1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "hw/irq.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive2.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
25
26 /*
27 * XIVE Thread Interrupt Management context
28 */
29
30 /*
31 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
32 * Interrupt Priority Register (PIPR), which contains the priority of
33 * the most favored pending notification.
34 */
ipb_to_pipr(uint8_t ibp)35 static uint8_t ipb_to_pipr(uint8_t ibp)
36 {
37 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
38 }
39
exception_mask(uint8_t ring)40 static uint8_t exception_mask(uint8_t ring)
41 {
42 switch (ring) {
43 case TM_QW1_OS:
44 return TM_QW1_NSR_EO;
45 case TM_QW3_HV_PHYS:
46 return TM_QW3_NSR_HE;
47 default:
48 g_assert_not_reached();
49 }
50 }
51
xive_tctx_output(XiveTCTX * tctx,uint8_t ring)52 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
53 {
54 switch (ring) {
55 case TM_QW0_USER:
56 return 0; /* Not supported */
57 case TM_QW1_OS:
58 return tctx->os_output;
59 case TM_QW2_HV_POOL:
60 case TM_QW3_HV_PHYS:
61 return tctx->hv_output;
62 default:
63 return 0;
64 }
65 }
66
xive_tctx_accept(XiveTCTX * tctx,uint8_t ring)67 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
68 {
69 uint8_t *regs = &tctx->regs[ring];
70 uint8_t nsr = regs[TM_NSR];
71 uint8_t mask = exception_mask(ring);
72
73 qemu_irq_lower(xive_tctx_output(tctx, ring));
74
75 if (regs[TM_NSR] & mask) {
76 uint8_t cppr = regs[TM_PIPR];
77
78 regs[TM_CPPR] = cppr;
79
80 /* Reset the pending buffer bit */
81 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
82 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
83
84 /* Drop Exception bit */
85 regs[TM_NSR] &= ~mask;
86
87 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
88 regs[TM_IPB], regs[TM_PIPR],
89 regs[TM_CPPR], regs[TM_NSR]);
90 }
91
92 return (nsr << 8) | regs[TM_CPPR];
93 }
94
xive_tctx_notify(XiveTCTX * tctx,uint8_t ring)95 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
96 {
97 uint8_t *regs = &tctx->regs[ring];
98
99 if (regs[TM_PIPR] < regs[TM_CPPR]) {
100 switch (ring) {
101 case TM_QW1_OS:
102 regs[TM_NSR] |= TM_QW1_NSR_EO;
103 break;
104 case TM_QW3_HV_PHYS:
105 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
106 break;
107 default:
108 g_assert_not_reached();
109 }
110 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
111 regs[TM_IPB], regs[TM_PIPR],
112 regs[TM_CPPR], regs[TM_NSR]);
113 qemu_irq_raise(xive_tctx_output(tctx, ring));
114 }
115 }
116
xive_tctx_reset_os_signal(XiveTCTX * tctx)117 void xive_tctx_reset_os_signal(XiveTCTX *tctx)
118 {
119 /*
120 * Lower the External interrupt. Used when pulling an OS
121 * context. It is necessary to avoid catching it in the hypervisor
122 * context. It should be raised again when re-pushing the OS
123 * context.
124 */
125 qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS));
126 }
127
xive_tctx_set_cppr(XiveTCTX * tctx,uint8_t ring,uint8_t cppr)128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
129 {
130 uint8_t *regs = &tctx->regs[ring];
131
132 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
133 regs[TM_IPB], regs[TM_PIPR],
134 cppr, regs[TM_NSR]);
135
136 if (cppr > XIVE_PRIORITY_MAX) {
137 cppr = 0xff;
138 }
139
140 tctx->regs[ring + TM_CPPR] = cppr;
141
142 /* CPPR has changed, check if we need to raise a pending exception */
143 xive_tctx_notify(tctx, ring);
144 }
145
xive_tctx_ipb_update(XiveTCTX * tctx,uint8_t ring,uint8_t ipb)146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
147 {
148 uint8_t *regs = &tctx->regs[ring];
149
150 regs[TM_IPB] |= ipb;
151 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
152 xive_tctx_notify(tctx, ring);
153 }
154
155 /*
156 * XIVE Thread Interrupt Management Area (TIMA)
157 */
158
xive_tm_set_hv_cppr(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)159 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
160 hwaddr offset, uint64_t value, unsigned size)
161 {
162 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
163 }
164
xive_tm_ack_hv_reg(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)165 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
166 hwaddr offset, unsigned size)
167 {
168 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
169 }
170
xive_tm_pull_pool_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)171 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
172 hwaddr offset, unsigned size)
173 {
174 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
175 uint32_t qw2w2;
176
177 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
178 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
179 return qw2w2;
180 }
181
xive_tm_vt_push(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)182 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
183 uint64_t value, unsigned size)
184 {
185 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
186 }
187
xive_tm_vt_poll(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)188 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
189 hwaddr offset, unsigned size)
190 {
191 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
192 }
193
194 /*
195 * Define an access map for each page of the TIMA that we will use in
196 * the memory region ops to filter values when doing loads and stores
197 * of raw registers values
198 *
199 * Registers accessibility bits :
200 *
201 * 0x0 - no access
202 * 0x1 - write only
203 * 0x2 - read only
204 * 0x3 - read/write
205 */
206
207 static const uint8_t xive_tm_hw_view[] = {
208 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
209 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
210 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
211 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
212 };
213
214 static const uint8_t xive_tm_hv_view[] = {
215 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
216 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
217 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
218 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
219 };
220
221 static const uint8_t xive_tm_os_view[] = {
222 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
223 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
224 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
226 };
227
228 static const uint8_t xive_tm_user_view[] = {
229 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
231 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
233 };
234
235 /*
236 * Overall TIMA access map for the thread interrupt management context
237 * registers
238 */
239 static const uint8_t *xive_tm_views[] = {
240 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
241 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
242 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
243 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
244 };
245
246 /*
247 * Computes a register access mask for a given offset in the TIMA
248 */
xive_tm_mask(hwaddr offset,unsigned size,bool write)249 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
250 {
251 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
252 uint8_t reg_offset = offset & TM_REG_OFFSET;
253 uint8_t reg_mask = write ? 0x1 : 0x2;
254 uint64_t mask = 0x0;
255 int i;
256
257 for (i = 0; i < size; i++) {
258 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
259 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
260 }
261 }
262
263 return mask;
264 }
265
xive_tm_raw_write(XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)266 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
267 unsigned size)
268 {
269 uint8_t ring_offset = offset & TM_RING_OFFSET;
270 uint8_t reg_offset = offset & TM_REG_OFFSET;
271 uint64_t mask = xive_tm_mask(offset, size, true);
272 int i;
273
274 /*
275 * Only 4 or 8 bytes stores are allowed and the User ring is
276 * excluded
277 */
278 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
279 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
280 HWADDR_PRIx"\n", offset);
281 return;
282 }
283
284 /*
285 * Use the register offset for the raw values and filter out
286 * reserved values
287 */
288 for (i = 0; i < size; i++) {
289 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
290 if (byte_mask) {
291 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
292 byte_mask;
293 }
294 }
295 }
296
xive_tm_raw_read(XiveTCTX * tctx,hwaddr offset,unsigned size)297 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
298 {
299 uint8_t ring_offset = offset & TM_RING_OFFSET;
300 uint8_t reg_offset = offset & TM_REG_OFFSET;
301 uint64_t mask = xive_tm_mask(offset, size, false);
302 uint64_t ret;
303 int i;
304
305 /*
306 * Only 4 or 8 bytes loads are allowed and the User ring is
307 * excluded
308 */
309 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
310 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
311 HWADDR_PRIx"\n", offset);
312 return -1;
313 }
314
315 /* Use the register offset for the raw values */
316 ret = 0;
317 for (i = 0; i < size; i++) {
318 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
319 }
320
321 /* filter out reserved values */
322 return ret & mask;
323 }
324
325 /*
326 * The TM context is mapped twice within each page. Stores and loads
327 * to the first mapping below 2K write and read the specified values
328 * without modification. The second mapping above 2K performs specific
329 * state changes (side effects) in addition to setting/returning the
330 * interrupt management area context of the processor thread.
