1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/module.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/dma.h" 17 #include "sysemu/reset.h" 18 #include "hw/qdev-properties.h" 19 #include "migration/vmstate.h" 20 #include "monitor/monitor.h" 21 #include "hw/irq.h" 22 #include "hw/ppc/xive.h" 23 #include "hw/ppc/xive_regs.h" 24 #include "trace.h" 25 26 /* 27 * XIVE Thread Interrupt Management context 28 */ 29 30 /* 31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending 32 * Interrupt Priority Register (PIPR), which contains the priority of 33 * the most favored pending notification. 34 */ 35 static uint8_t ipb_to_pipr(uint8_t ibp) 36 { 37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff; 38 } 39 40 static uint8_t exception_mask(uint8_t ring) 41 { 42 switch (ring) { 43 case TM_QW1_OS: 44 return TM_QW1_NSR_EO; 45 case TM_QW3_HV_PHYS: 46 return TM_QW3_NSR_HE; 47 default: 48 g_assert_not_reached(); 49 } 50 } 51 52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 53 { 54 switch (ring) { 55 case TM_QW0_USER: 56 return 0; /* Not supported */ 57 case TM_QW1_OS: 58 return tctx->os_output; 59 case TM_QW2_HV_POOL: 60 case TM_QW3_HV_PHYS: 61 return tctx->hv_output; 62 default: 63 return 0; 64 } 65 } 66 67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 68 { 69 uint8_t *regs = &tctx->regs[ring]; 70 uint8_t nsr = regs[TM_NSR]; 71 uint8_t mask = exception_mask(ring); 72 73 qemu_irq_lower(xive_tctx_output(tctx, ring)); 74 75 if (regs[TM_NSR] & mask) { 76 uint8_t cppr = regs[TM_PIPR]; 77 78 regs[TM_CPPR] = cppr; 79 80 /* Reset the pending buffer bit */ 81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 83 84 /* Drop Exception bit */ 85 regs[TM_NSR] &= ~mask; 86 87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring, 88 regs[TM_IPB], regs[TM_PIPR], 89 regs[TM_CPPR], regs[TM_NSR]); 90 } 91 92 return (nsr << 8) | regs[TM_CPPR]; 93 } 94 95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring) 96 { 97 uint8_t *regs = &tctx->regs[ring]; 98 99 if (regs[TM_PIPR] < regs[TM_CPPR]) { 100 switch (ring) { 101 case TM_QW1_OS: 102 regs[TM_NSR] |= TM_QW1_NSR_EO; 103 break; 104 case TM_QW3_HV_PHYS: 105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6); 106 break; 107 default: 108 g_assert_not_reached(); 109 } 110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 111 regs[TM_IPB], regs[TM_PIPR], 112 regs[TM_CPPR], regs[TM_NSR]); 113 qemu_irq_raise(xive_tctx_output(tctx, ring)); 114 } 115 } 116 117 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 118 { 119 uint8_t *regs = &tctx->regs[ring]; 120 121 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 122 regs[TM_IPB], regs[TM_PIPR], 123 cppr, regs[TM_NSR]); 124 125 if (cppr > XIVE_PRIORITY_MAX) { 126 cppr = 0xff; 127 } 128 129 tctx->regs[ring + TM_CPPR] = cppr; 130 131 /* CPPR has changed, check if we need to raise a pending exception */ 132 xive_tctx_notify(tctx, ring); 133 } 134 135 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb) 136 { 137 uint8_t *regs = &tctx->regs[ring]; 138 139 regs[TM_IPB] |= ipb; 140 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]); 141 xive_tctx_notify(tctx, ring); 142 } 143 144 /* 145 * XIVE Thread Interrupt Management Area (TIMA) 146 */ 147 148 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 149 hwaddr offset, uint64_t value, unsigned size) 150 { 151 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 152 } 153 154 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 155 hwaddr offset, unsigned size) 156 { 157 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 158 } 159 160 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 161 hwaddr offset, unsigned size) 162 { 163 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 164 uint32_t qw2w2; 165 166 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 167 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 168 return qw2w2; 169 } 170 171 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 172 uint64_t value, unsigned size) 173 { 174 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 175 } 176 177 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 178 hwaddr offset, unsigned size) 179 { 180 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 181 } 182 183 /* 184 * Define an access map for each page of the TIMA that we will use in 185 * the memory region ops to filter values when doing loads and stores 186 * of raw registers values 187 * 188 * Registers accessibility bits : 189 * 190 * 0x0 - no access 191 * 0x1 - write only 192 * 0x2 - read only 193 * 0x3 - read/write 194 */ 195 196 static const uint8_t xive_tm_hw_view[] = { 197 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 198 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 199 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 200 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 201 }; 202 203 static const uint8_t xive_tm_hv_view[] = { 204 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 205 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 206 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 207 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 208 }; 209 210 static const uint8_t xive_tm_os_view[] = { 211 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 212 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 213 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 215 }; 216 217 static const uint8_t xive_tm_user_view[] = { 218 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 219 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 220 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 221 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 222 }; 223 224 /* 225 * Overall TIMA access map for the thread interrupt management context 226 * registers 227 */ 228 static const uint8_t *xive_tm_views[] = { 229 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 230 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 231 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 232 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 233 }; 234 235 /* 236 * Computes a register access mask for a given offset in the TIMA 237 */ 238 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 239 { 240 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 241 uint8_t reg_offset = offset & 0x3F; 242 uint8_t reg_mask = write ? 