xref: /openbmc/qemu/hw/intc/xive.c (revision 261626dce11311ba4e866272c9a2c0990c53d85c)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/module.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "system/cpus.h"
15 #include "system/dma.h"
16 #include "system/reset.h"
17 #include "hw/qdev-properties.h"
18 #include "migration/vmstate.h"
19 #include "hw/irq.h"
20 #include "hw/ppc/xive.h"
21 #include "hw/ppc/xive2.h"
22 #include "hw/ppc/xive_regs.h"
23 #include "trace.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 bool xive_nsr_indicates_exception(uint8_t ring, uint8_t nsr)
29 {
30     switch (ring) {
31     case TM_QW1_OS:
32         return !!(nsr & TM_QW1_NSR_EO);
33     case TM_QW2_HV_POOL:
34     case TM_QW3_HV_PHYS:
35         return !!(nsr & TM_QW3_NSR_HE);
36     default:
37         g_assert_not_reached();
38     }
39 }
40 
41 bool xive_nsr_indicates_group_exception(uint8_t ring, uint8_t nsr)
42 {
43     if ((nsr & TM_NSR_GRP_LVL) > 0) {
44         g_assert(xive_nsr_indicates_exception(ring, nsr));
45         return true;
46     }
47     return false;
48 }
49 
50 uint8_t xive_nsr_exception_ring(uint8_t ring, uint8_t nsr)
51 {
52     /* NSR determines if pool/phys ring is for phys or pool interrupt */
53     if ((ring == TM_QW3_HV_PHYS) || (ring == TM_QW2_HV_POOL)) {
54         uint8_t he = (nsr & TM_QW3_NSR_HE) >> 6;
55 
56         if (he == TM_QW3_NSR_HE_PHYS) {
57             return TM_QW3_HV_PHYS;
58         } else if (he == TM_QW3_NSR_HE_POOL) {
59             return TM_QW2_HV_POOL;
60         } else {
61             /* Don't support LSI mode */
62             g_assert_not_reached();
63         }
64     }
65     return ring;
66 }
67 
68 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
69 {
70         switch (ring) {
71         case TM_QW0_USER:
72                 return 0; /* Not supported */
73         case TM_QW1_OS:
74                 return tctx->os_output;
75         case TM_QW2_HV_POOL:
76         case TM_QW3_HV_PHYS:
77                 return tctx->hv_output;
78         default:
79                 return 0;
80         }
81 }
82 
83 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
84 {
85     uint8_t *regs = &tctx->regs[ring];
86     uint8_t nsr = regs[TM_NSR];
87 
88     qemu_irq_lower(xive_tctx_output(tctx, ring));
89 
90     if (xive_nsr_indicates_exception(ring, nsr)) {
91         uint8_t cppr = regs[TM_PIPR];
92         uint8_t alt_ring;
93         uint8_t *alt_regs;
94 
95         alt_ring = xive_nsr_exception_ring(ring, nsr);
96         alt_regs = &tctx->regs[alt_ring];
97 
98         regs[TM_CPPR] = cppr;
99 
100         /*
101          * If the interrupt was for a specific VP, reset the pending
102          * buffer bit, otherwise clear the logical server indicator
103          */
104         if (!xive_nsr_indicates_group_exception(ring, nsr)) {
105             alt_regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
106         }
107 
108         /* Clear the exception from NSR */
109         regs[TM_NSR] = 0;
110 
111         trace_xive_tctx_accept(tctx->cs->cpu_index, alt_ring,
112                                alt_regs[TM_IPB], regs[TM_PIPR],
113                                regs[TM_CPPR], regs[TM_NSR]);
114     }
115 
116     return ((uint64_t)nsr << 8) | regs[TM_CPPR];
117 }
118 
119 void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring, uint8_t group_level)
120 {
121     /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */
122     uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring;
123     uint8_t *alt_regs = &tctx->regs[alt_ring];
124     uint8_t *regs = &tctx->regs[ring];
125 
126     if (alt_regs[TM_PIPR] < alt_regs[TM_CPPR]) {
127         switch (ring) {
128         case TM_QW1_OS:
129             regs[TM_NSR] = TM_QW1_NSR_EO | (group_level & 0x3F);
130             break;
131         case TM_QW2_HV_POOL:
132             alt_regs[TM_NSR] = (TM_QW3_NSR_HE_POOL << 6) | (group_level & 0x3F);
133             break;
134         case TM_QW3_HV_PHYS:
135             regs[TM_NSR] = (TM_QW3_NSR_HE_PHYS << 6) | (group_level & 0x3F);
136             break;
137         default:
138             g_assert_not_reached();
139         }
140         trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
141                                regs[TM_IPB], alt_regs[TM_PIPR],
142                                alt_regs[TM_CPPR], alt_regs[TM_NSR]);
143         qemu_irq_raise(xive_tctx_output(tctx, ring));
144     } else {
145         alt_regs[TM_NSR] = 0;
146         qemu_irq_lower(xive_tctx_output(tctx, ring));
147     }
148 }
149 
150 void xive_tctx_reset_signal(XiveTCTX *tctx, uint8_t ring)
151 {
152     /*
153      * Lower the External interrupt. Used when pulling a context. It is
154      * necessary to avoid catching it in the higher privilege context. It
155      * should be raised again when re-pushing the lower privilege context.
156      */
157     qemu_irq_lower(xive_tctx_output(tctx, ring));
158 }
159 
160 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
161 {
162     uint8_t *regs = &tctx->regs[ring];
163     uint8_t pipr_min;
164     uint8_t ring_min;
165 
166     trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
167                              regs[TM_IPB], regs[TM_PIPR],
168                              cppr, regs[TM_NSR]);
169 
170     if (cppr > XIVE_PRIORITY_MAX) {
171         cppr = 0xff;
172     }
173 
174     tctx->regs[ring + TM_CPPR] = cppr;
175 
176     /*
177      * Recompute the PIPR based on local pending interrupts.  The PHYS
178      * ring must take the minimum of both the PHYS and POOL PIPR values.
179      */
180     pipr_min = xive_ipb_to_pipr(regs[TM_IPB]);
181     ring_min = ring;
182 
183     /* PHYS updates also depend on POOL values */
184     if (ring == TM_QW3_HV_PHYS) {
185         uint8_t *pool_regs = &tctx->regs[TM_QW2_HV_POOL];
186 
187         /* POOL values only matter if POOL ctx is valid */
188         if (pool_regs[TM_WORD2] & 0x80) {
189 
190             uint8_t pool_pipr = xive_ipb_to_pipr(pool_regs[TM_IPB]);
191 
192             /*
193              * Determine highest priority interrupt and
194              * remember which ring has it.