331 */
xive_tm_ack_os_reg(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)332 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
333 hwaddr offset, unsigned size)
334 {
335 return xive_tctx_accept(tctx, TM_QW1_OS);
336 }
337
xive_tm_set_os_cppr(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)338 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
339 hwaddr offset, uint64_t value, unsigned size)
340 {
341 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
342 }
343
344 /*
345 * Adjust the IPB to allow a CPU to process event queues of other
346 * priorities during one physical interrupt cycle.
347 */
xive_tm_set_os_pending(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)348 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
349 hwaddr offset, uint64_t value, unsigned size)
350 {
351 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
352 }
353
xive_os_cam_decode(uint32_t cam,uint8_t * nvt_blk,uint32_t * nvt_idx,bool * vo)354 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
355 uint32_t *nvt_idx, bool *vo)
356 {
357 if (nvt_blk) {
358 *nvt_blk = xive_nvt_blk(cam);
359 }
360 if (nvt_idx) {
361 *nvt_idx = xive_nvt_idx(cam);
362 }
363 if (vo) {
364 *vo = !!(cam & TM_QW1W2_VO);
365 }
366 }
367
xive_tctx_get_os_cam(XiveTCTX * tctx,uint8_t * nvt_blk,uint32_t * nvt_idx,bool * vo)368 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
369 uint32_t *nvt_idx, bool *vo)
370 {
371 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
372 uint32_t cam = be32_to_cpu(qw1w2);
373
374 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
375 return qw1w2;
376 }
377
xive_tctx_set_os_cam(XiveTCTX * tctx,uint32_t qw1w2)378 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
379 {
380 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
381 }
382
xive_tm_pull_os_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)383 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
384 hwaddr offset, unsigned size)
385 {
386 uint32_t qw1w2;
387 uint32_t qw1w2_new;
388 uint8_t nvt_blk;
389 uint32_t nvt_idx;
390 bool vo;
391
392 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
393
394 if (!vo) {
395 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
396 nvt_blk, nvt_idx);
397 }
398
399 /* Invalidate CAM line */
400 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
401 xive_tctx_set_os_cam(tctx, qw1w2_new);
402
403 xive_tctx_reset_os_signal(tctx);
404 return qw1w2;
405 }
406
xive_tctx_need_resend(XiveRouter * xrtr,XiveTCTX * tctx,uint8_t nvt_blk,uint32_t nvt_idx)407 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
408 uint8_t nvt_blk, uint32_t nvt_idx)
409 {
410 XiveNVT nvt;
411 uint8_t ipb;
412
413 /*
414 * Grab the associated NVT to pull the pending bits, and merge
415 * them with the IPB of the thread interrupt context registers
416 */
417 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
418 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
419 nvt_blk, nvt_idx);
420 return;
421 }
422
423 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
424
425 if (ipb) {
426 /* Reset the NVT value */
427 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
428 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
429 }
430 /*
431 * Always call xive_tctx_ipb_update(). Even if there were no
432 * escalation triggered, there could be a pending interrupt which
433 * was saved when the context was pulled and that we need to take
434 * into account by recalculating the PIPR (which is not
435 * saved/restored).
436 * It will also raise the External interrupt signal if needed.
437 */
438 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
439 }
440
441 /*
442 * Updating the OS CAM line can trigger a resend of interrupt
443 */
xive_tm_push_os_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)444 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
445 hwaddr offset, uint64_t value, unsigned size)
446 {
447 uint32_t cam = value;
448 uint32_t qw1w2 = cpu_to_be32(cam);
449 uint8_t nvt_blk;
450 uint32_t nvt_idx;
451 bool vo;
452
453 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
454
455 /* First update the registers */
456 xive_tctx_set_os_cam(tctx, qw1w2);
457
458 /* Check the interrupt pending bits */
459 if (vo) {
460 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
461 }
462 }
463
xive_presenter_get_config(XivePresenter * xptr)464 static uint32_t xive_presenter_get_config(XivePresenter *xptr)
465 {
466 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
467
468 return xpc->get_config(xptr);
469 }
470
471 /*
472 * Define a mapping of "special" operations depending on the TIMA page
473 * offset and the size of the operation.