0x1 : 0x2; 243 uint64_t mask = 0x0; 244 int i; 245 246 for (i = 0; i < size; i++) { 247 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 248 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 249 } 250 } 251 252 return mask; 253 } 254 255 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 256 unsigned size) 257 { 258 uint8_t ring_offset = offset & 0x30; 259 uint8_t reg_offset = offset & 0x3F; 260 uint64_t mask = xive_tm_mask(offset, size, true); 261 int i; 262 263 /* 264 * Only 4 or 8 bytes stores are allowed and the User ring is 265 * excluded 266 */ 267 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 268 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 269 HWADDR_PRIx"\n", offset); 270 return; 271 } 272 273 /* 274 * Use the register offset for the raw values and filter out 275 * reserved values 276 */ 277 for (i = 0; i < size; i++) { 278 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 279 if (byte_mask) { 280 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 281 byte_mask; 282 } 283 } 284 } 285 286 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 287 { 288 uint8_t ring_offset = offset & 0x30; 289 uint8_t reg_offset = offset & 0x3F; 290 uint64_t mask = xive_tm_mask(offset, size, false); 291 uint64_t ret; 292 int i; 293 294 /* 295 * Only 4 or 8 bytes loads are allowed and the User ring is 296 * excluded 297 */ 298 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 299 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 300 HWADDR_PRIx"\n", offset); 301 return -1; 302 } 303 304 /* Use the register offset for the raw values */ 305 ret = 0; 306 for (i = 0; i < size; i++) { 307 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 308 } 309 310 /* filter out reserved values */ 311 return ret & mask; 312 } 313 314 /* 315 * The TM context is mapped twice within each page. Stores and loads 316 * to the first mapping below 2K write and read the specified values 317 * without modification. The second mapping above 2K performs specific 318 * state changes (side effects) in addition to setting/returning the 319 * interrupt management area context of the processor thread. 320 */ 321 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 322 hwaddr offset, unsigned size) 323 { 324 return xive_tctx_accept(tctx, TM_QW1_OS); 325 } 326 327 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 328 hwaddr offset, uint64_t value, unsigned size) 329 { 330 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 331 } 332 333 /* 334 * Adjust the IPB to allow a CPU to process event queues of other 335 * priorities during one physical interrupt cycle. 336 */ 337 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 338 hwaddr offset, uint64_t value, unsigned size) 339 { 340 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff)); 341 } 342 343 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 344 uint32_t *nvt_idx, bool *vo) 345 { 346 if (nvt_blk) { 347 *nvt_blk = xive_nvt_blk(cam); 348 } 349 if (nvt_idx) { 350 *nvt_idx = xive_nvt_idx(cam); 351 } 352 if (vo) { 353 *vo = !!(cam & TM_QW1W2_VO); 354 } 355 } 356 357 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 358 uint32_t *nvt_idx, bool *vo) 359 { 360 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 361 uint32_t cam = be32_to_cpu(qw1w2); 362 363 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 364 return qw1w2; 365 } 366 367 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 368 { 369 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 370 } 371 372 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 373 hwaddr offset, unsigned size) 374 { 375 uint32_t qw1w2; 376 uint32_t qw1w2_new; 377 uint8_t nvt_blk; 378 uint32_t nvt_idx; 379 bool vo; 380 381 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 382 383 if (!vo) { 384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 385 nvt_blk, nvt_idx); 386 } 387 388 /* Invalidate CAM line */ 389 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 390 xive_tctx_set_os_cam(tctx, qw1w2_new); 391 return qw1w2; 392 } 393 394 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 395 uint8_t nvt_blk, uint32_t nvt_idx) 396 { 397 XiveNVT nvt; 398 uint8_t ipb; 399 400 /* 401 * Grab the associated NVT to pull the pending bits, and merge 402 * them with the IPB of the thread interrupt context registers 403 */ 404 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 406 nvt_blk, nvt_idx); 407 return; 408 } 409 410 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 411 412 if (ipb) { 413 /* Reset the NVT value */ 414 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 415 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 416 417 /* Merge in current context */ 418 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb); 419 } 420 } 421 422 /* 423 * Updating the OS CAM line can trigger a resend of interrupt 424 */ 425 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 426 hwaddr offset, uint64_t value, unsigned size) 427 { 428 uint32_t cam = value; 429 uint32_t qw1w2 = cpu_to_be32(cam); 430 uint8_t nvt_blk; 431 uint32_t nvt_idx; 432 bool vo; 433 434 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 435 436 /* First update the registers */ 437 xive_tctx_set_os_cam(tctx, qw1w2); 438 439 /* Check the interrupt pending bits */ 440 if (vo) { 441 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 442 } 443 } 444 445 /* 446 * Define a mapping of "special" operations depending on the TIMA page 447 * offset and the size of the operation. 448 */ 449 typedef struct XiveTmOp { 450 uint8_t page_offset; 451 uint32_t op_offset; 452 unsigned size; 453 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 454 hwaddr offset, 455 uint64_t value, unsigned size); 456 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 457 unsigned size); 458 } XiveTmOp; 459 460 static const XiveTmOp xive_tm_operations[] = { 461 /* 462 * MMIOs below 2K : raw values and special operations without side 463 * effects 464 */ 465 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL }, 466 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL }, 467 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL }, 468 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL }, 469 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll }, 470 471 /* MMIOs above 2K : special operations with side effects */ 472 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg }, 473 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL }, 474 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx }, 475 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx }, 476 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg }, 477 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx }, 478 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx }, 479 }; 480 481 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write) 482 { 483 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 484 uint32_t op_offset = offset & 0xFFF; 485 int i; 486 487 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) { 488 const XiveTmOp *xto = &xive_tm_operations[i]; 489 490 /* Accesses done from a more privileged TIMA page is allowed */ 491 if (xto->page_offset >= page_offset && 492 xto->op_offset == op_offset && 493 xto->size == size && 494 ((write && xto->write_handler) || (!write && xto->read_handler))) { 495 return xto; 496 } 497 } 498 return NULL; 499 } 500 501 /* 502 * TIMA MMIO handlers 503 */ 504 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 505 uint64_t value, unsigned size) 506 { 507 const XiveTmOp *xto; 508 509 trace_xive_tctx_tm_write(offset, size, value); 510 511 /* 512 * TODO: check V bit in Q[0-3]W2 513 */ 514 515 /* 516 * First, check for special operations in the 2K region 517 */ 518 if (offset & 0x800) { 519 xto = xive_tm_find_op(offset, size, true); 520 if (!xto) { 521 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 522 "@%"HWADDR_PRIx"\n", offset); 523 } else { 524 xto->write_handler(xptr, tctx, offset, value, size); 525 } 526 return; 527 } 528 529 /* 530 * Then, for special operations in the region below 2K. 531 */ 532 xto = xive_tm_find_op(offset, size, true); 533 if (xto) { 534 xto->write_handler(xptr, tctx, offset, value, size); 535 return; 536 } 537 538 /* 539 * Finish with raw access to the register values 540 */ 541 xive_tm_raw_write(tctx, offset, value, size); 542 } 543 544 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 545 unsigned size) 546 { 547 const XiveTmOp *xto; 548 uint64_t ret; 549 550 /* 551 * TODO: check V bit in Q[0-3]W2 552 */ 553 554 /* 555 * First, check for special operations in the 2K region 556 */ 557 if (offset & 0x800) { 558 xto = xive_tm_find_op(offset, size, false); 559 if (!xto) { 560 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 561 "@%"HWADDR_PRIx"\n", offset); 562 return -1; 563 } 564 ret = xto->read_handler(xptr, tctx, offset, size); 565 goto out; 566 } 567 568 /* 569 * Then, for special operations in the region below 2K. 570 */ 571 xto = xive_tm_find_op(offset, size, false); 572 if (xto) { 573 ret = xto->read_handler(xptr, tctx, offset, size); 574 goto out; 575 } 576 577 /* 578 * Finish with raw access to the register values 579 */ 580 ret = xive_tm_raw_read(tctx, offset, size); 581 out: 582 trace_xive_tctx_tm_read(offset, size, ret); 583 return ret; 584 } 585 586 static char *xive_tctx_ring_print(uint8_t *ring) 587 { 588 uint32_t w2 = xive_tctx_word2(ring); 589 590 return g_strdup_printf("%02x %02x %02x %02x %02x " 591 "%02x %02x %02x %08x", 592 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 593 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 594 be32_to_cpu(w2)); 595 } 596 597 static const char * const xive_tctx_ring_names[] = { 598 "USER", "OS", "POOL", "PHYS", 599 }; 600 601 /* 602 * kvm_irqchip_in_kernel() will cause the compiler to turn this 603 * info a nop if CONFIG_KVM isn't defined. 604 */ 605 #define xive_in_kernel(xptr) \ 606 (kvm_irqchip_in_kernel() && \ 607 ({ \ 608 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 609 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 610 })) 611 612 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon) 613 { 614 int cpu_index; 615 int i; 616 617 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 618 * are hot plugged or unplugged. 619 */ 620 if (!tctx) { 621 return; 622 } 623 624 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 625 626 if (xive_in_kernel(tctx->xptr)) { 627 Error *local_err = NULL; 628 629 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 630 if (local_err) { 631 error_report_err(local_err); 632 return; 633 } 634 } 635 636 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 637 " W2\n", cpu_index); 638 639 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 640 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 641 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index, 642 xive_tctx_ring_names[i], s); 643 g_free(s); 644 } 645 } 646 647 void xive_tctx_reset(XiveTCTX *tctx) 648 { 649 memset(tctx->regs, 0, sizeof(tctx->regs)); 650 651 /* Set some defaults */ 652 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 653 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 654 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 655 656 /* 657 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 658 * CPPR is first set. 659 */ 660 tctx->regs[TM_QW1_OS + TM_PIPR] = 661 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 662 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 663 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 664 } 665 666 static void xive_tctx_realize(DeviceState *dev, Error **errp) 667 { 668 XiveTCTX *tctx = XIVE_TCTX(dev); 669 PowerPCCPU *cpu; 670 CPUPPCState *env; 671 672 assert(tctx->cs); 673 assert(tctx->xptr); 674 675 cpu = POWERPC_CPU(tctx->cs); 676 env = &cpu->env; 677 switch (PPC_INPUT(env)) { 678 case PPC_FLAGS_INPUT_POWER9: 679 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT]; 680 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT]; 681 break; 682 683 default: 684 error_setg(errp, "XIVE interrupt controller does not support " 685 "this CPU bus model"); 686 return; 687 } 688 689 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 690 if (xive_in_kernel(tctx->xptr)) { 691 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 692 return; 693 } 694 } 695 } 696 697 static int vmstate_xive_tctx_pre_save(void *opaque) 698 { 699 XiveTCTX *tctx = XIVE_TCTX(opaque); 700 Error *local_err = NULL; 701 int ret; 702 703 if (xive_in_kernel(tctx->xptr)) { 704 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 705 if (ret < 0) { 706 error_report_err(local_err); 707 return ret; 708 } 709 } 710 711 return 0; 712 } 713 714 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 715 { 716 XiveTCTX *tctx = XIVE_TCTX(opaque); 717 Error *local_err = NULL; 718 int ret; 719 720 if (xive_in_kernel(tctx->xptr)) { 721 /* 722 * Required for hotplugged CPU, for which the state comes 723 * after all states of the machine. 724 */ 725 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 726 if (ret < 0) { 727 error_report_err(local_err); 728 return ret; 729 } 730 } 731 732 return 0; 733 } 734 735 static const VMStateDescription vmstate_xive_tctx = { 736 .name = TYPE_XIVE_TCTX, 737 .version_id = 1, 738 .minimum_version_id = 1, 739 .pre_save = vmstate_xive_tctx_pre_save, 740 .post_load = vmstate_xive_tctx_post_load, 741 .fields = (VMStateField[]) { 742 VMSTATE_BUFFER(regs, XiveTCTX), 743 VMSTATE_END_OF_LIST() 744 }, 745 }; 746 747 static Property xive_tctx_properties[] = { 748 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 749 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 750 XivePresenter *), 751 DEFINE_PROP_END_OF_LIST(), 752 }; 753 754 static void xive_tctx_class_init(ObjectClass *klass, void *data) 755 { 756 DeviceClass *dc = DEVICE_CLASS(klass); 757 758 dc->desc = "XIVE Interrupt Thread Context"; 759 dc->realize = xive_tctx_realize; 760 dc->vmsd = &vmstate_xive_tctx; 761 device_class_set_props(dc, xive_tctx_properties); 762 /* 763 * Reason: part of XIVE interrupt controller, needs to be wired up 764 * by xive_tctx_create(). 