex - (width - 1)) & (qentries - 1);
1098     for (i = 0; i < width; i++) {
1099         uint64_t qaddr = qaddr_base + (qindex << 2);
1100         uint32_t qdata = -1;
1101 
1102         if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1103                             sizeof(qdata))) {
1104             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1105                           HWADDR_PRIx "\n", qaddr);
1106             return;
1107         }
1108         monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1109                        be32_to_cpu(qdata));
1110         qindex = (qindex + 1) & (qentries - 1);
1111     }
1112 }
1113 
1114 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1115 {
1116     uint64_t qaddr_base = xive_end_qaddr(end);
1117     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1118     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1119     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1120     uint32_t qentries = 1 << (qsize + 10);
1121 
1122     uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1123     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1124 
1125     if (!xive_end_is_valid(end)) {
1126         return;
1127     }
1128 
1129     monitor_printf(mon, "  %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1130                    "% 6d/%5d ^%d", end_idx,
1131                    xive_end_is_valid(end)    ? 'v' : '-',
1132                    xive_end_is_enqueue(end)  ? 'q' : '-',
1133                    xive_end_is_notify(end)   ? 'n' : '-',
1134                    xive_end_is_backlog(end)  ? 'b' : '-',
1135                    xive_end_is_escalate(end) ? 'e' : '-',
1136                    priority, nvt, qaddr_base, qindex, qentries, qgen);
1137 
1138     xive_end_queue_pic_print_info(end, 6, mon);
1139     monitor_printf(mon, "]\n");
1140 }
1141 
1142 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1143 {
1144     uint64_t qaddr_base = xive_end_qaddr(end);
1145     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1146     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1147     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1148 
1149     uint64_t qaddr = qaddr_base + (qindex << 2);
1150     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1151     uint32_t qentries = 1 << (qsize + 10);
1152 
1153     if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1154         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1155                       HWADDR_PRIx "\n", qaddr);
1156         return;
1157     }
1158 
1159     qindex = (qindex + 1) & (qentries - 1);
1160     if (qindex == 0) {
1161         qgen ^= 1;
1162         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1163     }
1164     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1165 }
1166 
1167 /*
1168  * XIVE Router (aka. Virtualization Controller or IVRE)
1169  */
1170 
1171 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1172                         XiveEAS *eas)
1173 {
1174     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1175 
1176     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1177 }
1178 
1179 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1180                         XiveEND *end)
1181 {
1182    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1183 
1184    return xrc->get_end(xrtr, end_blk, end_idx, end);
1185 }
1186 
1187 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1188                           XiveEND *end, uint8_t word_number)
1189 {
1190    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1191 
1192    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1193 }
1194 
1195 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1196                         XiveNVT *nvt)
1197 {
1198    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1199 
1200    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1201 }
1202 
1203 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1204                         XiveNVT *nvt, uint8_t word_number)
1205 {
1206    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1207 
1208    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1209 }
1210 
1211 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1212 {
1213     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1214 
1215     return xrc->get_tctx(xrtr, cs);
1216 }
1217 
1218 /*
1219  * By default on P9, the HW CAM line (23bits) is hardwired to :
1220  *
1221  *   0x000||0b1||4Bit chip number||7Bit Thread number.
1222  *
1223  * When the block grouping is enabled, the CAM line is changed to :
1224  *
1225  *   4Bit chip number||0x001||7Bit Thread number.
1226  */
1227 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1228 {
1229     return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1230 }
1231 
1232 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1233                                          uint8_t nvt_blk, uint32_t nvt_idx)
1234 {
1235     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1236     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1237 
1238     return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1239         hw_cam_line(nvt_blk, nvt_idx);
1240 }
1241 
1242 /*
1243  * The thread context register words are in big-endian format.
1244  */
1245 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1246                                      uint8_t nvt_blk, uint32_t nvt_idx,
1247                                      bool cam_ignore, uint32_t logic_serv)
1248 {
1249     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1250     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1251     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1252     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1253     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1254 
1255     /*
1256      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1257      * identifier are ignored in the "CAM" match.