474 */
475 typedef struct XiveTmOp {
476 uint8_t page_offset;
477 uint32_t op_offset;
478 unsigned size;
479 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
480 hwaddr offset,
481 uint64_t value, unsigned size);
482 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
483 unsigned size);
484 } XiveTmOp;
485
486 static const XiveTmOp xive_tm_operations[] = {
487 /*
488 * MMIOs below 2K : raw values and special operations without side
489 * effects
490 */
491 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
492 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
493 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
494 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
495 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
496
497 /* MMIOs above 2K : special operations with side effects */
498 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
499 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
500 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
501 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
502 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
503 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
504 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
505 };
506
507 static const XiveTmOp xive2_tm_operations[] = {
508 /*
509 * MMIOs below 2K : raw values and special operations without side
510 * effects
511 */
512 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
513 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive2_tm_push_os_ctx, NULL },
514 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
515 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
516 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
517
518 /* MMIOs above 2K : special operations with side effects */
519 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
520 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
521 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive2_tm_pull_os_ctx },
522 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive2_tm_pull_os_ctx },
523 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
524 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
525 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
526 };
527
xive_tm_find_op(XivePresenter * xptr,hwaddr offset,unsigned size,bool write)528 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset,
529 unsigned size, bool write)
530 {
531 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
532 uint32_t op_offset = offset & TM_ADDRESS_MASK;
533 const XiveTmOp *tm_ops;
534 int i, tm_ops_count;
535 uint32_t cfg;
536
537 cfg = xive_presenter_get_config(xptr);
538 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) {
539 tm_ops = xive_tm_operations;
540 tm_ops_count = ARRAY_SIZE(xive_tm_operations);
541 } else {
542 tm_ops = xive2_tm_operations;
543 tm_ops_count = ARRAY_SIZE(xive2_tm_operations);
544 }
545
546 for (i = 0; i < tm_ops_count; i++) {
547 const XiveTmOp *xto = &tm_ops[i];
548
549 /* Accesses done from a more privileged TIMA page is allowed */
550 if (xto->page_offset >= page_offset &&
551 xto->op_offset == op_offset &&
552 xto->size == size &&
553 ((write && xto->write_handler) || (!write && xto->read_handler))) {
554 return xto;
555 }
556 }
557 return NULL;
558 }
559
560 /*
561 * TIMA MMIO handlers
562 */
xive_tctx_tm_write(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)563 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
564 uint64_t value, unsigned size)
565 {
566 const XiveTmOp *xto;
567
568 trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value);
569
570 /*
571 * TODO: check V bit in Q[0-3]W2
572 */
573
574 /*
575 * First, check for special operations in the 2K region
576 */
577 if (offset & TM_SPECIAL_OP) {
578 xto = xive_tm_find_op(tctx->xptr, offset, size, true);
579 if (!xto) {
580 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
581 "@%"HWADDR_PRIx"\n", offset);
582 } else {
583 xto->write_handler(xptr, tctx, offset, value, size);
584 }
585 return;
586 }
587
588 /*
589 * Then, for special operations in the region below 2K.
590 */
591 xto = xive_tm_find_op(tctx->xptr, offset, size, true);
592 if (xto) {
593 xto->write_handler(xptr, tctx, offset, value, size);
594 return;
595 }
596
597 /*
598 * Finish with raw access to the register values
599 */
600 xive_tm_raw_write(tctx, offset, value, size);
601 }
602
xive_tctx_tm_read(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)603 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
604 unsigned size)
605 {
606 const XiveTmOp *xto;
607 uint64_t ret;
608
609 /*
610 * TODO: check V bit in Q[0-3]W2
611 */
612
613 /*
614 * First, check for special operations in the 2K region
615 */
616 if (offset & TM_SPECIAL_OP) {
617 xto = xive_tm_find_op(tctx->xptr, offset, size, false);
618 if (!xto) {
619 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
620 "@%"HWADDR_PRIx"\n", offset);
621 return -1;
622 }
623 ret = xto->read_handler(xptr, tctx, offset, size);
624 goto out;
625 }
626
627 /*
628 * Then, for special operations in the region below 2K.
629 */
630 xto = xive_tm_find_op(tctx->xptr, offset, size, false);
631 if (xto) {
632 ret = xto->read_handler(xptr, tctx, offset, size);
633 goto out;
634 }
635
636 /*
637 * Finish with raw access to the register values
638 */
639 ret = xive_tm_raw_read(tctx, offset, size);
640 out:
641 trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret);
642 return ret;
643 }
644
xive_tctx_ring_print(uint8_t * ring)645 static char *xive_tctx_ring_print(uint8_t *ring)
646 {
647 uint32_t w2 = xive_tctx_word2(ring);
648
649 return g_strdup_printf("%02x %02x %02x %02x %02x "
650 "%02x %02x %02x %08x",
651 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
652 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
653 be32_to_cpu(w2));
654 }
655
656 static const char * const xive_tctx_ring_names[] = {
657 "USER", "OS", "POOL", "PHYS",
658 };
659
660 /*
661 * kvm_irqchip_in_kernel() will cause the compiler to turn this
662 * info a nop if CONFIG_KVM isn't defined.
663 */
664 #define xive_in_kernel(xptr) \
665 (kvm_irqchip_in_kernel() && \
666 ({ \
667 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
668 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
669 }))
670
xive_tctx_pic_print_info(XiveTCTX * tctx,GString * buf)671 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf)
672 {
673 int cpu_index;
674 int i;
675
676 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
677 * are hot plugged or unplugged.
678 */
679 if (!tctx) {
680 return;
681 }
682
683 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
684
685 if (xive_in_kernel(tctx->xptr)) {
686 Error *local_err = NULL;
687
688 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
689 if (local_err) {
690 error_report_err(local_err);
691 return;
692 }
693 }
694
695 if (xive_presenter_get_config(tctx->xptr) & XIVE_PRESENTER_GEN1_TIMA_OS) {
696 g_string_append_printf(buf, "CPU[%04x]: "
697 "QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
698 " W2\n", cpu_index);
699 } else {
700 g_string_append_printf(buf, "CPU[%04x]: "
701 "QW NSR CPPR IPB LSMFB - LGS T PIPR"
702 " W2\n", cpu_index);
703 }
704
705 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
706 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
707 g_string_append_printf(buf, "CPU[%04x]: %4s %s\n",
708 cpu_index, xive_tctx_ring_names[i], s);
709 g_free(s);
710 }
711 }
712
xive_tctx_reset(XiveTCTX * tctx)713 void xive_tctx_reset(XiveTCTX *tctx)
714 {
715 memset(tctx->regs, 0, sizeof(tctx->regs));
716
717 /* Set some defaults */
718 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
719 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
720 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
721
722 /*
723 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
724 * CPPR is first set.