765 */ 766 dc->user_creatable = false; 767 } 768 769 static const TypeInfo xive_tctx_info = { 770 .name = TYPE_XIVE_TCTX, 771 .parent = TYPE_DEVICE, 772 .instance_size = sizeof(XiveTCTX), 773 .class_init = xive_tctx_class_init, 774 }; 775 776 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 777 { 778 Object *obj; 779 780 obj = object_new(TYPE_XIVE_TCTX); 781 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 782 object_unref(obj); 783 object_property_set_link(obj, "cpu", cpu, &error_abort); 784 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 785 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 786 object_unparent(obj); 787 return NULL; 788 } 789 return obj; 790 } 791 792 void xive_tctx_destroy(XiveTCTX *tctx) 793 { 794 Object *obj = OBJECT(tctx); 795 796 object_unparent(obj); 797 } 798 799 /* 800 * XIVE ESB helpers 801 */ 802 803 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 804 { 805 uint8_t old_pq = *pq & 0x3; 806 807 *pq &= ~0x3; 808 *pq |= value & 0x3; 809 810 return old_pq; 811 } 812 813 bool xive_esb_trigger(uint8_t *pq) 814 { 815 uint8_t old_pq = *pq & 0x3; 816 817 switch (old_pq) { 818 case XIVE_ESB_RESET: 819 xive_esb_set(pq, XIVE_ESB_PENDING); 820 return true; 821 case XIVE_ESB_PENDING: 822 case XIVE_ESB_QUEUED: 823 xive_esb_set(pq, XIVE_ESB_QUEUED); 824 return false; 825 case XIVE_ESB_OFF: 826 xive_esb_set(pq, XIVE_ESB_OFF); 827 return false; 828 default: 829 g_assert_not_reached(); 830 } 831 } 832 833 bool xive_esb_eoi(uint8_t *pq) 834 { 835 uint8_t old_pq = *pq & 0x3; 836 837 switch (old_pq) { 838 case XIVE_ESB_RESET: 839 case XIVE_ESB_PENDING: 840 xive_esb_set(pq, XIVE_ESB_RESET); 841 return false; 842 case XIVE_ESB_QUEUED: 843 xive_esb_set(pq, XIVE_ESB_PENDING); 844 return true; 845 case XIVE_ESB_OFF: 846 xive_esb_set(pq, XIVE_ESB_OFF); 847 return false; 848 default: 849 g_assert_not_reached(); 850 } 851 } 852 853 /* 854 * XIVE Interrupt Source (or IVSE) 855 */ 856 857 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 858 { 859 assert(srcno < xsrc->nr_irqs); 860 861 return xsrc->status[srcno] & 0x3; 862 } 863 864 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 865 { 866 assert(srcno < xsrc->nr_irqs); 867 868 return xive_esb_set(&xsrc->status[srcno], pq); 869 } 870 871 /* 872 * Returns whether the event notification should be forwarded. 873 */ 874 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 875 { 876 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 877 878 xive_source_set_asserted(xsrc, srcno, true); 879 880 switch (old_pq) { 881 case XIVE_ESB_RESET: 882 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 883 return true; 884 default: 885 return false; 886 } 887 } 888 889 /* 890 * Returns whether the event notification should be forwarded. 891 */ 892 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 893 { 894 bool ret; 895 896 assert(srcno < xsrc->nr_irqs); 897 898 ret = xive_esb_trigger(&xsrc->status[srcno]); 899 900 if (xive_source_irq_is_lsi(xsrc, srcno) && 901 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 902 qemu_log_mask(LOG_GUEST_ERROR, 903 "XIVE: queued an event on LSI IRQ %d\n", srcno); 904 } 905 906 return ret; 907 } 908 909 /* 910 * Returns whether the event notification should be forwarded. 911 */ 912 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 913 { 914 bool ret; 915 916 assert(srcno < xsrc->nr_irqs); 917 918 ret = xive_esb_eoi(&xsrc->status[srcno]); 919 920 /* 921 * LSI sources do not set the Q bit but they can still be 922 * asserted, in which case we should forward a new event 923 * notification 924 */ 925 if (xive_source_irq_is_lsi(xsrc, srcno) && 926 xive_source_is_asserted(xsrc, srcno)) { 927 ret = xive_source_lsi_trigger(xsrc, srcno); 928 } 929 930 return ret; 931 } 932 933 /* 934 * Forward the source event notification to the Router 935 */ 936 static void xive_source_notify(XiveSource *xsrc, int srcno) 937 { 938 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 939 940 if (xnc->notify) { 941 xnc->notify(xsrc->xive, srcno, true); 942 } 943 } 944 945 /* 946 * In a two pages ESB MMIO setting, even page is the trigger page, odd 947 * page is for management 948 */ 949 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 950 { 951 return !((addr >> shift) & 1); 952 } 953 954 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 955 { 956 return xive_source_esb_has_2page(xsrc) && 957 addr_is_even(addr, xsrc->esb_shift - 1); 958 } 959 960 /* 961 * ESB MMIO loads 962 * Trigger page Management/EOI page 963 * 964 * ESB MMIO setting 2 pages 1 or 2 pages 965 * 966 * 0x000 .. 0x3FF -1 EOI and return 0|1 967 * 0x400 .. 0x7FF -1 EOI and return 0|1 968 * 0x800 .. 0xBFF -1 return PQ 969 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 970 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 971 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 972 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 973 */ 974 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 975 { 976 XiveSource *xsrc = XIVE_SOURCE(opaque); 977 uint32_t offset = addr & 0xFFF; 978 uint32_t srcno = addr >> xsrc->esb_shift; 979 uint64_t ret = -1; 980 981 /* In a two pages ESB MMIO setting, trigger page should not be read */ 982 if (xive_source_is_trigger_page(xsrc, addr)) { 983 qemu_log_mask(LOG_GUEST_ERROR, 984 "XIVE: invalid load on IRQ %d trigger page at " 985 "0x%"HWADDR_PRIx"\n", srcno, addr); 986 return -1; 987 } 988 989 switch (offset) { 990 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 991 ret = xive_source_esb_eoi(xsrc, srcno); 992 993 /* Forward the source event notification for routing */ 994 if (ret) { 995 xive_source_notify(xsrc, srcno); 996 } 997 break; 998 999 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1000 ret = xive_source_esb_get(xsrc, srcno); 1001 break; 1002 1003 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1004 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1005 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1006 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1007 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1008 break; 1009 default: 1010 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1011 offset); 1012 } 1013 1014 trace_xive_source_esb_read(addr, srcno, ret); 1015 1016 return ret; 1017 } 1018 1019 /* 1020 * ESB MMIO stores 1021 * Trigger page Management/EOI page 1022 * 1023 * ESB MMIO setting 2 pages 1 or 2 pages 1024 * 1025 * 0x000 .. 0x3FF Trigger Trigger 1026 * 0x400 .. 0x7FF Trigger EOI 1027 * 0x800 .. 0xBFF Trigger undefined 1028 * 0xC00 .. 0xCFF Trigger PQ=00 1029 * 0xD00 .. 0xDFF Trigger PQ=01 1030 * 0xE00 .. 0xDFF Trigger PQ=10 1031 * 0xF00 .. 0xDFF Trigger PQ=11 1032 */ 1033 static void xive_source_esb_write(void *opaque, hwaddr addr, 1034 uint64_t value, unsigned size) 1035 { 1036 XiveSource *xsrc = XIVE_SOURCE(opaque); 1037 uint32_t offset = addr & 0xFFF; 1038 uint32_t srcno = addr >> xsrc->esb_shift; 1039 bool notify = false; 1040 1041 trace_xive_source_esb_write(addr, srcno, value); 1042 1043 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1044 if (xive_source_is_trigger_page(xsrc, addr)) { 1045 notify = xive_source_esb_trigger(xsrc, srcno); 1046 goto out; 1047 } 1048 1049 switch (offset) { 1050 case 0 ... 