195              */
196             if (pool_pipr < pipr_min) {
197                 pipr_min = pool_pipr;
198                 ring_min = TM_QW2_HV_POOL;
199             }
200         }
201     }
202 
203     regs[TM_PIPR] = pipr_min;
204 
205     /* CPPR has changed, check if we need to raise a pending exception */
206     xive_tctx_notify(tctx, ring_min, 0);
207 }
208 
209 void xive_tctx_pipr_update(XiveTCTX *tctx, uint8_t ring, uint8_t priority,
210                            uint8_t group_level)
211  {
212     /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */
213     uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring;
214     uint8_t *alt_regs = &tctx->regs[alt_ring];
215     uint8_t *regs = &tctx->regs[ring];
216 
217     if (group_level == 0) {
218         /* VP-specific */
219         regs[TM_IPB] |= xive_priority_to_ipb(priority);
220         alt_regs[TM_PIPR] = xive_ipb_to_pipr(regs[TM_IPB]);
221     } else {
222         /* VP-group */
223         alt_regs[TM_PIPR] = xive_priority_to_pipr(priority);
224     }
225     xive_tctx_notify(tctx, ring, group_level);
226  }
227 
228 /*
229  * XIVE Thread Interrupt Management Area (TIMA)
230  */
231 
232 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
233                                 hwaddr offset, uint64_t value, unsigned size)
234 {
235     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
236 }
237 
238 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
239                                    hwaddr offset, unsigned size)
240 {
241     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
242 }
243 
244 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
245                                       hwaddr offset, unsigned size)
246 {
247     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
248     uint32_t qw2w2;
249 
250     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
251     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
252     return qw2w2;
253 }
254 
255 static uint64_t xive_tm_pull_phys_ctx(XivePresenter *xptr, XiveTCTX *tctx,
256                                       hwaddr offset, unsigned size)
257 {
258     uint8_t qw3b8_prev = tctx->regs[TM_QW3_HV_PHYS + TM_WORD2];
259     uint8_t qw3b8;
260 
261     qw3b8 = qw3b8_prev & ~TM_QW3B8_VT;
262     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = qw3b8;
263     return qw3b8;
264 }
265 
266 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
267                             uint64_t value, unsigned size)
268 {
269     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
270 }
271 
272 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
273                                 hwaddr offset, unsigned size)
274 {
275     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
276 }
277 
278 /*
279  * Define an access map for each page of the TIMA that we will use in
280  * the memory region ops to filter values when doing loads and stores
281  * of raw registers values
282  *
283  * Registers accessibility bits :
284  *
285  *    0x0 - no access
286  *    0x1 - write only
287  *    0x2 - read only
288  *    0x3 - read/write
289  */
290 
291 static const uint8_t xive_tm_hw_view[] = {
292     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
293     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
294     0, 0, 3, 3,   0, 3, 3, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
295     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
296 };
297 
298 static const uint8_t xive_tm_hv_view[] = {
299     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
300     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
301     0, 0, 3, 3,   0, 3, 3, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
302     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
303 };
304 
305 static const uint8_t xive_tm_os_view[] = {
306     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
307     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
308     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
309     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
310 };
311 
312 static const uint8_t xive_tm_user_view[] = {
313     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
314     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
315     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
316     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
317 };
318 
319 /*
320  * Overall TIMA access map for the thread interrupt management context
321  * registers
322  */
323 static const uint8_t *xive_tm_views[] = {
324     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
325     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
326     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
327     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
328 };
329 
330 /*
331  * Computes a register access mask for a given offset in the TIMA
332  */
333 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
334 {
335     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
336     uint8_t reg_offset = offset & TM_REG_OFFSET;
337     uint8_t reg_mask = write ? 0x1 : 0x2;
338     uint64_t mask = 0x0;
339     int i;
340 
341     for (i = 0; i < size; i++) {
342         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
343             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
344         }
345     }
346 
347     return mask;
348 }
349 
350 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
351                               unsigned size)
352 {
353     uint8_t ring_offset = offset & TM_RING_OFFSET;
354     uint8_t reg_offset = offset & TM_REG_OFFSET;
355     uint64_t mask = xive_tm_mask(offset, size, true);
356     int i;
357 
358     /*
359      * Only 4 or 8 bytes stores are allowed and the User ring is
360      * excluded
361      */
362     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
363         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
364                       HWADDR_PRIx" size %d\n", offset, size);
365         return;
366     }
367 
368     /*
369      * Use the register offset for the raw values and filter out
370      * reserved values
371      */
372     for (i = 0; i < size; i++) {
373         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
374         if (byte_mask) {
375             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
376                 byte_mask;
377         }
378     }
379 }
380 
381 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
382 {
383     uint8_t ring_offset = offset & TM_RING_OFFSET;
384     uint8_t reg_offset = offset & TM_REG_OFFSET;
385     uint64_t mask = xive_tm_mask(offset, size, false);
386     uint64_t ret;
387     int i;
388 
389     /*
390      * Only 4 or 8 bytes loads are allowed and the User ring is
391      * excluded
392      */
393     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
394         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
395                       HWADDR_PRIx" size %d\n", offset, size);
396         return -1;
397     }
398 
399     /* Use the register offset for the raw values */
400     ret = 0;
401     for (i = 0; i < size; i++) {
402         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
403     }
404 
405     /* filter out reserved values */
406     return ret & mask;
407 }
408 
409 /*
410  * The TM context is mapped twice within each page. Stores and loads
411  * to the first mapping below 2K write and read the specified values
412  * without modification. The second mapping above 2K performs specific
413  * state changes (side effects) in addition to setting/returning the
414  * interrupt management area context of the processor thread.
415  */
416 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
417                                    hwaddr offset, unsigned size)
418 {
419     return xive_tctx_accept(tctx, TM_QW1_OS);
420 }
421 
422 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
423                                 hwaddr offset, uint64_t value, unsigned size)
424 {
425     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
426 }
427 
428 static void xive_tctx_set_lgs(XiveTCTX *tctx, uint8_t ring, uint8_t lgs)
429 {
430     uint8_t *regs = &tctx->regs[ring];
431 
432     regs[TM_LGS] = lgs;
433 }
434 
435 static void xive_tm_set_os_lgs(XivePresenter *xptr, XiveTCTX *tctx,
436                           hwaddr offset, uint64_t value, unsigned size)
437 {
438     xive_tctx_set_lgs(tctx, TM_QW1_OS, value & 0xff);
439 }
440 
441 /*
442  * Adjust the PIPR to allow a CPU to process event queues of other
443  * priorities during one physical interrupt cycle.
444  */
445 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
446                                    hwaddr offset, uint64_t value, unsigned size)
447 {
448     xive_tctx_pipr_update(tctx, TM_QW1_OS, value & 0xff, 0);
449 }
450 
451 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
452                                uint32_t *nvt_idx, bool *vo)
453 {
454     if (nvt_blk) {
455         *nvt_blk = xive_nvt_blk(cam);
456     }
457     if (nvt_idx) {
458         *nvt_idx = xive_nvt_idx(cam);
459     }
460     if (vo) {
461         *vo = !!(cam & TM_QW1W2_VO);
462     }
463 }
464 
465 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
466                                      uint32_t *nvt_idx, bool *vo)
467 {
468     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
469     uint32_t cam = be32_to_cpu(qw1w2);
470 
471     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
472     return qw1w2;
473 }
474 
475 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
476 {
477     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
478 }
479 
480 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
481                                     hwaddr offset, unsigned size)
482 {
483     uint32_t qw1w2;
484     uint32_t qw1w2_new;
485     uint8_t nvt_blk;
486     uint32_t nvt_idx;
487     bool vo;
488 
489     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
490 
491     if (!vo) {
492         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
493                       nvt_blk, nvt_idx);
494     }
495 
496     /* Invalidate CAM line */
497     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
498     xive_tctx_set_os_cam(tctx, qw1w2_new);
499 
500     xive_tctx_reset_signal(tctx, TM_QW1_OS);
501     return qw1w2;
502 }
503 
504 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
505                                   uint8_t nvt_blk, uint32_t nvt_idx)
506 {
507     XiveNVT nvt;
508     uint8_t ipb;
509 
510     /*
511      * Grab the associated NVT to pull the pending bits, and merge
512      * them with the IPB of the thread interrupt context registers
513      */
514     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
515         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
516                           nvt_blk, nvt_idx);
517         return;
518     }
519 
520     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
521 
522     if (ipb) {
523         /* Reset the NVT value */
524         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
525         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
526 
527         uint8_t *regs = &tctx->regs[TM_QW1_OS];
528         regs[TM_IPB] |= ipb;
529     }
530 
531     /*
532      * Always call xive_tctx_pipr_update(). Even if there were no
533      * escalation triggered, there could be a pending interrupt which
534      * was saved when the context was pulled and that we need to take
535      * into account by recalculating the PIPR (which is not
536      * saved/restored).
537      * It will also raise the External interrupt signal if needed.
538      */
539     xive_tctx_pipr_update(tctx, TM_QW1_OS, 0xFF, 0); /* fxb */
540 }
541 
542 /*
543  * Updating the OS CAM line can trigger a resend of interrupt
544  */
545 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
546                                 hwaddr offset, uint64_t value, unsigned size)
547 {
548     uint32_t cam = value;
549     uint32_t qw1w2 = cpu_to_be32(cam);
550     uint8_t nvt_blk;
551     uint32_t nvt_idx;
552     bool vo;
553 
554     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
555 
556     /* First update the registers */
557     xive_tctx_set_os_cam(tctx, qw1w2);
558 
559     /* Check the interrupt pending bits */
560     if (vo) {
561         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
562     }
563 }
564 
565 static uint32_t xive_presenter_get_config(XivePresenter *xptr)
566 {
567     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
568 
569     return xpc->get_config(xptr);
570 }
571 
572 /*
573  * Define a mapping of "special" operations depending on the TIMA page
574  * offset and the size of the operation.