725 */
726 tctx->regs[TM_QW1_OS + TM_PIPR] =
727 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
728 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
729 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
730 }
731
xive_tctx_realize(DeviceState * dev,Error ** errp)732 static void xive_tctx_realize(DeviceState *dev, Error **errp)
733 {
734 XiveTCTX *tctx = XIVE_TCTX(dev);
735 PowerPCCPU *cpu;
736 CPUPPCState *env;
737
738 assert(tctx->cs);
739 assert(tctx->xptr);
740
741 cpu = POWERPC_CPU(tctx->cs);
742 env = &cpu->env;
743 switch (PPC_INPUT(env)) {
744 case PPC_FLAGS_INPUT_POWER9:
745 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
746 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
747 break;
748
749 default:
750 error_setg(errp, "XIVE interrupt controller does not support "
751 "this CPU bus model");
752 return;
753 }
754
755 /* Connect the presenter to the VCPU (required for CPU hotplug) */
756 if (xive_in_kernel(tctx->xptr)) {
757 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
758 return;
759 }
760 }
761 }
762
vmstate_xive_tctx_pre_save(void * opaque)763 static int vmstate_xive_tctx_pre_save(void *opaque)
764 {
765 XiveTCTX *tctx = XIVE_TCTX(opaque);
766 Error *local_err = NULL;
767 int ret;
768
769 if (xive_in_kernel(tctx->xptr)) {
770 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
771 if (ret < 0) {
772 error_report_err(local_err);
773 return ret;
774 }
775 }
776
777 return 0;
778 }
779
vmstate_xive_tctx_post_load(void * opaque,int version_id)780 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
781 {
782 XiveTCTX *tctx = XIVE_TCTX(opaque);
783 Error *local_err = NULL;
784 int ret;
785
786 if (xive_in_kernel(tctx->xptr)) {
787 /*
788 * Required for hotplugged CPU, for which the state comes
789 * after all states of the machine.
790 */
791 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
792 if (ret < 0) {
793 error_report_err(local_err);
794 return ret;
795 }
796 }
797
798 return 0;
799 }
800
801 static const VMStateDescription vmstate_xive_tctx = {
802 .name = TYPE_XIVE_TCTX,
803 .version_id = 1,
804 .minimum_version_id = 1,
805 .pre_save = vmstate_xive_tctx_pre_save,
806 .post_load = vmstate_xive_tctx_post_load,
807 .fields = (const VMStateField[]) {
808 VMSTATE_BUFFER(regs, XiveTCTX),
809 VMSTATE_END_OF_LIST()
810 },
811 };
812
813 static Property xive_tctx_properties[] = {
814 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
815 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
816 XivePresenter *),
817 DEFINE_PROP_END_OF_LIST(),
818 };
819
xive_tctx_class_init(ObjectClass * klass,void * data)820 static void xive_tctx_class_init(ObjectClass *klass, void *data)
821 {
822 DeviceClass *dc = DEVICE_CLASS(klass);
823
824 dc->desc = "XIVE Interrupt Thread Context";
825 dc->realize = xive_tctx_realize;
826 dc->vmsd = &vmstate_xive_tctx;
827 device_class_set_props(dc, xive_tctx_properties);
828 /*
829 * Reason: part of XIVE interrupt controller, needs to be wired up
830 * by xive_tctx_create().
831 */
832 dc->user_creatable = false;
833 }
834
835 static const TypeInfo xive_tctx_info = {
836 .name = TYPE_XIVE_TCTX,
837 .parent = TYPE_DEVICE,
838 .instance_size = sizeof(XiveTCTX),
839 .class_init = xive_tctx_class_init,
840 };
841
xive_tctx_create(Object * cpu,XivePresenter * xptr,Error ** errp)842 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
843 {
844 Object *obj;
845
846 obj = object_new(TYPE_XIVE_TCTX);
847 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
848 object_unref(obj);
849 object_property_set_link(obj, "cpu", cpu, &error_abort);
850 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
851 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
852 object_unparent(obj);
853 return NULL;
854 }
855 return obj;
856 }
857
xive_tctx_destroy(XiveTCTX * tctx)858 void xive_tctx_destroy(XiveTCTX *tctx)
859 {
860 Object *obj = OBJECT(tctx);
861
862 object_unparent(obj);
863 }
864
865 /*
866 * XIVE ESB helpers
867 */
868
xive_esb_set(uint8_t * pq,uint8_t value)869 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
870 {
871 uint8_t old_pq = *pq & 0x3;
872
873 *pq &= ~0x3;
874 *pq |= value & 0x3;
875
876 return old_pq;
877 }
878
xive_esb_trigger(uint8_t * pq)879 bool xive_esb_trigger(uint8_t *pq)
880 {
881 uint8_t old_pq = *pq & 0x3;
882
883 switch (old_pq) {
884 case XIVE_ESB_RESET:
885 xive_esb_set(pq, XIVE_ESB_PENDING);
886 return true;
887 case XIVE_ESB_PENDING:
888 case XIVE_ESB_QUEUED:
889 xive_esb_set(pq, XIVE_ESB_QUEUED);
890 return false;
891 case XIVE_ESB_OFF:
892 xive_esb_set(pq, XIVE_ESB_OFF);
893 return false;
894 default:
895 g_assert_not_reached();
896 }
897 }
898
xive_esb_eoi(uint8_t * pq)899 bool xive_esb_eoi(uint8_t *pq)
900 {
901 uint8_t old_pq = *pq & 0x3;
902
903 switch (old_pq) {
904 case XIVE_ESB_RESET:
905 case XIVE_ESB_PENDING:
906 xive_esb_set(pq, XIVE_ESB_RESET);
907 return false;
908 case XIVE_ESB_QUEUED:
909 xive_esb_set(pq, XIVE_ESB_PENDING);
910 return true;
911 case XIVE_ESB_OFF:
912 xive_esb_set(pq, XIVE_ESB_OFF);
913 return false;
914 default:
915 g_assert_not_reached();
916 }
917 }
918
919 /*
920 * XIVE Interrupt Source (or IVSE)
921 */
922
xive_source_esb_get(XiveSource * xsrc,uint32_t srcno)923 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
924 {
925 assert(srcno < xsrc->nr_irqs);
926
927 return xsrc->status[srcno] & 0x3;
928 }
929
xive_source_esb_set(XiveSource * xsrc,uint32_t srcno,uint8_t pq)930 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
931 {
932 assert(srcno < xsrc->nr_irqs);
933
934 return xive_esb_set(&xsrc->status[srcno], pq);
935 }
936
937 /*
938 * Returns whether the event notification should be forwarded.
939 */
xive_source_lsi_trigger(XiveSource * xsrc,uint32_t srcno)940 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
941 {
942 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
943
944 xive_source_set_asserted(xsrc, srcno, true);
945
946 switch (old_pq) {
947 case XIVE_ESB_RESET:
948 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
949 return true;
950 default:
951 return false;
952 }
953 }
954
955 /*
956 * Sources can be configured with PQ offloading in which case the check
957 * on the PQ state bits of MSIs is disabled
958 */
xive_source_esb_disabled(XiveSource * xsrc,uint32_t srcno)959 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
960 {
961 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
962 !xive_source_irq_is_lsi(xsrc, srcno);
963 }
964
965 /*
966 * Returns whether the event notification should be forwarded.