0x3FF: 1051 notify = xive_source_esb_trigger(xsrc, srcno); 1052 break; 1053 1054 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1055 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1056 qemu_log_mask(LOG_GUEST_ERROR, 1057 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1058 return; 1059 } 1060 1061 notify = xive_source_esb_eoi(xsrc, srcno); 1062 break; 1063 1064 /* 1065 * This is an internal offset used to inject triggers when the PQ 1066 * state bits are not controlled locally. Such as for LSIs when 1067 * under ABT mode. 1068 */ 1069 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1070 notify = true; 1071 break; 1072 1073 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1074 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1075 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1076 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1077 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1078 break; 1079 1080 default: 1081 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1082 offset); 1083 return; 1084 } 1085 1086 out: 1087 /* Forward the source event notification for routing */ 1088 if (notify) { 1089 xive_source_notify(xsrc, srcno); 1090 } 1091 } 1092 1093 static const MemoryRegionOps xive_source_esb_ops = { 1094 .read = xive_source_esb_read, 1095 .write = xive_source_esb_write, 1096 .endianness = DEVICE_BIG_ENDIAN, 1097 .valid = { 1098 .min_access_size = 8, 1099 .max_access_size = 8, 1100 }, 1101 .impl = { 1102 .min_access_size = 8, 1103 .max_access_size = 8, 1104 }, 1105 }; 1106 1107 void xive_source_set_irq(void *opaque, int srcno, int val) 1108 { 1109 XiveSource *xsrc = XIVE_SOURCE(opaque); 1110 bool notify = false; 1111 1112 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1113 if (val) { 1114 notify = xive_source_lsi_trigger(xsrc, srcno); 1115 } else { 1116 xive_source_set_asserted(xsrc, srcno, false); 1117 } 1118 } else { 1119 if (val) { 1120 notify = xive_source_esb_trigger(xsrc, srcno); 1121 } 1122 } 1123 1124 /* Forward the source event notification for routing */ 1125 if (notify) { 1126 xive_source_notify(xsrc, srcno); 1127 } 1128 } 1129 1130 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon) 1131 { 1132 int i; 1133 1134 for (i = 0; i < xsrc->nr_irqs; i++) { 1135 uint8_t pq = xive_source_esb_get(xsrc, i); 1136 1137 if (pq == XIVE_ESB_OFF) { 1138 continue; 1139 } 1140 1141 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset, 1142 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1143 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1144 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1145 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1146 } 1147 } 1148 1149 static void xive_source_reset(void *dev) 1150 { 1151 XiveSource *xsrc = XIVE_SOURCE(dev); 1152 1153 /* Do not clear the LSI bitmap */ 1154 1155 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */ 1156 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs); 1157 } 1158 1159 static void xive_source_realize(DeviceState *dev, Error **errp) 1160 { 1161 XiveSource *xsrc = XIVE_SOURCE(dev); 1162 size_t esb_len = xive_source_esb_len(xsrc); 1163 1164 assert(xsrc->xive); 1165 1166 if (!xsrc->nr_irqs) { 1167 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1168 return; 1169 } 1170 1171 if (xsrc->esb_shift != XIVE_ESB_4K && 1172 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1173 xsrc->esb_shift != XIVE_ESB_64K && 1174 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1175 error_setg(errp, "Invalid ESB shift setting"); 1176 return; 1177 } 1178 1179 xsrc->status = g_malloc0(xsrc->nr_irqs); 1180 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1181 1182 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1183 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1184 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1185 esb_len); 1186 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1187 1188 qemu_register_reset(xive_source_reset, dev); 1189 } 1190 1191 static const VMStateDescription vmstate_xive_source = { 1192 .name = TYPE_XIVE_SOURCE, 1193 .version_id = 1, 1194 .minimum_version_id = 1, 1195 .fields = (VMStateField[]) { 1196 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1197 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1198 VMSTATE_END_OF_LIST() 1199 }, 1200 }; 1201 1202 /* 1203 * The default XIVE interrupt source setting for the ESB MMIOs is two 1204 * 64k pages without Store EOI, to be in sync with KVM. 1205 */ 1206 static Property xive_source_properties[] = { 1207 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1208 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1209 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1210 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1211 XiveNotifier *), 1212 DEFINE_PROP_END_OF_LIST(), 1213 }; 1214 1215 static void xive_source_class_init(ObjectClass *klass, void *data) 1216 { 1217 DeviceClass *dc = DEVICE_CLASS(klass); 1218 1219 dc->desc = "XIVE Interrupt Source"; 1220 device_class_set_props(dc, xive_source_properties); 1221 dc->realize = xive_source_realize; 1222 dc->vmsd = &vmstate_xive_source; 1223 /* 1224 * Reason: part of XIVE interrupt controller, needs to be wired up, 1225 * e.g. by spapr_xive_instance_init(). 1226 */ 1227 dc->user_creatable = false; 1228 } 1229 1230 static const TypeInfo xive_source_info = { 1231 .name = TYPE_XIVE_SOURCE, 1232 .parent = TYPE_DEVICE, 1233 .instance_size = sizeof(XiveSource), 1234 .class_init = xive_source_class_init, 1235 }; 1236 1237 /* 1238 * XiveEND helpers 1239 */ 1240 1241 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon) 1242 { 1243 uint64_t qaddr_base = xive_end_qaddr(end); 1244 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1245 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1246 uint32_t qentries = 1 << (qsize + 10); 1247 int i; 1248 1249 /* 1250 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1251 */ 1252 monitor_printf(mon, " [ "); 1253 qindex = (qindex - (width - 1)) & (qentries - 1); 1254 for (i = 0; i < width; i++) { 1255 uint64_t qaddr = qaddr_base + (qindex << 2); 1256 uint32_t qdata = -1; 1257 1258 if (dma_memory_read(&address_space_memory, qaddr, 1259 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1260 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1261 HWADDR_PRIx "\n", qaddr); 1262 return; 1263 } 1264 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "", 1265 be32_to_cpu(qdata)); 1266 qindex = (qindex + 1) & (qentries - 1); 1267 } 1268 monitor_printf(mon, "]"); 1269 } 1270 1271 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon) 1272 { 1273 uint64_t qaddr_base = xive_end_qaddr(end); 1274 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1275 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1276 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1277 uint32_t qentries = 1 << (qsize + 10); 1278 1279 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1280 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1281 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1282 uint8_t pq; 1283 1284 if (!xive_end_is_valid(end)) { 1285 return; 1286 } 1287 1288 pq = xive_get_field32(END_W1_ESn, end->w1); 1289 1290 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1291 end_idx, 1292 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1293 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1294 xive_end_is_valid(end) ? 'v' : '-', 1295 xive_end_is_enqueue(end) ? 'q' : '-', 1296 xive_end_is_notify(end) ? 'n' : '-', 1297 xive_end_is_backlog(end) ? 'b' : '-', 1298 xive_end_is_escalate(end) ? 'e' : '-', 1299 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1300 xive_end_is_silent_escalation(end) ? 's' : '-', 1301 xive_end_is_firmware(end) ? 