1258      */
1259 
1260     if (format == 0) {
1261         if (cam_ignore == true) {
1262             /*
1263              * F=0 & i=1: Logical server notification (bits ignored at
1264              * the end of the NVT identifier)
1265              */
1266             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1267                           nvt_blk, nvt_idx);
1268              return -1;
1269         }
1270 
1271         /* F=0 & i=0: Specific NVT notification */
1272 
1273         /* PHYS ring */
1274         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1275             xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1276             return TM_QW3_HV_PHYS;
1277         }
1278 
1279         /* HV POOL ring */
1280         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1281             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1282             return TM_QW2_HV_POOL;
1283         }
1284 
1285         /* OS ring */
1286         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1287             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1288             return TM_QW1_OS;
1289         }
1290     } else {
1291         /* F=1 : User level Event-Based Branch (EBB) notification */
1292 
1293         /* USER ring */
1294         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1295              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1296              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1297              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1298             return TM_QW0_USER;
1299         }
1300     }
1301     return -1;
1302 }
1303 
1304 typedef struct XiveTCTXMatch {
1305     XiveTCTX *tctx;
1306     uint8_t ring;
1307 } XiveTCTXMatch;
1308 
1309 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1310                                  uint8_t nvt_blk, uint32_t nvt_idx,
1311                                  bool cam_ignore, uint8_t priority,
1312                                  uint32_t logic_serv, XiveTCTXMatch *match)
1313 {
1314     CPUState *cs;
1315 
1316     /*
1317      * TODO (PowerNV): handle chip_id overwrite of block field for
1318      * hardwired CAM compares
1319      */
1320 
1321     CPU_FOREACH(cs) {
1322         XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1323         int ring;
1324 
1325         /*
1326          * HW checks that the CPU is enabled in the Physical Thread
1327          * Enable Register (PTER).
1328          */
1329 
1330         /*
1331          * Check the thread context CAM lines and record matches. We
1332          * will handle CPU exception delivery later
1333          */
1334         ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1335                                          cam_ignore, logic_serv);
1336         /*
1337          * Save the context and follow on to catch duplicates, that we
1338          * don't support yet.
1339          */
1340         if (ring != -1) {
1341             if (match->tctx) {
1342                 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1343                               "context NVT %x/%x\n", nvt_blk, nvt_idx);
1344                 return false;
1345             }
1346 
1347             match->ring = ring;
1348             match->tctx = tctx;
1349         }
1350     }
1351 
1352     if (!match->tctx) {
1353         qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1354                       nvt_blk, nvt_idx);
1355         return false;
1356     }
1357 
1358     return true;
1359 }
1360 
1361 /*
1362  * This is our simple Xive Presenter Engine model. It is merged in the
1363  * Router as it does not require an extra object.
1364  *
1365  * It receives notification requests sent by the IVRE to find one
1366  * matching NVT (or more) dispatched on the processor threads. In case
1367  * of a single NVT notification, the process is abreviated and the
1368  * thread is signaled if a match is found. In case of a logical server
1369  * notification (bits ignored at the end of the NVT identifier), the
1370  * IVPE and IVRE select a winning thread using different filters. This
1371  * involves 2 or 3 exchanges on the PowerBus that the model does not
1372  * support.
1373  *
1374  * The parameters represent what is sent on the PowerBus
1375  */
1376 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1377                                   uint8_t nvt_blk, uint32_t nvt_idx,
1378                                   bool cam_ignore, uint8_t priority,
1379                                   uint32_t logic_serv)
1380 {
1381     XiveNVT nvt;
1382     XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1383     bool found;
1384 
1385     /* NVT cache lookup */
1386     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1387         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1388                       nvt_blk, nvt_idx);
1389         return;
1390     }
1391 
1392     if (!xive_nvt_is_valid(&nvt)) {
1393         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1394                       nvt_blk, nvt_idx);
1395         return;
1396     }
1397 
1398     found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1399                                  priority, logic_serv, &match);
1400     if (found) {
1401         ipb_update(&match.tctx->regs[match.ring], priority);
1402         xive_tctx_notify(match.tctx, match.ring);
1403         return;
1404     }
1405 
1406     /* Record the IPB in the associated NVT structure */
1407     ipb_update((uint8_t *) &nvt.w4, priority);
1408     xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1409 
1410     /*
1411      * If no matching NVT is dispatched on a HW thread :
1412      * - update the NVT structure if backlog is activated
1413      * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1414      *   activated
1415      */
1416 }
1417 
1418 /*
1419  * An END trigger can come from an event trigger (IPI or HW) or from
1420  * another chip. We don't model the PowerBus but the END trigger
1421  * message has the same parameters than in the function below.