575  */
576 typedef struct XiveTmOp {
577     uint8_t  page_offset;
578     uint32_t op_offset;
579     unsigned size;
580     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
581                               hwaddr offset,
582                               uint64_t value, unsigned size);
583     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
584                              unsigned size);
585 } XiveTmOp;
586 
587 static const XiveTmOp xive_tm_operations[] = {
588     /*
589      * MMIOs below 2K : raw values and special operations without side
590      * effects
591      */
592     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,       1, xive_tm_set_os_cppr,
593                                                      NULL },
594     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      4, xive_tm_push_os_ctx,
595                                                      NULL },
596     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR,  1, xive_tm_set_hv_cppr,
597                                                      NULL },
598     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push,
599                                                      NULL },
600     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL,
601                                                      xive_tm_vt_poll },
602 
603     /* MMIOs above 2K : special operations with side effects */
604     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,         2, NULL,
605                                                      xive_tm_ack_os_reg },
606     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING,     1, xive_tm_set_os_pending,
607                                                      NULL },
608     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        4, NULL,
609                                                      xive_tm_pull_os_ctx },
610     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        8, NULL,
611                                                      xive_tm_pull_os_ctx },
612     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,         2, NULL,
613                                                      xive_tm_ack_hv_reg },
614     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      4, NULL,
615                                                      xive_tm_pull_pool_ctx },
616     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      8, NULL,
617                                                      xive_tm_pull_pool_ctx },
618     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX,      1, NULL,
619                                                      xive_tm_pull_phys_ctx },
620 };
621 
622 static const XiveTmOp xive2_tm_operations[] = {
623     /*
624      * MMIOs below 2K : raw values and special operations without side
625      * effects
626      */
627     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,       1, xive2_tm_set_os_cppr,
628                                                      NULL },
629     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      4, xive2_tm_push_os_ctx,
630                                                      NULL },
631     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      8, xive2_tm_push_os_ctx,
632                                                      NULL },
633     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_LGS,        1, xive_tm_set_os_lgs,
634                                                      NULL },
635     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR,  1, xive2_tm_set_hv_cppr,
636                                                      NULL },
637     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push,
638                                                      NULL },
639     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL,
640                                                      xive_tm_vt_poll },
641     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_T,     1, xive2_tm_set_hv_target,
642                                                      NULL },
643 
644     /* MMIOs above 2K : special operations with side effects */
645     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,         2, NULL,
646                                                      xive_tm_ack_os_reg },
647     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING,     1, xive_tm_set_os_pending,
648                                                      NULL },
649     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_G2,     4, NULL,
650                                                      xive2_tm_pull_os_ctx },
651     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        4, NULL,
652                                                      xive2_tm_pull_os_ctx },
653     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        8, NULL,
654                                                      xive2_tm_pull_os_ctx },
655     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,         2, NULL,
656                                                      xive_tm_ack_hv_reg },
657     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX_G2,   4, NULL,
658                                                      xive_tm_pull_pool_ctx },
659     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      4, NULL,
660                                                      xive_tm_pull_pool_ctx },
661     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      8, NULL,
662                                                      xive_tm_pull_pool_ctx },
663     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_OL,     1, xive2_tm_pull_os_ctx_ol,
664                                                      NULL },
665     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_G2,   4, NULL,
666                                                      xive_tm_pull_phys_ctx },
667     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX,      1, NULL,
668                                                      xive_tm_pull_phys_ctx },
669     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_OL,   1, xive2_tm_pull_phys_ctx_ol,
670                                                      NULL },
671 };
672 
673 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset,
674                                        unsigned size, bool write)
675 {
676     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
677     uint32_t op_offset = offset & TM_ADDRESS_MASK;
678     const XiveTmOp *tm_ops;
679     int i, tm_ops_count;
680     uint32_t cfg;
681 
682     cfg = xive_presenter_get_config(xptr);
683     if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) {
684         tm_ops = xive_tm_operations;
685         tm_ops_count = ARRAY_SIZE(xive_tm_operations);
686     } else {
687         tm_ops = xive2_tm_operations;
688         tm_ops_count = ARRAY_SIZE(xive2_tm_operations);
689     }
690 
691     for (i = 0; i < tm_ops_count; i++) {
692         const XiveTmOp *xto = &tm_ops[i];
693 
694         /* Accesses done from a more privileged TIMA page is allowed */
695         if (xto->page_offset >= page_offset &&
696             xto->op_offset == op_offset &&
697             xto->size == size &&
698             ((write && xto->write_handler) || (!write && xto->read_handler))) {
699             return xto;
700         }
701     }
702     return NULL;
703 }
704 
705 /*
706  * TIMA MMIO handlers
707  */
708 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
709                         uint64_t value, unsigned size)
710 {
711     const XiveTmOp *xto;
712 
713     trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value);
714 
715     /*
716      * TODO: check V bit in Q[0-3]W2
717      */
718 
719     /*
720      * First, check for special operations in the 2K region
721      */
722     if (offset & TM_SPECIAL_OP) {
723         xto = xive_tm_find_op(tctx->xptr, offset, size, true);
724         if (!xto) {
725             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
726                           "@%"HWADDR_PRIx" size %d\n", offset, size);
727         } else {
728             xto->write_handler(xptr, tctx, offset, value, size);
729         }
730         return;
731     }
732 
733     /*
734      * Then, for special operations in the region below 2K.
735      */
736     xto = xive_tm_find_op(tctx->xptr, offset, size, true);
737     if (xto) {
738         xto->write_handler(xptr, tctx, offset, value, size);
739         return;
740     }
741 
742     /*
743      * Finish with raw access to the register values
744      */
745     xive_tm_raw_write(tctx, offset, value, size);
746 }
747 
748 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
749                            unsigned size)
750 {
751     const XiveTmOp *xto;
752     uint64_t ret;
753 
754     /*
755      * TODO: check V bit in Q[0-3]W2
756      */
757 
758     /*
759      * First, check for special operations in the 2K region
760      */
761     if (offset & TM_SPECIAL_OP) {
762         xto = xive_tm_find_op(tctx->xptr, offset, size, false);
763         if (!xto) {
764             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
765                           "@%"HWADDR_PRIx" size %d\n", offset, size);
766             return -1;
767         }
768         ret = xto->read_handler(xptr, tctx, offset, size);
769         goto out;
770     }
771 
772     /*
773      * Then, for special operations in the region below 2K.
774      */
775     xto = xive_tm_find_op(tctx->xptr, offset, size, false);
776     if (xto) {
777         ret = xto->read_handler(xptr, tctx, offset, size);
778         goto out;
779     }
780 
781     /*
782      * Finish with raw access to the register values
783      */
784     ret = xive_tm_raw_read(tctx, offset, size);
785 out:
786     trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret);
787     return ret;
788 }
789 
790 static char *xive_tctx_ring_print(uint8_t *ring)
791 {
792     uint32_t w2 = xive_tctx_word2(ring);
793 
794     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
795                    "%02x  %02x   %02x  %08x",
796                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
797                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
798                    be32_to_cpu(w2));
799 }
800 
801 static const char * const xive_tctx_ring_names[] = {
802     "USER", "OS", "POOL", "PHYS",
803 };
804 
805 /*
806  * kvm_irqchip_in_kernel() will cause the compiler to turn this
807  * info a nop if CONFIG_KVM isn't defined.
808  */
809 #define xive_in_kernel(xptr)                                            \
810     (kvm_irqchip_in_kernel() &&                                         \
811      ({                                                                 \
812          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
813          xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
814      }))
815 
816 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf)
817 {
818     int cpu_index;
819     int i;
820 
821     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
822      * are hot plugged or unplugged.
823      */
824     if (!tctx) {
825         return;
826     }
827 
828     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
829 
830     if (xive_in_kernel(tctx->xptr)) {
831         Error *local_err = NULL;
832 
833         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
834         if (local_err) {
835             error_report_err(local_err);
836             return;
837         }
838     }
839 
840     if (xive_presenter_get_config(tctx->xptr) & XIVE_PRESENTER_GEN1_TIMA_OS) {
841         g_string_append_printf(buf, "CPU[%04x]:   "
842                                "QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
843                                "  W2\n", cpu_index);
844     } else {
845         g_string_append_printf(buf, "CPU[%04x]:   "
846                                "QW   NSR CPPR IPB LSMFB   -  LGS  T  PIPR"
847                                "  W2\n", cpu_index);
848     }
849 
850     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
851         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
852         g_string_append_printf(buf, "CPU[%04x]: %4s    %s\n",
853                                cpu_index, xive_tctx_ring_names[i], s);
854         g_free(s);
855     }
856 }
857 
858 void xive_tctx_reset(XiveTCTX *tctx)
859 {
860     memset(tctx->regs, 0, sizeof(tctx->regs));
861 
862     /* Set some defaults */
863     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
864     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
865     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
866     if (!(xive_presenter_get_config(tctx->xptr) &
867           XIVE_PRESENTER_GEN1_TIMA_OS)) {
868         tctx->regs[TM_QW1_OS + TM_OGEN] = 2;
869     }
870 
871     /*
872      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
873      * CPPR is first set.