967 */
xive_source_esb_trigger(XiveSource * xsrc,uint32_t srcno)968 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
969 {
970 bool ret;
971
972 assert(srcno < xsrc->nr_irqs);
973
974 if (xive_source_esb_disabled(xsrc, srcno)) {
975 return true;
976 }
977
978 ret = xive_esb_trigger(&xsrc->status[srcno]);
979
980 if (xive_source_irq_is_lsi(xsrc, srcno) &&
981 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
982 qemu_log_mask(LOG_GUEST_ERROR,
983 "XIVE: queued an event on LSI IRQ %d\n", srcno);
984 }
985
986 return ret;
987 }
988
989 /*
990 * Returns whether the event notification should be forwarded.
991 */
xive_source_esb_eoi(XiveSource * xsrc,uint32_t srcno)992 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
993 {
994 bool ret;
995
996 assert(srcno < xsrc->nr_irqs);
997
998 if (xive_source_esb_disabled(xsrc, srcno)) {
999 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
1000 return false;
1001 }
1002
1003 ret = xive_esb_eoi(&xsrc->status[srcno]);
1004
1005 /*
1006 * LSI sources do not set the Q bit but they can still be
1007 * asserted, in which case we should forward a new event
1008 * notification
1009 */
1010 if (xive_source_irq_is_lsi(xsrc, srcno) &&
1011 xive_source_is_asserted(xsrc, srcno)) {
1012 ret = xive_source_lsi_trigger(xsrc, srcno);
1013 }
1014
1015 return ret;
1016 }
1017
1018 /*
1019 * Forward the source event notification to the Router
1020 */
xive_source_notify(XiveSource * xsrc,int srcno)1021 static void xive_source_notify(XiveSource *xsrc, int srcno)
1022 {
1023 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
1024 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
1025
1026 if (xnc->notify) {
1027 xnc->notify(xsrc->xive, srcno, pq_checked);
1028 }
1029 }
1030
1031 /*
1032 * In a two pages ESB MMIO setting, even page is the trigger page, odd
1033 * page is for management
1034 */
addr_is_even(hwaddr addr,uint32_t shift)1035 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
1036 {
1037 return !((addr >> shift) & 1);
1038 }
1039
xive_source_is_trigger_page(XiveSource * xsrc,hwaddr addr)1040 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
1041 {
1042 return xive_source_esb_has_2page(xsrc) &&
1043 addr_is_even(addr, xsrc->esb_shift - 1);
1044 }
1045
1046 /*
1047 * ESB MMIO loads
1048 * Trigger page Management/EOI page
1049 *
1050 * ESB MMIO setting 2 pages 1 or 2 pages
1051 *
1052 * 0x000 .. 0x3FF -1 EOI and return 0|1
1053 * 0x400 .. 0x7FF -1 EOI and return 0|1
1054 * 0x800 .. 0xBFF -1 return PQ
1055 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
1056 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
1057 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
1058 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
1059 */
xive_source_esb_read(void * opaque,hwaddr addr,unsigned size)1060 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1061 {
1062 XiveSource *xsrc = XIVE_SOURCE(opaque);
1063 uint32_t offset = addr & 0xFFF;
1064 uint32_t srcno = addr >> xsrc->esb_shift;
1065 uint64_t ret = -1;
1066
1067 /* In a two pages ESB MMIO setting, trigger page should not be read */
1068 if (xive_source_is_trigger_page(xsrc, addr)) {
1069 qemu_log_mask(LOG_GUEST_ERROR,
1070 "XIVE: invalid load on IRQ %d trigger page at "
1071 "0x%"HWADDR_PRIx"\n", srcno, addr);
1072 return -1;
1073 }
1074
1075 switch (offset) {
1076 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1077 ret = xive_source_esb_eoi(xsrc, srcno);
1078
1079 /* Forward the source event notification for routing */
1080 if (ret) {
1081 xive_source_notify(xsrc, srcno);
1082 }
1083 break;
1084
1085 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1086 ret = xive_source_esb_get(xsrc, srcno);
1087 break;
1088
1089 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1090 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1091 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1092 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1093 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1094 break;
1095 default:
1096 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1097 offset);
1098 }
1099
1100 trace_xive_source_esb_read(addr, srcno, ret);
1101
1102 return ret;
1103 }
1104
1105 /*
1106 * ESB MMIO stores
1107 * Trigger page Management/EOI page
1108 *
1109 * ESB MMIO setting 2 pages 1 or 2 pages
1110 *
1111 * 0x000 .. 0x3FF Trigger Trigger
1112 * 0x400 .. 0x7FF Trigger EOI
1113 * 0x800 .. 0xBFF Trigger undefined
1114 * 0xC00 .. 0xCFF Trigger PQ=00
1115 * 0xD00 .. 0xDFF Trigger PQ=01
1116 * 0xE00 .. 0xDFF Trigger PQ=10
1117 * 0xF00 .. 0xDFF Trigger PQ=11
1118 */
xive_source_esb_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1119 static void xive_source_esb_write(void *opaque, hwaddr addr,
1120 uint64_t value, unsigned size)
1121 {
1122 XiveSource *xsrc = XIVE_SOURCE(opaque);
1123 uint32_t offset = addr & 0xFFF;
1124 uint32_t srcno = addr >> xsrc->esb_shift;
1125 bool notify = false;
1126
1127 trace_xive_source_esb_write(addr, srcno, value);
1128
1129 /* In a two pages ESB MMIO setting, trigger page only triggers */
1130 if (xive_source_is_trigger_page(xsrc, addr)) {
1131 notify = xive_source_esb_trigger(xsrc, srcno);
1132 goto out;
1133 }
1134
1135 switch (offset) {
1136 case 0 ... 0x3FF:
1137 notify = xive_source_esb_trigger(xsrc, srcno);
1138 break;
1139
1140 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1141 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1142 qemu_log_mask(LOG_GUEST_ERROR,
1143 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1144 return;
1145 }
1146
1147 notify = xive_source_esb_eoi(xsrc, srcno);
1148 break;
1149
1150 /*
1151 * This is an internal offset used to inject triggers when the PQ
1152 * state bits are not controlled locally. Such as for LSIs when
1153 * under ABT mode.