1422  */
1423 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1424                                    uint32_t end_idx, uint32_t end_data)
1425 {
1426     XiveEND end;
1427     uint8_t priority;
1428     uint8_t format;
1429 
1430     /* END cache lookup */
1431     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1432         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1433                       end_idx);
1434         return;
1435     }
1436 
1437     if (!xive_end_is_valid(&end)) {
1438         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1439                       end_blk, end_idx);
1440         return;
1441     }
1442 
1443     if (xive_end_is_enqueue(&end)) {
1444         xive_end_enqueue(&end, end_data);
1445         /* Enqueuing event data modifies the EQ toggle and index */
1446         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1447     }
1448 
1449     /*
1450      * The W7 format depends on the F bit in W6. It defines the type
1451      * of the notification :
1452      *
1453      *   F=0 : single or multiple NVT notification
1454      *   F=1 : User level Event-Based Branch (EBB) notification, no
1455      *         priority
1456      */
1457     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1458     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1459 
1460     /* The END is masked */
1461     if (format == 0 && priority == 0xff) {
1462         return;
1463     }
1464 
1465     /*
1466      * Check the END ESn (Event State Buffer for notification) for
1467      * even futher coalescing in the Router
1468      */
1469     if (!xive_end_is_notify(&end)) {
1470         uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1471         bool notify = xive_esb_trigger(&pq);
1472 
1473         if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1474             end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1475             xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1476         }
1477 
1478         /* ESn[Q]=1 : end of notification */
1479         if (!notify) {
1480             return;
1481         }
1482     }
1483 
1484     /*
1485      * Follows IVPE notification
1486      */
1487     xive_presenter_notify(xrtr, format,
1488                           xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1489                           xive_get_field32(END_W6_NVT_INDEX, end.w6),
1490                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1491                           priority,
1492                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1493 
1494     /* TODO: Auto EOI. */
1495 }
1496 
1497 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1498 {
1499     XiveRouter *xrtr = XIVE_ROUTER(xn);
1500     uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1501     uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1502     XiveEAS eas;
1503 
1504     /* EAS cache lookup */
1505     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1506         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1507         return;
1508     }
1509 
1510     /*
1511      * The IVRE checks the State Bit Cache at this point. We skip the
1512      * SBC lookup because the state bits of the sources are modeled
1513      * internally in QEMU.
1514      */
1515 
1516     if (!xive_eas_is_valid(&eas)) {
1517         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1518         return;
1519     }
1520 
1521     if (xive_eas_is_masked(&eas)) {
1522         /* Notification completed */
1523         return;
1524     }
1525 
1526     /*
1527      * The event trigger becomes an END trigger
1528      */
1529     xive_router_end_notify(xrtr,
1530                            xive_get_field64(EAS_END_BLOCK, eas.w),
1531                            xive_get_field64(EAS_END_INDEX, eas.w),
1532                            xive_get_field64(EAS_END_DATA,  eas.w));
1533 }
1534 
1535 static void xive_router_class_init(ObjectClass *klass, void *data)
1536 {
1537     DeviceClass *dc = DEVICE_CLASS(klass);
1538     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1539 
1540     dc->desc    = "XIVE Router Engine";
1541     xnc->notify = xive_router_notify;
1542 }
1543 
1544 static const TypeInfo xive_router_info = {
1545     .name          = TYPE_XIVE_ROUTER,
1546     .parent        = TYPE_SYS_BUS_DEVICE,
1547     .abstract      = true,
1548     .class_size    = sizeof(XiveRouterClass),
1549     .class_init    = xive_router_class_init,
1550     .interfaces    = (InterfaceInfo[]) {
1551         { TYPE_XIVE_NOTIFIER },
1552         { }
1553     }
1554 };
1555 
1556 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1557 {
1558     if (!xive_eas_is_valid(eas)) {
1559         return;
1560     }
1561 
1562     monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1563                    lisn, xive_eas_is_masked(eas) ? "M" : " ",
1564                    (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1565                    (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1566                    (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1567 }
1568 
1569 /*
1570  * END ESB MMIO loads
1571  */
1572 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1573 {