874      */
875     tctx->regs[TM_QW1_OS + TM_PIPR] =
876         xive_ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
877     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
878         xive_ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
879 }
880 
881 static void xive_tctx_realize(DeviceState *dev, Error **errp)
882 {
883     XiveTCTX *tctx = XIVE_TCTX(dev);
884     PowerPCCPU *cpu;
885     CPUPPCState *env;
886 
887     assert(tctx->cs);
888     assert(tctx->xptr);
889 
890     cpu = POWERPC_CPU(tctx->cs);
891     env = &cpu->env;
892     switch (PPC_INPUT(env)) {
893     case PPC_FLAGS_INPUT_POWER9:
894         tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
895         tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
896         break;
897 
898     default:
899         error_setg(errp, "XIVE interrupt controller does not support "
900                    "this CPU bus model");
901         return;
902     }
903 
904     /* Connect the presenter to the VCPU (required for CPU hotplug) */
905     if (xive_in_kernel(tctx->xptr)) {
906         if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
907             return;
908         }
909     }
910 }
911 
912 static int vmstate_xive_tctx_pre_save(void *opaque)
913 {
914     XiveTCTX *tctx = XIVE_TCTX(opaque);
915     Error *local_err = NULL;
916     int ret;
917 
918     if (xive_in_kernel(tctx->xptr)) {
919         ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
920         if (ret < 0) {
921             error_report_err(local_err);
922             return ret;
923         }
924     }
925 
926     return 0;
927 }
928 
929 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
930 {
931     XiveTCTX *tctx = XIVE_TCTX(opaque);
932     Error *local_err = NULL;
933     int ret;
934 
935     if (xive_in_kernel(tctx->xptr)) {
936         /*
937          * Required for hotplugged CPU, for which the state comes
938          * after all states of the machine.
939          */
940         ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
941         if (ret < 0) {
942             error_report_err(local_err);
943             return ret;
944         }
945     }
946 
947     return 0;
948 }
949 
950 static const VMStateDescription vmstate_xive_tctx = {
951     .name = TYPE_XIVE_TCTX,
952     .version_id = 1,
953     .minimum_version_id = 1,
954     .pre_save = vmstate_xive_tctx_pre_save,
955     .post_load = vmstate_xive_tctx_post_load,
956     .fields = (const VMStateField[]) {
957         VMSTATE_BUFFER(regs, XiveTCTX),
958         VMSTATE_END_OF_LIST()
959     },
960 };
961 
962 static const Property xive_tctx_properties[] = {
963     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
964     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
965                      XivePresenter *),
966 };
967 
968 static void xive_tctx_class_init(ObjectClass *klass, const void *data)
969 {
970     DeviceClass *dc = DEVICE_CLASS(klass);
971 
972     dc->desc = "XIVE Interrupt Thread Context";
973     dc->realize = xive_tctx_realize;
974     dc->vmsd = &vmstate_xive_tctx;
975     device_class_set_props(dc, xive_tctx_properties);
976     /*
977      * Reason: part of XIVE interrupt controller, needs to be wired up
978      * by xive_tctx_create().
979      */
980     dc->user_creatable = false;
981 }
982 
983 static const TypeInfo xive_tctx_info = {
984     .name          = TYPE_XIVE_TCTX,
985     .parent        = TYPE_DEVICE,
986     .instance_size = sizeof(XiveTCTX),
987     .class_init    = xive_tctx_class_init,
988 };
989 
990 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
991 {
992     Object *obj;
993 
994     obj = object_new(TYPE_XIVE_TCTX);
995     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
996     object_unref(obj);
997     object_property_set_link(obj, "cpu", cpu, &error_abort);
998     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
999     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1000         object_unparent(obj);
1001         return NULL;
1002     }
1003     return obj;
1004 }
1005 
1006 void xive_tctx_destroy(XiveTCTX *tctx)
1007 {
1008     Object *obj = OBJECT(tctx);
1009 
1010     object_unparent(obj);
1011 }
1012 
1013 /*
1014  * XIVE ESB helpers
1015  */
1016 
1017 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
1018 {
1019     uint8_t old_pq = *pq & 0x3;
1020 
1021     *pq &= ~0x3;
1022     *pq |= value & 0x3;
1023 
1024     return old_pq;
1025 }
1026 
1027 bool xive_esb_trigger(uint8_t *pq)
1028 {
1029     uint8_t old_pq = *pq & 0x3;
1030 
1031     switch (old_pq) {
1032     case XIVE_ESB_RESET:
1033         xive_esb_set(pq, XIVE_ESB_PENDING);
1034         return true;
1035     case XIVE_ESB_PENDING:
1036     case XIVE_ESB_QUEUED:
1037         xive_esb_set(pq, XIVE_ESB_QUEUED);
1038         return false;
1039     case XIVE_ESB_OFF:
1040         xive_esb_set(pq, XIVE_ESB_OFF);
1041         return false;
1042     default:
1043          g_assert_not_reached();
1044     }
1045 }
1046 
1047 bool xive_esb_eoi(uint8_t *pq)
1048 {
1049     uint8_t old_pq = *pq & 0x3;
1050 
1051     switch (old_pq) {
1052     case XIVE_ESB_RESET:
1053     case XIVE_ESB_PENDING:
1054         xive_esb_set(pq, XIVE_ESB_RESET);
1055         return false;
1056     case XIVE_ESB_QUEUED:
1057         xive_esb_set(pq, XIVE_ESB_PENDING);
1058         return true;
1059     case XIVE_ESB_OFF:
1060         xive_esb_set(pq, XIVE_ESB_OFF);
1061         return false;
1062     default:
1063          g_assert_not_reached();
1064     }
1065 }
1066 
1067 /*
1068  * XIVE Interrupt Source (or IVSE)
1069  */
1070 
1071 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
1072 {
1073     assert(srcno < xsrc->nr_irqs);
1074 
1075     return xsrc->status[srcno] & 0x3;
1076 }
1077 
1078 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
1079 {
1080     assert(srcno < xsrc->nr_irqs);
1081 
1082     return xive_esb_set(&xsrc->status[srcno], pq);
1083 }
1084 
1085 /*
1086  * Returns whether the event notification should be forwarded.
1087  */
1088 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
1089 {
1090     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
1091 
1092     xive_source_set_asserted(xsrc, srcno, true);
1093 
1094     switch (old_pq) {
1095     case XIVE_ESB_RESET:
1096         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
1097         return true;
1098     default:
1099         return false;
1100     }
1101 }
1102 
1103 /*
1104  * Sources can be configured with PQ offloading in which case the check
1105  * on the PQ state bits of MSIs is disabled
1106  */
1107 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
1108 {
1109     return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
1110         !xive_source_irq_is_lsi(xsrc, srcno);
1111 }
1112 
1113 /*
1114  * Returns whether the event notification should be forwarded.
1115  */
1116 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
1117 {
1118     bool ret;
1119 
1120     assert(srcno < xsrc->nr_irqs);
1121 
1122     if (xive_source_esb_disabled(xsrc, srcno)) {
1123         return true;
1124     }
1125 
1126     ret = xive_esb_trigger(&xsrc->status[srcno]);
1127 
1128     if (xive_source_irq_is_lsi(xsrc, srcno) &&
1129         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
1130         qemu_log_mask(LOG_GUEST_ERROR,
1131                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
1132     }
1133 
1134     return ret;
1135 }
1136 
1137 /*
1138  * Returns whether the event notification should be forwarded.