1154 */
1155 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1156 notify = true;
1157 break;
1158
1159 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1160 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1161 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1162 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1163 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1164 break;
1165
1166 default:
1167 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1168 offset);
1169 return;
1170 }
1171
1172 out:
1173 /* Forward the source event notification for routing */
1174 if (notify) {
1175 xive_source_notify(xsrc, srcno);
1176 }
1177 }
1178
1179 static const MemoryRegionOps xive_source_esb_ops = {
1180 .read = xive_source_esb_read,
1181 .write = xive_source_esb_write,
1182 .endianness = DEVICE_BIG_ENDIAN,
1183 .valid = {
1184 .min_access_size = 1,
1185 .max_access_size = 8,
1186 },
1187 .impl = {
1188 .min_access_size = 1,
1189 .max_access_size = 8,
1190 },
1191 };
1192
xive_source_set_irq(void * opaque,int srcno,int val)1193 void xive_source_set_irq(void *opaque, int srcno, int val)
1194 {
1195 XiveSource *xsrc = XIVE_SOURCE(opaque);
1196 bool notify = false;
1197
1198 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1199 if (val) {
1200 notify = xive_source_lsi_trigger(xsrc, srcno);
1201 } else {
1202 xive_source_set_asserted(xsrc, srcno, false);
1203 }
1204 } else {
1205 if (val) {
1206 notify = xive_source_esb_trigger(xsrc, srcno);
1207 }
1208 }
1209
1210 /* Forward the source event notification for routing */
1211 if (notify) {
1212 xive_source_notify(xsrc, srcno);
1213 }
1214 }
1215
xive_source_pic_print_info(XiveSource * xsrc,uint32_t offset,GString * buf)1216 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, GString *buf)
1217 {
1218 for (unsigned i = 0; i < xsrc->nr_irqs; i++) {
1219 uint8_t pq = xive_source_esb_get(xsrc, i);
1220
1221 if (pq == XIVE_ESB_OFF) {
1222 continue;
1223 }
1224
1225 g_string_append_printf(buf, " %08x %s %c%c%c\n", i + offset,
1226 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1227 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1228 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1229 xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1230 }
1231 }
1232
xive_source_reset(void * dev)1233 static void xive_source_reset(void *dev)
1234 {
1235 XiveSource *xsrc = XIVE_SOURCE(dev);
1236
1237 /* Do not clear the LSI bitmap */
1238
1239 memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs);
1240 }
1241
xive_source_realize(DeviceState * dev,Error ** errp)1242 static void xive_source_realize(DeviceState *dev, Error **errp)
1243 {
1244 XiveSource *xsrc = XIVE_SOURCE(dev);
1245 size_t esb_len = xive_source_esb_len(xsrc);
1246
1247 assert(xsrc->xive);
1248
1249 if (!xsrc->nr_irqs) {
1250 error_setg(errp, "Number of interrupt needs to be greater than 0");
1251 return;
1252 }
1253
1254 if (xsrc->esb_shift != XIVE_ESB_4K &&
1255 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1256 xsrc->esb_shift != XIVE_ESB_64K &&
1257 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1258 error_setg(errp, "Invalid ESB shift setting");
1259 return;
1260 }
1261
1262 xsrc->status = g_malloc0(xsrc->nr_irqs);
1263 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1264
1265 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1266 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1267 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1268 esb_len);
1269 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1270
1271 qemu_register_reset(xive_source_reset, dev);
1272 }
1273
1274 static const VMStateDescription vmstate_xive_source = {
1275 .name = TYPE_XIVE_SOURCE,
1276 .version_id = 1,
1277 .minimum_version_id = 1,
1278 .fields = (const VMStateField[]) {
1279 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1280 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1281 VMSTATE_END_OF_LIST()
1282 },
1283 };
1284
1285 /*
1286 * The default XIVE interrupt source setting for the ESB MMIOs is two
1287 * 64k pages without Store EOI, to be in sync with KVM.
1288 */
1289 static Property xive_source_properties[] = {
1290 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1291 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1292 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1293 /*
1294 * By default, PQs are initialized to 0b01 (Q=1) which corresponds
1295 * to "ints off"
1296 */
1297 DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF),
1298 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1299 XiveNotifier *),
1300 DEFINE_PROP_END_OF_LIST(),
1301 };
1302
xive_source_class_init(ObjectClass * klass,void * data)1303 static void xive_source_class_init(ObjectClass *klass, void *data)
1304 {
1305 DeviceClass *dc = DEVICE_CLASS(klass);
1306
1307 dc->desc = "XIVE Interrupt Source";
1308 device_class_set_props(dc, xive_source_properties);
1309 dc->realize = xive_source_realize;
1310 dc->vmsd = &vmstate_xive_source;
1311 /*
1312 * Reason: part of XIVE interrupt controller, needs to be wired up,
1313 * e.g. by spapr_xive_instance_init().
1314 */
1315 dc->user_creatable = false;
1316 }
1317
1318 static const TypeInfo xive_source_info = {
1319 .name = TYPE_XIVE_SOURCE,
1320 .parent = TYPE_DEVICE,
1321 .instance_size = sizeof(XiveSource),
1322 .class_init = xive_source_class_init,
1323 };
1324
1325 /*
1326 * XiveEND helpers
1327 */
1328
xive_end_queue_pic_print_info(XiveEND * end,uint32_t width,GString * buf)1329 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf)
1330 {
1331 uint64_t qaddr_base = xive_end_qaddr(end);
1332 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1333 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1334 uint32_t qentries = 1 << (qsize + 10);
1335 int i;
1336
1337 /*
1338 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1339 */
1340 g_string_append_printf(buf, " [ ");
1341 qindex = (qindex - (width - 1)) & (qentries - 1);
1342 for (i = 0; i < width; i++) {
1343 uint64_t qaddr = qaddr_base + (qindex << 2);
1344 uint32_t qdata = -1;
1345
1346 if (dma_memory_read(&address_space_memory, qaddr,
1347 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1348 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1349 HWADDR_PRIx "\n", qaddr);
1350 return;
1351 }
1352 g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "",
1353 be32_to_cpu(qdata));
1354 qindex = (qindex + 1) & (qentries - 1);
1355 }
1356 g_string_append_c(buf, ']');
1357 }
1358
xive_end_pic_print_info(XiveEND * end,uint32_t end_idx,GString * buf)1359 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1360 {
1361 uint64_t qaddr_base = xive_end_qaddr(end);
1362 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1363 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1364 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1365 uint32_t qentries = 1 << (qsize + 10);
1366
1367 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1368 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1369 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1370 uint8_t pq;
1371
1372 if (!xive_end_is_valid(end)) {
1373 return;
1374 }
1375
1376 pq = xive_get_field32(END_W1_ESn, end->w1);
1377
1378 g_string_append_printf(buf,
1379 " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1380 end_idx,
1381 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1382 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1383 xive_end_is_valid(end) ? 'v' : '-',
1384 xive_end_is_enqueue(end) ? 'q' : '-',
1385 xive_end_is_notify(end) ? 'n' : '-',
1386 xive_end_is_backlog(end) ? 'b' : '-',
1387 xive_end_is_escalate(end) ? 'e' : '-',
1388 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1389 xive_end_is_silent_escalation(end) ? 's' : '-',
1390 xive_end_is_firmware(end) ? 'f' : '-',
1391 priority, nvt_blk, nvt_idx);
1392
1393 if (qaddr_base) {
1394 g_string_append_printf(buf, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1395 qaddr_base, qindex, qentries, qgen);
1396 xive_end_queue_pic_print_info(end, 6, buf);
1397 }