'f' : '-', 1302 priority, nvt_blk, nvt_idx); 1303 1304 if (qaddr_base) { 1305 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1306 qaddr_base, qindex, qentries, qgen); 1307 xive_end_queue_pic_print_info(end, 6, mon); 1308 } 1309 monitor_printf(mon, "\n"); 1310 } 1311 1312 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1313 { 1314 uint64_t qaddr_base = xive_end_qaddr(end); 1315 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1316 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1317 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1318 1319 uint64_t qaddr = qaddr_base + (qindex << 2); 1320 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1321 uint32_t qentries = 1 << (qsize + 10); 1322 1323 if (dma_memory_write(&address_space_memory, qaddr, 1324 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1325 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1326 HWADDR_PRIx "\n", qaddr); 1327 return; 1328 } 1329 1330 qindex = (qindex + 1) & (qentries - 1); 1331 if (qindex == 0) { 1332 qgen ^= 1; 1333 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1334 } 1335 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1336 } 1337 1338 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, 1339 Monitor *mon) 1340 { 1341 XiveEAS *eas = (XiveEAS *) &end->w4; 1342 uint8_t pq; 1343 1344 if (!xive_end_is_escalate(end)) { 1345 return; 1346 } 1347 1348 pq = xive_get_field32(END_W1_ESe, end->w1); 1349 1350 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1351 end_idx, 1352 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1353 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1354 xive_eas_is_valid(eas) ? 'V' : ' ', 1355 xive_eas_is_masked(eas) ? 'M' : ' ', 1356 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1357 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1358 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1359 } 1360 1361 /* 1362 * XIVE Router (aka. Virtualization Controller or IVRE) 1363 */ 1364 1365 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1366 XiveEAS *eas) 1367 { 1368 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1369 1370 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1371 } 1372 1373 static 1374 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1375 uint8_t *pq) 1376 { 1377 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1378 1379 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1380 } 1381 1382 static 1383 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1384 uint8_t *pq) 1385 { 1386 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1387 1388 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1389 } 1390 1391 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1392 XiveEND *end) 1393 { 1394 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1395 1396 return xrc->get_end(xrtr, end_blk, end_idx, end); 1397 } 1398 1399 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1400 XiveEND *end, uint8_t word_number) 1401 { 1402 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1403 1404 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1405 } 1406 1407 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1408 XiveNVT *nvt) 1409 { 1410 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1411 1412 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1413 } 1414 1415 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1416 XiveNVT *nvt, uint8_t word_number) 1417 { 1418 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1419 1420 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1421 } 1422 1423 static int xive_router_get_block_id(XiveRouter *xrtr) 1424 { 1425 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1426 1427 return xrc->get_block_id(xrtr); 1428 } 1429 1430 static void xive_router_realize(DeviceState *dev, Error **errp) 1431 { 1432 XiveRouter *xrtr = XIVE_ROUTER(dev); 1433 1434 assert(xrtr->xfb); 1435 } 1436 1437 /* 1438 * Encode the HW CAM line in the block group mode format : 1439 * 1440 * chip << 19 | 0000000 0 0001 thread (7Bit) 1441 */ 1442 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1443 { 1444 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1445 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1446 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1447 1448 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1449 } 1450 1451 /* 1452 * The thread context register words are in big-endian format. 1453 */ 1454 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1455 uint8_t format, 1456 uint8_t nvt_blk, uint32_t nvt_idx, 1457 bool cam_ignore, uint32_t logic_serv) 1458 { 1459 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1460 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1461 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1462 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1463 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1464 1465 /* 1466 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1467 * identifier are ignored in the "CAM" match. 1468 */ 1469 1470 if (format == 0) { 1471 if (cam_ignore == true) { 1472 /* 1473 * F=0 & i=1: Logical server notification (bits ignored at 1474 * the end of the NVT identifier) 1475 */ 1476 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1477 nvt_blk, nvt_idx); 1478 return -1; 1479 } 1480 1481 /* F=0 & i=0: Specific NVT notification */ 1482 1483 /* PHYS ring */ 1484 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1485 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1486 return TM_QW3_HV_PHYS; 1487 } 1488 1489 /* HV POOL ring */ 1490 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1491 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1492 return TM_QW2_HV_POOL; 1493 } 1494 1495 /* OS ring */ 1496 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1497 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1498 return TM_QW1_OS; 1499 } 1500 } else { 1501 /* F=1 : User level Event-Based Branch (EBB) notification */ 1502 1503 /* USER ring */ 1504 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1505 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1506 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1507 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1508 return TM_QW0_USER; 1509 } 1510 } 1511 return -1; 1512 } 1513 1514 /* 1515 * This is our simple Xive Presenter Engine model. It is merged in the 1516 * Router as it does not require an extra object. 1517 * 1518 * It receives notification requests sent by the IVRE to find one 1519 * matching NVT (or more) dispatched on the processor threads. In case 1520 * of a single NVT notification, the process is abreviated and the 1521 * thread is signaled if a match is found. In case of a logical server 1522 * notification (bits ignored at the end of the NVT identifier), the 1523 * IVPE and IVRE select a winning thread using different filters. This 1524 * involves 2 or 3 exchanges on the PowerBus that the model does not 1525 * support. 