1139  */
1140 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
1141 {
1142     bool ret;
1143 
1144     assert(srcno < xsrc->nr_irqs);
1145 
1146     if (xive_source_esb_disabled(xsrc, srcno)) {
1147         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
1148         return false;
1149     }
1150 
1151     ret = xive_esb_eoi(&xsrc->status[srcno]);
1152 
1153     /*
1154      * LSI sources do not set the Q bit but they can still be
1155      * asserted, in which case we should forward a new event
1156      * notification
1157      */
1158     if (xive_source_irq_is_lsi(xsrc, srcno) &&
1159         xive_source_is_asserted(xsrc, srcno)) {
1160         ret = xive_source_lsi_trigger(xsrc, srcno);
1161     }
1162 
1163     return ret;
1164 }
1165 
1166 /*
1167  * Forward the source event notification to the Router
1168  */
1169 static void xive_source_notify(XiveSource *xsrc, int srcno)
1170 {
1171     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
1172     bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
1173 
1174     if (xnc->notify) {
1175         xnc->notify(xsrc->xive, srcno, pq_checked);
1176     }
1177 }
1178 
1179 /*
1180  * In a two pages ESB MMIO setting, even page is the trigger page, odd
1181  * page is for management
1182  */
1183 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
1184 {
1185     return !((addr >> shift) & 1);
1186 }
1187 
1188 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
1189 {
1190     return xive_source_esb_has_2page(xsrc) &&
1191         addr_is_even(addr, xsrc->esb_shift - 1);
1192 }
1193 
1194 /*
1195  * ESB MMIO loads
1196  *                      Trigger page    Management/EOI page
1197  *
1198  * ESB MMIO setting     2 pages         1 or 2 pages
1199  *
1200  * 0x000 .. 0x3FF       -1              EOI and return 0|1
1201  * 0x400 .. 0x7FF       -1              EOI and return 0|1
1202  * 0x800 .. 0xBFF       -1              return PQ
1203  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
1204  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
1205  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
1206  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
1207  */
1208 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1209 {
1210     XiveSource *xsrc = XIVE_SOURCE(opaque);
1211     uint32_t offset = addr & 0xFFF;
1212     uint32_t srcno = addr >> xsrc->esb_shift;
1213     uint64_t ret = -1;
1214 
1215     /* In a two pages ESB MMIO setting, trigger page should not be read */
1216     if (xive_source_is_trigger_page(xsrc, addr)) {
1217         qemu_log_mask(LOG_GUEST_ERROR,
1218                       "XIVE: invalid load on IRQ %d trigger page at "
1219                       "0x%"HWADDR_PRIx"\n", srcno, addr);
1220         return -1;
1221     }
1222 
1223     switch (offset) {
1224     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1225         ret = xive_source_esb_eoi(xsrc, srcno);
1226 
1227         /* Forward the source event notification for routing */
1228         if (ret) {
1229             xive_source_notify(xsrc, srcno);
1230         }
1231         break;
1232 
1233     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1234         ret = xive_source_esb_get(xsrc, srcno);
1235         break;
1236 
1237     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1238     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1239     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1240     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1241         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1242         break;
1243     default:
1244         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1245                       offset);
1246     }
1247 
1248     trace_xive_source_esb_read(addr, srcno, ret);
1249 
1250     return ret;
1251 }
1252 
1253 /*
1254  * ESB MMIO stores
1255  *                      Trigger page    Management/EOI page
1256  *
1257  * ESB MMIO setting     2 pages         1 or 2 pages
1258  *
1259  * 0x000 .. 0x3FF       Trigger         Trigger
1260  * 0x400 .. 0x7FF       Trigger         EOI
1261  * 0x800 .. 0xBFF       Trigger         undefined
1262  * 0xC00 .. 0xCFF       Trigger         PQ=00
1263  * 0xD00 .. 0xDFF       Trigger         PQ=01
1264  * 0xE00 .. 0xDFF       Trigger         PQ=10
1265  * 0xF00 .. 0xDFF       Trigger         PQ=11
1266  */
1267 static void xive_source_esb_write(void *opaque, hwaddr addr,
1268                                   uint64_t value, unsigned size)
1269 {
1270     XiveSource *xsrc = XIVE_SOURCE(opaque);
1271     uint32_t offset = addr & 0xFFF;
1272     uint32_t srcno = addr >> xsrc->esb_shift;
1273     bool notify = false;
1274 
1275     trace_xive_source_esb_write(addr, srcno, value);
1276 
1277     /* In a two pages ESB MMIO setting, trigger page only triggers */
1278     if (xive_source_is_trigger_page(xsrc, addr)) {
1279         notify = xive_source_esb_trigger(xsrc, srcno);
1280         goto out;
1281     }
1282 
1283     switch (offset) {
1284     case 0 ... 0x3FF:
1285         notify = xive_source_esb_trigger(xsrc, srcno);
1286         break;
1287 
1288     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1289         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1290             qemu_log_mask(LOG_GUEST_ERROR,
1291                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1292             return;
1293         }
1294 
1295         notify = xive_source_esb_eoi(xsrc, srcno);
1296         break;
1297 
1298     /*
1299      * This is an internal offset used to inject triggers when the PQ
1300      * state bits are not controlled locally. Such as for LSIs when
1301      * under ABT mode.
1302      */
1303     case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1304         notify = true;
1305         break;
1306 
1307     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1308     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1309     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1310     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1311         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1312         break;
1313 
1314     default:
1315         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1316                       offset);
1317         return;
1318     }
1319 
1320 out:
1321     /* Forward the source event notification for routing */
1322     if (notify) {
1323         xive_source_notify(xsrc, srcno);
1324     }
1325 }
1326 
1327 static const MemoryRegionOps xive_source_esb_ops = {
1328     .read = xive_source_esb_read,
1329     .write = xive_source_esb_write,
1330     .endianness = DEVICE_BIG_ENDIAN,
1331     .valid = {
1332         .min_access_size = 1,
1333         .max_access_size = 8,
1334     },
1335     .impl = {
1336         .min_access_size = 1,
1337         .max_access_size = 8,
1338     },
1339 };
1340 
1341 void xive_source_set_irq(void *opaque, int srcno, int val)
1342 {
1343     XiveSource *xsrc = XIVE_SOURCE(opaque);
1344     bool notify = false;
1345 
1346     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1347         if (val) {
1348             notify = xive_source_lsi_trigger(xsrc, srcno);
1349         } else {
1350             xive_source_set_asserted(xsrc, srcno, false);
1351         }
1352     } else {
1353         if (val) {
1354             notify = xive_source_esb_trigger(xsrc, srcno);
1355         }
1356     }
1357 
1358     /* Forward the source event notification for routing */
1359     if (notify) {
1360         xive_source_notify(xsrc, srcno);
1361     }
1362 }
1363 
1364 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, GString *buf)
1365 {
1366     for (unsigned i = 0; i < xsrc->nr_irqs; i++) {
1367         uint8_t pq = xive_source_esb_get(xsrc, i);
1368 
1369         if (pq == XIVE_ESB_OFF) {
1370             continue;
1371         }
1372 
1373         g_string_append_printf(buf, "  %08x %s %c%c%c\n", i + offset,
1374                                xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1375                                pq & XIVE_ESB_VAL_P ? 'P' : '-',
1376                                pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1377                                xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1378     }
1379 }
1380 
1381 static void xive_source_reset(void *dev)
1382 {
1383     XiveSource *xsrc = XIVE_SOURCE(dev);
1384 
1385     /* Do not clear the LSI bitmap */
1386 
1387     memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs);
1388 }
1389 
1390 static void xive_source_realize(DeviceState *dev, Error **errp)
1391 {
1392     XiveSource *xsrc = XIVE_SOURCE(dev);
1393     uint64_t esb_len = xive_source_esb_len(xsrc);
1394 
1395     assert(xsrc->xive);
1396 
1397     if (!xsrc->nr_irqs) {
1398         error_setg(errp, "Number of interrupt needs to be greater than 0");
1399         return;
1400     }
1401 
1402     if (xsrc->esb_shift != XIVE_ESB_4K &&
1403         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1404         xsrc->esb_shift != XIVE_ESB_64K &&
1405         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1406         error_setg(errp, "Invalid ESB shift setting");
1407         return;
1408     }
1409 
1410     xsrc->status = g_malloc0(xsrc->nr_irqs);
1411     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1412 
1413     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1414     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1415                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1416                           esb_len);
1417     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1418 
1419     qemu_register_reset(xive_source_reset, dev);
1420 }
1421 
1422 static const VMStateDescription vmstate_xive_source = {
1423     .name = TYPE_XIVE_SOURCE,
1424     .version_id = 1,
1425     .minimum_version_id = 1,
1426     .fields = (const VMStateField[]) {
1427         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1428         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1429         VMSTATE_END_OF_LIST()
1430     },
1431 };
1432 
1433 /*
1434  * The default XIVE interrupt source setting for the ESB MMIOs is two
1435  * 64k pages without Store EOI, to be in sync with KVM.