1574     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1575     uint32_t offset = addr & 0xFFF;
1576     uint8_t end_blk;
1577     uint32_t end_idx;
1578     XiveEND end;
1579     uint32_t end_esmask;
1580     uint8_t pq;
1581     uint64_t ret = -1;
1582 
1583     end_blk = xsrc->block_id;
1584     end_idx = addr >> (xsrc->esb_shift + 1);
1585 
1586     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1587         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1588                       end_idx);
1589         return -1;
1590     }
1591 
1592     if (!xive_end_is_valid(&end)) {
1593         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1594                       end_blk, end_idx);
1595         return -1;
1596     }
1597 
1598     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1599     pq = xive_get_field32(end_esmask, end.w1);
1600 
1601     switch (offset) {
1602     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1603         ret = xive_esb_eoi(&pq);
1604 
1605         /* Forward the source event notification for routing ?? */
1606         break;
1607 
1608     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1609         ret = pq;
1610         break;
1611 
1612     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1613     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1614     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1615     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1616         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1617         break;
1618     default:
1619         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1620                       offset);
1621         return -1;
1622     }
1623 
1624     if (pq != xive_get_field32(end_esmask, end.w1)) {
1625         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1626         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1627     }
1628 
1629     return ret;
1630 }
1631 
1632 /*
1633  * END ESB MMIO stores are invalid
1634  */
1635 static void xive_end_source_write(void *opaque, hwaddr addr,
1636                                   uint64_t value, unsigned size)
1637 {
1638     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1639                   HWADDR_PRIx"\n", addr);
1640 }
1641 
1642 static const MemoryRegionOps xive_end_source_ops = {
1643     .read = xive_end_source_read,
1644     .write = xive_end_source_write,
1645     .endianness = DEVICE_BIG_ENDIAN,
1646     .valid = {
1647         .min_access_size = 8,
1648         .max_access_size = 8,
1649     },
1650     .impl = {
1651         .min_access_size = 8,
1652         .max_access_size = 8,
1653     },
1654 };
1655 
1656 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1657 {
1658     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1659     Object *obj;
1660     Error *local_err = NULL;
1661 
1662     obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1663     if (!obj) {
1664         error_propagate(errp, local_err);
1665         error_prepend(errp, "required link 'xive' not found: ");
1666         return;
1667     }
1668 
1669     xsrc->xrtr = XIVE_ROUTER(obj);
1670 
1671     if (!xsrc->nr_ends) {
1672         error_setg(errp, "Number of interrupt needs to be greater than 0");
1673         return;
1674     }
1675 
1676     if (xsrc->esb_shift != XIVE_ESB_4K &&
1677         xsrc->esb_shift != XIVE_ESB_64K) {
1678         error_setg(errp, "Invalid ESB shift setting");
1679         return;
1680     }
1681 
1682     /*
1683      * Each END is assigned an even/odd pair of MMIO pages, the even page
1684      * manages the ESn field while the odd page manages the ESe field.
1685      */
1686     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1687                           &xive_end_source_ops, xsrc, "xive.end",
1688                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1689 }
1690 
1691 static Property xive_end_source_properties[] = {
1692     DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1693     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1694     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1695     DEFINE_PROP_END_OF_LIST(),
1696 };
1697 
1698 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1699 {
1700     DeviceClass *dc = DEVICE_CLASS(klass);
1701 
1702     dc->desc    = "XIVE END Source";
1703     dc->props   = xive_end_source_properties;
1704     dc->realize = xive_end_source_realize;
1705 }
1706 
1707 static const TypeInfo xive_end_source_info = {
1708     .name          = TYPE_XIVE_END_SOURCE,
1709     .parent        = TYPE_DEVICE,
1710     .instance_size = sizeof(XiveENDSource),
1711     .class_init    = xive_end_source_class_init,
1712 };
1713 
1714 /*
1715  * XIVE Notifier
1716  */
1717 static const TypeInfo xive_notifier_info = {
1718     .name = TYPE_XIVE_NOTIFIER,
1719     .parent = TYPE_INTERFACE,
1720     .class_size = sizeof(XiveNotifierClass),
1721 };
1722 
1723 static void xive_register_types(void)
1724 {
1725     type_register_static(&xive_source_info);
1726     type_register_static(&xive_notifier_info);
1727     type_register_static(&xive_router_info);
1728     type_register_static(&xive_end_source_info);
1729     type_register_static(&xive_tctx_info);
1730 }
1731 
1732 type_init(xive_register_types)
1733