1526 * 1527 * The parameters represent what is sent on the PowerBus 1528 */ 1529 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1530 uint8_t nvt_blk, uint32_t nvt_idx, 1531 bool cam_ignore, uint8_t priority, 1532 uint32_t logic_serv) 1533 { 1534 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1535 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 }; 1536 int count; 1537 1538 /* 1539 * Ask the machine to scan the interrupt controllers for a match 1540 */ 1541 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore, 1542 priority, logic_serv, &match); 1543 if (count < 0) { 1544 return false; 1545 } 1546 1547 /* handle CPU exception delivery */ 1548 if (count) { 1549 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring); 1550 xive_tctx_ipb_update(match.tctx, match.ring, 1551 xive_priority_to_ipb(priority)); 1552 } 1553 1554 return !!count; 1555 } 1556 1557 /* 1558 * Notification using the END ESe/ESn bit (Event State Buffer for 1559 * escalation and notification). Provide further coalescing in the 1560 * Router. 1561 */ 1562 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1563 uint32_t end_idx, XiveEND *end, 1564 uint32_t end_esmask) 1565 { 1566 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1567 bool notify = xive_esb_trigger(&pq); 1568 1569 if (pq != xive_get_field32(end_esmask, end->w1)) { 1570 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1571 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1572 } 1573 1574 /* ESe/n[Q]=1 : end of notification */ 1575 return notify; 1576 } 1577 1578 /* 1579 * An END trigger can come from an event trigger (IPI or HW) or from 1580 * another chip. We don't model the PowerBus but the END trigger 1581 * message has the same parameters than in the function below. 1582 */ 1583 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk, 1584 uint32_t end_idx, uint32_t end_data) 1585 { 1586 XiveEND end; 1587 uint8_t priority; 1588 uint8_t format; 1589 uint8_t nvt_blk; 1590 uint32_t nvt_idx; 1591 XiveNVT nvt; 1592 bool found; 1593 1594 /* END cache lookup */ 1595 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1596 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1597 end_idx); 1598 return; 1599 } 1600 1601 if (!xive_end_is_valid(&end)) { 1602 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1603 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1604 end_blk, end_idx); 1605 return; 1606 } 1607 1608 if (xive_end_is_enqueue(&end)) { 1609 xive_end_enqueue(&end, end_data); 1610 /* Enqueuing event data modifies the EQ toggle and index */ 1611 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1612 } 1613 1614 /* 1615 * When the END is silent, we skip the notification part. 1616 */ 1617 if (xive_end_is_silent_escalation(&end)) { 1618 goto do_escalation; 1619 } 1620 1621 /* 1622 * The W7 format depends on the F bit in W6. It defines the type 1623 * of the notification : 1624 * 1625 * F=0 : single or multiple NVT notification 1626 * F=1 : User level Event-Based Branch (EBB) notification, no 1627 * priority 1628 */ 1629 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1630 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1631 1632 /* The END is masked */ 1633 if (format == 0 && priority == 0xff) { 1634 return; 1635 } 1636 1637 /* 1638 * Check the END ESn (Event State Buffer for notification) for 1639 * even further coalescing in the Router 1640 */ 1641 if (!xive_end_is_notify(&end)) { 1642 /* ESn[Q]=1 : end of notification */ 1643 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1644 &end, END_W1_ESn)) { 1645 return; 1646 } 1647 } 1648 1649 /* 1650 * Follows IVPE notification 1651 */ 1652 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1653 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1654 1655 /* NVT cache lookup */ 1656 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1657 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1658 nvt_blk, nvt_idx); 1659 return; 1660 } 1661 1662 if (!xive_nvt_is_valid(&nvt)) { 1663 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1664 nvt_blk, nvt_idx); 1665 return; 1666 } 1667 1668 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1669 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1670 priority, 1671 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7)); 1672 1673 /* TODO: Auto EOI. */ 1674 1675 if (found) { 1676 return; 1677 } 1678 1679 /* 1680 * If no matching NVT is dispatched on a HW thread : 1681 * - specific VP: update the NVT structure if backlog is activated 1682 * - logical server : forward request to IVPE (not supported) 1683 */ 1684 if (xive_end_is_backlog(&end)) { 1685 uint8_t ipb; 1686 1687 if (format == 1) { 1688 qemu_log_mask(LOG_GUEST_ERROR, 1689 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1690 end_blk, end_idx); 1691 return; 1692 } 1693 /* 1694 * Record the IPB in the associated NVT structure for later 1695 * use. The presenter will resend the interrupt when the vCPU 1696 * is dispatched again on a HW thread. 1697 */ 1698 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1699 xive_priority_to_ipb(priority); 1700 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1701 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1702 1703 /* 1704 * On HW, follows a "Broadcast Backlog" to IVPEs 1705 */ 1706 } 1707 1708 do_escalation: 1709 /* 1710 * If activated, escalate notification using the ESe PQ bits and 1711 * the EAS in w4-5 1712 */ 1713 if (!xive_end_is_escalate(&end)) { 1714 return; 1715 } 1716 1717 /* 1718 * Check the END ESe (Event State Buffer for escalation) for even 1719 * further coalescing in the Router 1720 */ 1721 if (!xive_end_is_uncond_escalation(&end)) { 1722 /* ESe[Q]=1 : end of notification */ 1723 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1724 &end, END_W1_ESe)) { 1725 return; 1726 } 1727 } 1728 1729 trace_xive_router_end_escalate(end_blk, end_idx, 1730 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1731 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1732 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1733 /* 1734 * The END trigger becomes an Escalation trigger 1735 */ 1736 xive_router_end_notify(xrtr, 1737 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 1738 xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 1739 xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 1740 } 1741 1742 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 1743 { 1744 XiveRouter *xrtr = XIVE_ROUTER(xn); 1745 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 1746 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 1747 XiveEAS eas; 1748 1749 /* EAS cache lookup */ 1750 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 1751 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 1752 return; 1753 } 1754 1755 if (!pq_checked) { 1756 bool notify; 1757 uint8_t pq; 1758 1759 /* PQ cache lookup */ 1760 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 1761 /* Set FIR */ 1762 g_assert_not_reached(); 1763 } 1764 1765 notify = xive_esb_trigger(&pq); 1766 1767 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 1768 /* Set FIR */ 1769 g_assert_not_reached(); 1770 } 1771 1772 if (!notify) { 1773 return; 1774 } 1775 } 1776 1777 if (!xive_eas_is_valid(&eas)) { 1778 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 1779 return; 1780 } 1781 1782 if (xive_eas_is_masked(&eas)) { 1783 /* Notification completed */ 1784 return; 1785 } 