1436  */
1437 static const Property xive_source_properties[] = {
1438     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1439     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1440     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1441     /*
1442      * By default, PQs are initialized to 0b01 (Q=1) which corresponds
1443      * to "ints off"
1444      */
1445     DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF),
1446     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1447                      XiveNotifier *),
1448 };
1449 
1450 static void xive_source_class_init(ObjectClass *klass, const void *data)
1451 {
1452     DeviceClass *dc = DEVICE_CLASS(klass);
1453 
1454     dc->desc    = "XIVE Interrupt Source";
1455     device_class_set_props(dc, xive_source_properties);
1456     dc->realize = xive_source_realize;
1457     dc->vmsd    = &vmstate_xive_source;
1458     /*
1459      * Reason: part of XIVE interrupt controller, needs to be wired up,
1460      * e.g. by spapr_xive_instance_init().
1461      */
1462     dc->user_creatable = false;
1463 }
1464 
1465 static const TypeInfo xive_source_info = {
1466     .name          = TYPE_XIVE_SOURCE,
1467     .parent        = TYPE_DEVICE,
1468     .instance_size = sizeof(XiveSource),
1469     .class_init    = xive_source_class_init,
1470 };
1471 
1472 /*
1473  * XiveEND helpers
1474  */
1475 
1476 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf)
1477 {
1478     uint64_t qaddr_base = xive_end_qaddr(end);
1479     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1480     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1481     uint32_t qentries = 1 << (qsize + 10);
1482     int i;
1483 
1484     /*
1485      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1486      */
1487     g_string_append_printf(buf, " [ ");
1488     qindex = (qindex - (width - 1)) & (qentries - 1);
1489     for (i = 0; i < width; i++) {
1490         uint64_t qaddr = qaddr_base + (qindex << 2);
1491         uint32_t qdata = -1;
1492 
1493         if (dma_memory_read(&address_space_memory, qaddr,
1494                             &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1495             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1496                           HWADDR_PRIx "\n", qaddr);
1497             return;
1498         }
1499         g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "",
1500                                be32_to_cpu(qdata));
1501         qindex = (qindex + 1) & (qentries - 1);
1502     }
1503     g_string_append_c(buf, ']');
1504 }
1505 
1506 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1507 {
1508     uint64_t qaddr_base = xive_end_qaddr(end);
1509     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1510     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1511     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1512     uint32_t qentries = 1 << (qsize + 10);
1513 
1514     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1515     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1516     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1517     uint8_t pq;
1518 
1519     if (!xive_end_is_valid(end)) {
1520         return;
1521     }
1522 
1523     pq = xive_get_field32(END_W1_ESn, end->w1);
1524 
1525     g_string_append_printf(buf,
1526                            "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1527                            end_idx,
1528                            pq & XIVE_ESB_VAL_P ? 'P' : '-',
1529                            pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1530                            xive_end_is_valid(end)    ? 'v' : '-',
1531                            xive_end_is_enqueue(end)  ? 'q' : '-',
1532                            xive_end_is_notify(end)   ? 'n' : '-',
1533                            xive_end_is_backlog(end)  ? 'b' : '-',
1534                            xive_end_is_escalate(end) ? 'e' : '-',
1535                            xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1536                            xive_end_is_silent_escalation(end)   ? 's' : '-',
1537                            xive_end_is_firmware(end)   ? 'f' : '-',
1538                            priority, nvt_blk, nvt_idx);
1539 
1540     if (qaddr_base) {
1541         g_string_append_printf(buf, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1542                                qaddr_base, qindex, qentries, qgen);
1543         xive_end_queue_pic_print_info(end, 6, buf);
1544     }
1545     g_string_append_c(buf, '\n');
1546 }
1547 
1548 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1549 {
1550     uint64_t qaddr_base = xive_end_qaddr(end);
1551     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1552     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1553     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1554 
1555     uint64_t qaddr = qaddr_base + (qindex << 2);
1556     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1557     uint32_t qentries = 1 << (qsize + 10);
1558 
1559     if (dma_memory_write(&address_space_memory, qaddr,
1560                          &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1561         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1562                       HWADDR_PRIx "\n", qaddr);
1563         return;
1564     }
1565 
1566     qindex = (qindex + 1) & (qentries - 1);
1567     if (qindex == 0) {
1568         qgen ^= 1;
1569         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1570     }
1571     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1572 }
1573 
1574 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1575 {
1576     XiveEAS *eas = (XiveEAS *) &end->w4;
1577     uint8_t pq;
1578 
1579     if (!xive_end_is_escalate(end)) {
1580         return;
1581     }
1582 
1583     pq = xive_get_field32(END_W1_ESe, end->w1);
1584 
1585     g_string_append_printf(buf, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1586                            end_idx,
1587                            pq & XIVE_ESB_VAL_P ? 'P' : '-',
1588                            pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1589                            xive_eas_is_valid(eas) ? 'V' : ' ',
1590                            xive_eas_is_masked(eas) ? 'M' : ' ',
1591                            (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1592                            (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1593                            (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1594 }
1595 
1596 /*
1597  * XIVE Router (aka. Virtualization Controller or IVRE)
1598  */
1599 
1600 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1601                         XiveEAS *eas)
1602 {
1603     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1604 
1605     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1606 }
1607 
1608 static
1609 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1610                        uint8_t *pq)
1611 {
1612     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1613 
1614     return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1615 }
1616 
1617 static
1618 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1619                        uint8_t *pq)
1620 {
1621     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1622 
1623     return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1624 }
1625 
1626 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1627                         XiveEND *end)
1628 {
1629    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1630 
1631    return xrc->get_end(xrtr, end_blk, end_idx, end);
1632 }
1633 
1634 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1635                           XiveEND *end, uint8_t word_number)
1636 {
1637    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1638 
1639    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1640 }
1641 
1642 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1643                         XiveNVT *nvt)
1644 {
1645    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1646 
1647    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1648 }
1649 
1650 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1651                         XiveNVT *nvt, uint8_t word_number)
1652 {
1653    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1654 
1655    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1656 }
1657 
1658 static int xive_router_get_block_id(XiveRouter *xrtr)
1659 {
1660    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1661 
1662    return xrc->get_block_id(xrtr);
1663 }
1664 
1665 static void xive_router_realize(DeviceState *dev, Error **errp)
1666 {
1667     XiveRouter *xrtr = XIVE_ROUTER(dev);
1668 
1669     assert(xrtr->xfb);
1670 }
1671 
1672 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas)
1673 {
1674     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1675 
1676     return xrc->end_notify(xrtr, eas);
1677 }
1678 
1679 /*
1680  * Encode the HW CAM line in the block group mode format :
1681  *
1682  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1683  */
1684 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1685 {
1686     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1687     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1688     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1689 
1690     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1691 }
1692 
1693 uint32_t xive_get_vpgroup_size(uint32_t nvp_index)
1694 {
1695     /*
1696      * Group size is a power of 2. The position of the first 0
1697      * (starting with the least significant bits) in the NVP index
1698      * gives the size of the group.
1699      */
1700     int first_zero = cto32(nvp_index);
1701     if (first_zero >= 31) {
1702         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x",
1703                                        nvp_index);
1704         return 0;
1705     }
1706 
1707     return 1U << (first_zero + 1);
1708 }
1709 
1710 static uint8_t xive_get_group_level(bool crowd, bool ignore,
1711                                     uint32_t nvp_blk, uint32_t nvp_index)
1712 {
1713     int first_zero;
1714     uint8_t level;
1715 
1716     if (!ignore) {
1717         g_assert(!crowd);
1718         return 0;
1719     }
1720 
1721     first_zero = cto32(nvp_index);
1722     if (first_zero >= 31) {
1723         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x",
1724                                        nvp_index);
1725         return 0;
1726     }
1727 
1728     level = (first_zero + 1) & 0b1111;
1729     if (crowd) {
1730         uint32_t blk;
1731 
1732         /* crowd level is bit position of first 0 from the right in nvp_blk */
1733         first_zero = cto32(nvp_blk);
1734         if (first_zero >= 31) {
1735             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid crowd block 0x%08x",
1736                                            nvp_blk);
1737             return 0;
1738         }
1739         blk = first_zero + 1;
1740 
1741         /*
1742          * Supported crowd sizes are 2^1, 2^2, and 2^4. 2^3 is not supported.
1743          * HW will encode level 4 as the value 3.  See xive2_pgofnext().
1744          */
1745         switch (blk) {
1746         case 1:
1747         case 2:
1748             break;
1749         case 4:
1750             blk = 3;
1751             break;
1752         default:
1753             g_assert_not_reached();
1754         }
1755 
1756         /* Crowd level bits reside in upper 2 bits of the 6 bit group level */
1757         level |= blk << 4;
1758     }
1759     return level;
1760 }
1761 
1762 /*
1763  * The thread context register words are in big-endian format.