1398 g_string_append_c(buf, '\n');
1399 }
1400
xive_end_enqueue(XiveEND * end,uint32_t data)1401 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1402 {
1403 uint64_t qaddr_base = xive_end_qaddr(end);
1404 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1405 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1406 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1407
1408 uint64_t qaddr = qaddr_base + (qindex << 2);
1409 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1410 uint32_t qentries = 1 << (qsize + 10);
1411
1412 if (dma_memory_write(&address_space_memory, qaddr,
1413 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1414 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1415 HWADDR_PRIx "\n", qaddr);
1416 return;
1417 }
1418
1419 qindex = (qindex + 1) & (qentries - 1);
1420 if (qindex == 0) {
1421 qgen ^= 1;
1422 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1423 }
1424 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1425 }
1426
xive_end_eas_pic_print_info(XiveEND * end,uint32_t end_idx,GString * buf)1427 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1428 {
1429 XiveEAS *eas = (XiveEAS *) &end->w4;
1430 uint8_t pq;
1431
1432 if (!xive_end_is_escalate(end)) {
1433 return;
1434 }
1435
1436 pq = xive_get_field32(END_W1_ESe, end->w1);
1437
1438 g_string_append_printf(buf, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1439 end_idx,
1440 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1441 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1442 xive_eas_is_valid(eas) ? 'V' : ' ',
1443 xive_eas_is_masked(eas) ? 'M' : ' ',
1444 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1445 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1446 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1447 }
1448
1449 /*
1450 * XIVE Router (aka. Virtualization Controller or IVRE)
1451 */
1452
xive_router_get_eas(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,XiveEAS * eas)1453 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1454 XiveEAS *eas)
1455 {
1456 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1457
1458 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1459 }
1460
1461 static
xive_router_get_pq(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,uint8_t * pq)1462 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1463 uint8_t *pq)
1464 {
1465 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1466
1467 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1468 }
1469
1470 static
xive_router_set_pq(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,uint8_t * pq)1471 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1472 uint8_t *pq)
1473 {
1474 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1475
1476 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1477 }
1478
xive_router_get_end(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end)1479 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1480 XiveEND *end)
1481 {
1482 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1483
1484 return xrc->get_end(xrtr, end_blk, end_idx, end);
1485 }
1486
xive_router_write_end(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end,uint8_t word_number)1487 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1488 XiveEND *end, uint8_t word_number)
1489 {
1490 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1491
1492 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1493 }
1494
xive_router_get_nvt(XiveRouter * xrtr,uint8_t nvt_blk,uint32_t nvt_idx,XiveNVT * nvt)1495 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1496 XiveNVT *nvt)
1497 {
1498 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1499
1500 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1501 }
1502
xive_router_write_nvt(XiveRouter * xrtr,uint8_t nvt_blk,uint32_t nvt_idx,XiveNVT * nvt,uint8_t word_number)1503 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1504 XiveNVT *nvt, uint8_t word_number)
1505 {
1506 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1507
1508 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1509 }
1510
xive_router_get_block_id(XiveRouter * xrtr)1511 static int xive_router_get_block_id(XiveRouter *xrtr)
1512 {
1513 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1514
1515 return xrc->get_block_id(xrtr);
1516 }
1517
xive_router_realize(DeviceState * dev,Error ** errp)1518 static void xive_router_realize(DeviceState *dev, Error **errp)
1519 {
1520 XiveRouter *xrtr = XIVE_ROUTER(dev);
1521
1522 assert(xrtr->xfb);
1523 }
1524
xive_router_end_notify_handler(XiveRouter * xrtr,XiveEAS * eas)1525 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas)
1526 {
1527 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1528
1529 return xrc->end_notify(xrtr, eas);
1530 }
1531
1532 /*
1533 * Encode the HW CAM line in the block group mode format :
1534 *
1535 * chip << 19 | 0000000 0 0001 thread (7Bit)
1536 */
xive_tctx_hw_cam_line(XivePresenter * xptr,XiveTCTX * tctx)1537 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1538 {
1539 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1540 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1541 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1542
1543 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1544 }
1545
1546 /*
1547 * The thread context register words are in big-endian format.
1548 */
xive_presenter_tctx_match(XivePresenter * xptr,XiveTCTX * tctx,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint32_t logic_serv)1549 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1550 uint8_t format,
1551 uint8_t nvt_blk, uint32_t nvt_idx,
1552 bool cam_ignore, uint32_t logic_serv)
1553 {
1554 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1555 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1556 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1557 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1558 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1559
1560 /*
1561 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1562 * identifier are ignored in the "CAM" match.
1563 */
1564
1565 if (format == 0) {
1566 if (cam_ignore == true) {
1567 /*
1568 * F=0 & i=1: Logical server notification (bits ignored at
1569 * the end of the NVT identifier)
1570 */
1571 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1572 nvt_blk, nvt_idx);
1573 return -1;
1574 }
1575
1576 /* F=0 & i=0: Specific NVT notification */
1577
1578 /* PHYS ring */
1579 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1580 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1581 return TM_QW3_HV_PHYS;
1582 }
1583
1584 /* HV POOL ring */
1585 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1586 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1587 return TM_QW2_HV_POOL;
1588 }
1589
1590 /* OS ring */
1591 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1592 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1593 return TM_QW1_OS;
1594 }
1595 } else {
1596 /* F=1 : User level Event-Based Branch (EBB) notification */
1597
1598 /* USER ring */
1599 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1600 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1601 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1602 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1603 return TM_QW0_USER;
1604 }
1605 }
1606 return -1;
1607 }
1608
1609 /*
1610 * This is our simple Xive Presenter Engine model. It is merged in the
1611 * Router as it does not require an extra object.
1612 *
1613 * It receives notification requests sent by the IVRE to find one
1614 * matching NVT (or more) dispatched on the processor threads. In case
1615 * of a single NVT notification, the process is abbreviated and the
1616 * thread is signaled if a match is found. In case of a logical server
1617 * notification (bits ignored at the end of the NVT identifier), the
1618 * IVPE and IVRE select a winning thread using different filters. This
1619 * involves 2 or 3 exchanges on the PowerBus that the model does not
1620 * support.