1786 1787 /* 1788 * The event trigger becomes an END trigger 1789 */ 1790 xive_router_end_notify(xrtr, 1791 xive_get_field64(EAS_END_BLOCK, eas.w), 1792 xive_get_field64(EAS_END_INDEX, eas.w), 1793 xive_get_field64(EAS_END_DATA, eas.w)); 1794 } 1795 1796 static Property xive_router_properties[] = { 1797 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 1798 TYPE_XIVE_FABRIC, XiveFabric *), 1799 DEFINE_PROP_END_OF_LIST(), 1800 }; 1801 1802 static void xive_router_class_init(ObjectClass *klass, void *data) 1803 { 1804 DeviceClass *dc = DEVICE_CLASS(klass); 1805 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 1806 1807 dc->desc = "XIVE Router Engine"; 1808 device_class_set_props(dc, xive_router_properties); 1809 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 1810 dc->realize = xive_router_realize; 1811 xnc->notify = xive_router_notify; 1812 } 1813 1814 static const TypeInfo xive_router_info = { 1815 .name = TYPE_XIVE_ROUTER, 1816 .parent = TYPE_SYS_BUS_DEVICE, 1817 .abstract = true, 1818 .instance_size = sizeof(XiveRouter), 1819 .class_size = sizeof(XiveRouterClass), 1820 .class_init = xive_router_class_init, 1821 .interfaces = (InterfaceInfo[]) { 1822 { TYPE_XIVE_NOTIFIER }, 1823 { TYPE_XIVE_PRESENTER }, 1824 { } 1825 } 1826 }; 1827 1828 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon) 1829 { 1830 if (!xive_eas_is_valid(eas)) { 1831 return; 1832 } 1833 1834 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n", 1835 lisn, xive_eas_is_masked(eas) ? "M" : " ", 1836 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1837 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1838 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1839 } 1840 1841 /* 1842 * END ESB MMIO loads 1843 */ 1844 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 1845 { 1846 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 1847 uint32_t offset = addr & 0xFFF; 1848 uint8_t end_blk; 1849 uint32_t end_idx; 1850 XiveEND end; 1851 uint32_t end_esmask; 1852 uint8_t pq; 1853 uint64_t ret = -1; 1854 1855 /* 1856 * The block id should be deduced from the load address on the END 1857 * ESB MMIO but our model only supports a single block per XIVE chip. 1858 */ 1859 end_blk = xive_router_get_block_id(xsrc->xrtr); 1860 end_idx = addr >> (xsrc->esb_shift + 1); 1861 1862 trace_xive_end_source_read(end_blk, end_idx, addr); 1863 1864 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 1865 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1866 end_idx); 1867 return -1; 1868 } 1869 1870 if (!xive_end_is_valid(&end)) { 1871 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1872 end_blk, end_idx); 1873 return -1; 1874 } 1875 1876 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 1877 pq = xive_get_field32(end_esmask, end.w1); 1878 1879 switch (offset) { 1880 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1881 ret = xive_esb_eoi(&pq); 1882 1883 /* Forward the source event notification for routing ?? */ 1884 break; 1885 1886 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1887 ret = pq; 1888 break; 1889 1890 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1891 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1892 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1893 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1894 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 1895 break; 1896 default: 1897 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 1898 offset); 1899 return -1; 1900 } 1901 1902 if (pq != xive_get_field32(end_esmask, end.w1)) { 1903 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 1904 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 1905 } 1906 1907 return ret; 1908 } 1909 1910 /* 1911 * END ESB MMIO stores are invalid 1912 */ 1913 static void xive_end_source_write(void *opaque, hwaddr addr, 1914 uint64_t value, unsigned size) 1915 { 1916 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 1917 HWADDR_PRIx"\n", addr); 1918 } 1919 1920 static const MemoryRegionOps xive_end_source_ops = { 1921 .read = xive_end_source_read, 1922 .write = xive_end_source_write, 1923 .endianness = DEVICE_BIG_ENDIAN, 1924 .valid = { 1925 .min_access_size = 8, 1926 .max_access_size = 8, 1927 }, 1928 .impl = { 1929 .min_access_size = 8, 1930 .max_access_size = 8, 1931 }, 1932 }; 1933 1934 static void xive_end_source_realize(DeviceState *dev, Error **errp) 1935 { 1936 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 1937 1938 assert(xsrc->xrtr); 1939 1940 if (!xsrc->nr_ends) { 1941 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1942 return; 1943 } 1944 1945 if (xsrc->esb_shift != XIVE_ESB_4K && 1946 xsrc->esb_shift != XIVE_ESB_64K) { 1947 error_setg(errp, "Invalid ESB shift setting"); 1948 return; 1949 } 1950 1951 /* 1952 * Each END is assigned an even/odd pair of MMIO pages, the even page 1953 * manages the ESn field while the odd page manages the ESe field. 1954 */ 1955 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 1956 &xive_end_source_ops, xsrc, "xive.end", 1957 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 1958 } 1959 1960 static Property xive_end_source_properties[] = { 1961 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 1962 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 1963 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 1964 XiveRouter *), 1965 DEFINE_PROP_END_OF_LIST(), 1966 }; 1967 1968 static void xive_end_source_class_init(ObjectClass *klass, void *data) 1969 { 1970 DeviceClass *dc = DEVICE_CLASS(klass); 1971 1972 dc->desc = "XIVE END Source"; 1973 device_class_set_props(dc, xive_end_source_properties); 1974 dc->realize = xive_end_source_realize; 1975 /* 1976 * Reason: part of XIVE interrupt controller, needs to be wired up, 1977 * e.g. by spapr_xive_instance_init(). 1978 */ 1979 dc->user_creatable = false; 1980 } 1981 1982 static const TypeInfo xive_end_source_info = { 1983 .name = TYPE_XIVE_END_SOURCE, 1984 .parent = TYPE_DEVICE, 1985 .instance_size = sizeof(XiveENDSource), 1986 .class_init = xive_end_source_class_init, 1987 }; 1988 1989 /* 1990 * XIVE Notifier 1991 */ 1992 static const TypeInfo xive_notifier_info = { 1993 .name = TYPE_XIVE_NOTIFIER, 1994 .parent = TYPE_INTERFACE, 1995 .class_size = sizeof(XiveNotifierClass), 1996 }; 1997 1998 /* 1999 * XIVE Presenter 2000 */ 2001 static const TypeInfo xive_presenter_info = { 2002 .name = TYPE_XIVE_PRESENTER, 2003 .parent = TYPE_INTERFACE, 2004 .class_size = sizeof(XivePresenterClass), 2005 }; 2006 2007 /* 2008 * XIVE Fabric 2009 */ 2010 static const TypeInfo xive_fabric_info = { 2011 .name = TYPE_XIVE_FABRIC, 2012 .parent = TYPE_INTERFACE, 2013 .class_size = sizeof(XiveFabricClass), 2014 }; 2015 2016 static void xive_register_types(void) 2017 { 2018 type_register_static(&xive_fabric_info); 2019 type_register_static(&xive_source_info); 2020 type_register_static(&xive_notifier_info); 2021 type_register_static(&xive_presenter_info); 2022 type_register_static(&xive_router_info); 2023 type_register_static(&xive_end_source_info); 2024 type_register_static(&xive_tctx_info); 2025 } 2026 2027 type_init(xive_register_types) 2028