1764  */
1765 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1766                               uint8_t format,
1767                               uint8_t nvt_blk, uint32_t nvt_idx,
1768                               bool cam_ignore, uint32_t logic_serv)
1769 {
1770     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1771     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1772     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1773     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1774     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1775 
1776     /*
1777      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1778      * identifier are ignored in the "CAM" match.
1779      */
1780 
1781     if (format == 0) {
1782         if (cam_ignore == true) {
1783             /*
1784              * F=0 & i=1: Logical server notification (bits ignored at
1785              * the end of the NVT identifier)
1786              */
1787             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1788                           nvt_blk, nvt_idx);
1789              return -1;
1790         }
1791 
1792         /* F=0 & i=0: Specific NVT notification */
1793 
1794         /* PHYS ring */
1795         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1796             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1797             return TM_QW3_HV_PHYS;
1798         }
1799 
1800         /* HV POOL ring */
1801         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1802             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1803             return TM_QW2_HV_POOL;
1804         }
1805 
1806         /* OS ring */
1807         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1808             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1809             return TM_QW1_OS;
1810         }
1811     } else {
1812         /* F=1 : User level Event-Based Branch (EBB) notification */
1813 
1814         /* USER ring */
1815         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1816              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1817              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1818              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1819             return TM_QW0_USER;
1820         }
1821     }
1822     return -1;
1823 }
1824 
1825 /*
1826  * This is our simple Xive Presenter Engine model. It is merged in the
1827  * Router as it does not require an extra object.
1828  */
1829 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1830                            uint8_t nvt_blk, uint32_t nvt_idx,
1831                            bool crowd, bool cam_ignore, uint8_t priority,
1832                            uint32_t logic_serv, bool *precluded)
1833 {
1834     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1835     XiveTCTXMatch match = { .tctx = NULL, .ring = 0, .precluded = false };
1836     uint8_t group_level;
1837     int count;
1838 
1839     /*
1840      * Ask the machine to scan the interrupt controllers for a match.
1841      *
1842      * For VP-specific notification, we expect at most one match and
1843      * one call to the presenters is all we need (abbreviated notify
1844      * sequence documented by the architecture).
1845      *
1846      * For VP-group notification, match_nvt() is the equivalent of the
1847      * "histogram" and "poll" commands sent to the power bus to the
1848      * presenters. 'count' could be more than one, but we always
1849      * select the first match for now. 'precluded' tells if (at least)
1850      * one thread matches but can't take the interrupt now because
1851      * it's running at a more favored priority. We return the
1852      * information to the router so that it can take appropriate
1853      * actions (backlog, escalation, broadcast, etc...)
1854      *
1855      * If we were to implement a better way of dispatching the
1856      * interrupt in case of multiple matches (instead of the first
1857      * match), we would need a heuristic to elect a thread (for
1858      * example, the hardware keeps track of an 'age' in the TIMA) and
1859      * a new command to the presenters (the equivalent of the "assign"
1860      * power bus command in the documented full notify sequence.
1861      */
1862     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, crowd, cam_ignore,
1863                            priority, logic_serv, &match);
1864     if (count < 0) {
1865         return false;
1866     }
1867 
1868     /* handle CPU exception delivery */
1869     if (count) {
1870         group_level = xive_get_group_level(crowd, cam_ignore, nvt_blk, nvt_idx);
1871         trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring, group_level);
1872         xive_tctx_pipr_update(match.tctx, match.ring, priority, group_level);
1873     } else {
1874         *precluded = match.precluded;
1875     }
1876 
1877     return !!count;
1878 }
1879 
1880 /*
1881  * Notification using the END ESe/ESn bit (Event State Buffer for
1882  * escalation and notification). Provide further coalescing in the
1883  * Router.
1884  */
1885 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1886                                       uint32_t end_idx, XiveEND *end,
1887                                       uint32_t end_esmask)
1888 {
1889     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1890     bool notify = xive_esb_trigger(&pq);
1891 
1892     if (pq != xive_get_field32(end_esmask, end->w1)) {
1893         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1894         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1895     }
1896 
1897     /* ESe/n[Q]=1 : end of notification */
1898     return notify;
1899 }
1900 
1901 /*
1902  * An END trigger can come from an event trigger (IPI or HW) or from
1903  * another chip. We don't model the PowerBus but the END trigger
1904  * message has the same parameters than in the function below.
1905  */
1906 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas)
1907 {
1908     XiveEND end;
1909     uint8_t priority;
1910     uint8_t format;
1911     uint8_t nvt_blk;
1912     uint32_t nvt_idx;
1913     XiveNVT nvt;
1914     bool found, precluded;
1915 
1916     uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
1917     uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
1918     uint32_t end_data = xive_get_field64(EAS_END_DATA,  eas->w);
1919 
1920     /* END cache lookup */
1921     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1922         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1923                       end_idx);
1924         return;
1925     }
1926 
1927     if (!xive_end_is_valid(&end)) {
1928         trace_xive_router_end_notify(end_blk, end_idx, end_data);
1929         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1930                       end_blk, end_idx);
1931         return;
1932     }
1933 
1934     if (xive_end_is_enqueue(&end)) {
1935         xive_end_enqueue(&end, end_data);
1936         /* Enqueuing event data modifies the EQ toggle and index */
1937         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1938     }
1939 
1940     /*
1941      * When the END is silent, we skip the notification part.
1942      */
1943     if (xive_end_is_silent_escalation(&end)) {
1944         goto do_escalation;
1945     }
1946 
1947     /*
1948      * The W7 format depends on the F bit in W6. It defines the type
1949      * of the notification :
1950      *
1951      *   F=0 : single or multiple NVT notification
1952      *   F=1 : User level Event-Based Branch (EBB) notification, no
1953      *         priority
1954      */
1955     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1956     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1957 
1958     /* The END is masked */
1959     if (format == 0 && priority == 0xff) {
1960         return;
1961     }
1962 
1963     /*
1964      * Check the END ESn (Event State Buffer for notification) for
1965      * even further coalescing in the Router
1966      */
1967     if (!xive_end_is_notify(&end)) {
1968         /* ESn[Q]=1 : end of notification */
1969         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1970                                        &end, END_W1_ESn)) {
1971             return;
1972         }
1973     }
1974 
1975     /*
1976      * Follows IVPE notification
1977      */
1978     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1979     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1980 
1981     /* NVT cache lookup */
1982     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1983         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1984                       nvt_blk, nvt_idx);
1985         return;
1986     }
1987 
1988     if (!xive_nvt_is_valid(&nvt)) {
1989         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1990                       nvt_blk, nvt_idx);
1991         return;
1992     }
1993 
1994     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1995                           false /* crowd */,
1996                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1997                           priority,
1998                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7),
1999                           &precluded);
2000     /* we don't support VP-group notification on P9, so precluded is not used */
2001     /* TODO: Auto EOI. */
2002 
2003     if (found) {
2004         return;
2005     }
2006 
2007     /*
2008      * If no matching NVT is dispatched on a HW thread :
2009      * - specific VP: update the NVT structure if backlog is activated
2010      * - logical server : forward request to IVPE (not supported)
2011      */
2012     if (xive_end_is_backlog(&end)) {
2013         uint8_t ipb;
2014 
2015         if (format == 1) {
2016             qemu_log_mask(LOG_GUEST_ERROR,
2017                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
2018                           end_blk, end_idx);
2019             return;
2020         }
2021         /*
2022          * Record the IPB in the associated NVT structure for later
2023          * use. The presenter will resend the interrupt when the vCPU
2024          * is dispatched again on a HW thread.
2025          */
2026         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
2027             xive_priority_to_ipb(priority);
2028         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
2029         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
2030 
2031         /*
2032          * On HW, follows a "Broadcast Backlog" to IVPEs
2033          */
2034     }
2035 
2036 do_escalation:
2037     /*
2038      * If activated, escalate notification using the ESe PQ bits and
2039      * the EAS in w4-5
2040      */
2041     if (!xive_end_is_escalate(&end)) {
2042         return;
2043     }
2044 
2045     /*
2046      * Check the END ESe (Event State Buffer for escalation) for even
2047      * further coalescing in the Router
2048      */
2049     if (!xive_end_is_uncond_escalation(&end)) {
2050         /* ESe[Q]=1 : end of notification */
2051         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
2052                                        &end, END_W1_ESe)) {
2053             return;
2054         }
2055     }
2056 
2057     trace_xive_router_end_escalate(end_blk, end_idx,
2058            (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
2059            (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
2060            (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
2061     /*
2062      * The END trigger becomes an Escalation trigger
2063      */
2064     xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4);
2065 }
2066 
2067 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
2068 {
2069     XiveRouter *xrtr = XIVE_ROUTER(xn);
2070     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
2071     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
2072     XiveEAS eas;
2073 
2074     /* EAS cache lookup */
2075     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
2076         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
2077         return;
2078     }
2079 
2080     if (!pq_checked) {
2081         bool notify;
2082         uint8_t pq;
2083 
2084         /* PQ cache lookup */
2085         if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
2086             /* Set FIR */
2087             g_assert_not_reached();
2088         }
2089 
2090         notify = xive_esb_trigger(&pq);
2091 
2092         if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
2093             /* Set FIR */
2094             g_assert_not_reached();
2095         }
2096 
2097         if (!notify) {
2098             return;
2099         }
2100     }
2101 
2102     if (!xive_eas_is_valid(&eas)) {
2103         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
2104         return;
2105     }
2106 
2107     if (xive_eas_is_masked(&eas)) {
2108         /* Notification completed */
2109         return;
2110     }
2111 
2112     /*
2113      * The event trigger becomes an END trigger
2114      */
2115     xive_router_end_notify_handler(xrtr, &eas);
2116 }
2117 
2118 static const Property xive_router_properties[] = {
2119     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
2120                      TYPE_XIVE_FABRIC, XiveFabric *),
2121 };
2122 
2123 static void xive_router_class_init(ObjectClass *klass, const void *data)
2124 {
2125     DeviceClass *dc = DEVICE_CLASS(klass);
2126     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
2127     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
2128 
2129     dc->desc    = "XIVE Router Engine";
2130     device_class_set_props(dc, xive_router_properties);
2131     /* Parent is SysBusDeviceClass. No need to call its realize hook */
2132     dc->realize = xive_router_realize;
2133     xnc->notify = xive_router_notify;
2134 
2135     /* By default, the router handles END triggers locally */
2136     xrc->end_notify = xive_router_end_notify;
2137 }
2138 
2139 static const TypeInfo xive_router_info = {
2140     .name          = TYPE_XIVE_ROUTER,
2141     .parent        = TYPE_SYS_BUS_DEVICE,
2142     .abstract      = true,
2143     .instance_size = sizeof(XiveRouter),
2144     .class_size    = sizeof(XiveRouterClass),
2145     .class_init    = xive_router_class_init,
2146     .interfaces    = (const InterfaceInfo[]) {
2147         { TYPE_XIVE_NOTIFIER },
2148         { TYPE_XIVE_PRESENTER },
2149         { }
2150     }
2151 };
2152 
2153 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf)
2154 {
2155     if (!xive_eas_is_valid(eas)) {
2156         return;
2157     }
2158 
2159     g_string_append_printf(buf, "  %08x %s end:%02x/%04x data:%08x\n",
2160                            lisn, xive_eas_is_masked(eas) ? "M" : " ",
2161                            (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
2162                            (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
2163                            (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
2164 }
2165 
2166 /*
2167  * END ESB MMIO loads
2168  */
2169 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
2170 {
2171     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
2172     uint32_t offset = addr & 0xFFF;
2173     uint8_t end_blk;
2174     uint32_t end_idx;
2175     XiveEND end;
2176     uint32_t end_esmask;
2177     uint8_t pq;
2178     uint64_t ret = -1;
2179 
2180     /*
2181      * The block id should be deduced from the load address on the END
2182      * ESB MMIO but our model only supports a single block per XIVE chip.
2183      */
2184     end_blk = xive_router_get_block_id(xsrc->xrtr);
2185     end_idx = addr >> (xsrc->esb_shift + 1);
2186 
2187     trace_xive_end_source_read(end_blk, end_idx, addr);
2188 
2189     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
2190         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
2191                       end_idx);
2192         return -1;
2193     }
2194 
2195     if (!xive_end_is_valid(&end)) {
2196         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
2197                       end_blk, end_idx);
2198         return -1;
2199     }
2200 
2201     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
2202     pq = xive_get_field32(end_esmask, end.w1);
2203 
2204     switch (offset) {
2205     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
2206         ret = xive_esb_eoi(&pq);
2207 
2208         /* Forward the source event notification for routing ?? */
2209         break;
2210 
2211     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
2212         ret = pq;
2213         break;
2214 
2215     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
2216     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
2217     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
2218     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
2219         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
2220         break;
2221     default:
2222         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
2223                       offset);
2224         return -1;
2225     }
2226 
2227     if (pq != xive_get_field32(end_esmask, end.w1)) {
2228         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
2229         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
2230     }
2231 
2232     return ret;
2233 }
2234 
2235 /*
2236  * END ESB MMIO stores are invalid
2237  */
2238 static void xive_end_source_write(void *opaque, hwaddr addr,
2239                                   uint64_t value, unsigned size)
2240 {
2241     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
2242                   HWADDR_PRIx"\n", addr);
2243 }
2244 
2245 static const MemoryRegionOps xive_end_source_ops = {
2246     .read = xive_end_source_read,
2247     .write = xive_end_source_write,
2248     .endianness = DEVICE_BIG_ENDIAN,
2249     .valid = {
2250         .min_access_size = 1,
2251         .max_access_size = 8,
2252     },
2253     .impl = {
2254         .min_access_size = 1,
2255         .max_access_size = 8,
2256     },
2257 };
2258 
2259 static void xive_end_source_realize(DeviceState *dev, Error **errp)
2260 {
2261     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
2262 
2263     assert(xsrc->xrtr);
2264 
2265     if (!xsrc->nr_ends) {
2266         error_setg(errp, "Number of interrupt needs to be greater than 0");
2267         return;
2268     }
2269 
2270     if (xsrc->esb_shift != XIVE_ESB_4K &&
2271         xsrc->esb_shift != XIVE_ESB_64K) {
2272         error_setg(errp, "Invalid ESB shift setting");
2273         return;
2274     }
2275 
2276     /*
2277      * Each END is assigned an even/odd pair of MMIO pages, the even page
2278      * manages the ESn field while the odd page manages the ESe field.
2279      */
2280     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
2281                           &xive_end_source_ops, xsrc, "xive.end",
2282                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
2283 }
2284 
2285 static const Property xive_end_source_properties[] = {
2286     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
2287     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
2288     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
2289                      XiveRouter *),
2290 };
2291 
2292 static void xive_end_source_class_init(ObjectClass *klass, const void *data)
2293 {
2294     DeviceClass *dc = DEVICE_CLASS(klass);
2295 
2296     dc->desc    = "XIVE END Source";
2297     device_class_set_props(dc, xive_end_source_properties);
2298     dc->realize = xive_end_source_realize;
2299     /*
2300      * Reason: part of XIVE interrupt controller, needs to be wired up,
2301      * e.g. by spapr_xive_instance_init().
2302      */
2303     dc->user_creatable = false;
2304 }
2305 
2306 static const TypeInfo xive_end_source_info = {
2307     .name          = TYPE_XIVE_END_SOURCE,
2308     .parent        = TYPE_DEVICE,
2309     .instance_size = sizeof(XiveENDSource),
2310     .class_init    = xive_end_source_class_init,
2311 };
2312 
2313 /*
2314  * XIVE Notifier
2315  */
2316 static const TypeInfo xive_notifier_info = {
2317     .name = TYPE_XIVE_NOTIFIER,
2318     .parent = TYPE_INTERFACE,
2319     .class_size = sizeof(XiveNotifierClass),
2320 };
2321 
2322 /*
2323  * XIVE Presenter
2324  */
2325 static const TypeInfo xive_presenter_info = {
2326     .name = TYPE_XIVE_PRESENTER,
2327     .parent = TYPE_INTERFACE,
2328     .class_size = sizeof(XivePresenterClass),
2329 };
2330 
2331 /*
2332  * XIVE Fabric
2333  */
2334 static const TypeInfo xive_fabric_info = {
2335     .name = TYPE_XIVE_FABRIC,
2336     .parent = TYPE_INTERFACE,
2337     .class_size = sizeof(XiveFabricClass),
2338 };
2339 
2340 static void xive_register_types(void)
2341 {
2342     type_register_static(&xive_fabric_info);
2343     type_register_static(&xive_source_info);
2344     type_register_static(&xive_notifier_info);
2345     type_register_static(&xive_presenter_info);
2346     type_register_static(&xive_router_info);
2347     type_register_static(&xive_end_source_info);
2348     type_register_static(&xive_tctx_info);
2349 }
2350 
2351 type_init(xive_register_types)
2352