1621 *
1622 * The parameters represent what is sent on the PowerBus
1623 */
xive_presenter_notify(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint8_t priority,uint32_t logic_serv)1624 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1625 uint8_t nvt_blk, uint32_t nvt_idx,
1626 bool cam_ignore, uint8_t priority,
1627 uint32_t logic_serv)
1628 {
1629 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1630 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1631 int count;
1632
1633 /*
1634 * Ask the machine to scan the interrupt controllers for a match
1635 */
1636 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1637 priority, logic_serv, &match);
1638 if (count < 0) {
1639 return false;
1640 }
1641
1642 /* handle CPU exception delivery */
1643 if (count) {
1644 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1645 xive_tctx_ipb_update(match.tctx, match.ring,
1646 xive_priority_to_ipb(priority));
1647 }
1648
1649 return !!count;
1650 }
1651
1652 /*
1653 * Notification using the END ESe/ESn bit (Event State Buffer for
1654 * escalation and notification). Provide further coalescing in the
1655 * Router.
1656 */
xive_router_end_es_notify(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end,uint32_t end_esmask)1657 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1658 uint32_t end_idx, XiveEND *end,
1659 uint32_t end_esmask)
1660 {
1661 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1662 bool notify = xive_esb_trigger(&pq);
1663
1664 if (pq != xive_get_field32(end_esmask, end->w1)) {
1665 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1666 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1667 }
1668
1669 /* ESe/n[Q]=1 : end of notification */
1670 return notify;
1671 }
1672
1673 /*
1674 * An END trigger can come from an event trigger (IPI or HW) or from
1675 * another chip. We don't model the PowerBus but the END trigger
1676 * message has the same parameters than in the function below.
1677 */
xive_router_end_notify(XiveRouter * xrtr,XiveEAS * eas)1678 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas)
1679 {
1680 XiveEND end;
1681 uint8_t priority;
1682 uint8_t format;
1683 uint8_t nvt_blk;
1684 uint32_t nvt_idx;
1685 XiveNVT nvt;
1686 bool found;
1687
1688 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
1689 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
1690 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w);
1691
1692 /* END cache lookup */
1693 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1694 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1695 end_idx);
1696 return;
1697 }
1698
1699 if (!xive_end_is_valid(&end)) {
1700 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1701 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1702 end_blk, end_idx);
1703 return;
1704 }
1705
1706 if (xive_end_is_enqueue(&end)) {
1707 xive_end_enqueue(&end, end_data);
1708 /* Enqueuing event data modifies the EQ toggle and index */
1709 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1710 }
1711
1712 /*
1713 * When the END is silent, we skip the notification part.
1714 */
1715 if (xive_end_is_silent_escalation(&end)) {
1716 goto do_escalation;
1717 }
1718
1719 /*
1720 * The W7 format depends on the F bit in W6. It defines the type
1721 * of the notification :
1722 *
1723 * F=0 : single or multiple NVT notification
1724 * F=1 : User level Event-Based Branch (EBB) notification, no
1725 * priority
1726 */
1727 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1728 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1729
1730 /* The END is masked */
1731 if (format == 0 && priority == 0xff) {
1732 return;
1733 }
1734
1735 /*
1736 * Check the END ESn (Event State Buffer for notification) for
1737 * even further coalescing in the Router
1738 */
1739 if (!xive_end_is_notify(&end)) {
1740 /* ESn[Q]=1 : end of notification */
1741 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1742 &end, END_W1_ESn)) {
1743 return;
1744 }
1745 }
1746
1747 /*
1748 * Follows IVPE notification
1749 */
1750 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1751 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1752
1753 /* NVT cache lookup */
1754 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1755 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1756 nvt_blk, nvt_idx);
1757 return;
1758 }
1759
1760 if (!xive_nvt_is_valid(&nvt)) {
1761 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1762 nvt_blk, nvt_idx);
1763 return;
1764 }
1765
1766 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1767 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1768 priority,
1769 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1770
1771 /* TODO: Auto EOI. */
1772
1773 if (found) {
1774 return;
1775 }
1776
1777 /*
1778 * If no matching NVT is dispatched on a HW thread :
1779 * - specific VP: update the NVT structure if backlog is activated
1780 * - logical server : forward request to IVPE (not supported)
1781 */
1782 if (xive_end_is_backlog(&end)) {
1783 uint8_t ipb;
1784
1785 if (format == 1) {
1786 qemu_log_mask(LOG_GUEST_ERROR,
1787 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1788 end_blk, end_idx);
1789 return;
1790 }
1791 /*
1792 * Record the IPB in the associated NVT structure for later
1793 * use. The presenter will resend the interrupt when the vCPU
1794 * is dispatched again on a HW thread.
1795 */
1796 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1797 xive_priority_to_ipb(priority);
1798 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1799 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1800
1801 /*
1802 * On HW, follows a "Broadcast Backlog" to IVPEs
1803 */
1804 }
1805
1806 do_escalation:
1807 /*
1808 * If activated, escalate notification using the ESe PQ bits and
1809 * the EAS in w4-5
1810 */
1811 if (!xive_end_is_escalate(&end)) {
1812 return;
1813 }
1814
1815 /*
1816 * Check the END ESe (Event State Buffer for escalation) for even
1817 * further coalescing in the Router
1818 */
1819 if (!xive_end_is_uncond_escalation(&end)) {
1820 /* ESe[Q]=1 : end of notification */
1821 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1822 &end, END_W1_ESe)) {
1823 return;
1824 }
1825 }
1826
1827 trace_xive_router_end_escalate(end_blk, end_idx,
1828 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1829 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1830 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1831 /*
1832 * The END trigger becomes an Escalation trigger
1833 */
1834 xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4);
1835 }
1836
xive_router_notify(XiveNotifier * xn,uint32_t lisn,bool pq_checked)1837 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1838 {
1839 XiveRouter *xrtr = XIVE_ROUTER(xn);
1840 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1841 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1842 XiveEAS eas;
1843
1844 /* EAS cache lookup */
1845 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1846 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1847 return;
1848 }
1849
1850 if (!pq_checked) {
1851 bool notify;
1852 uint8_t pq;
1853
1854 /* PQ cache lookup */
1855 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1856 /* Set FIR */
1857 g_assert_not_reached();
1858 }
1859
1860 notify = xive_esb_trigger(&pq);
1861
1862 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1863 /* Set FIR */
1864 g_assert_not_reached();
1865 }
1866
1867 if (!notify) {
1868 return;
1869 }
1870 }
1871
1872 if (!xive_eas_is_valid(&eas)) {
1873 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1874 return;
1875 }
1876
1877 if (xive_eas_is_masked(&eas)) {
1878 /* Notification completed */
1879 return;
1880 }
1881
1882 /*
1883 * The event trigger becomes an END trigger
1884 */
1885 xive_router_end_notify_handler(xrtr, &eas);
1886 }
1887
1888 static Property xive_router_properties[] = {
1889 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1890 TYPE_XIVE_FABRIC, XiveFabric *),
1891 DEFINE_PROP_END_OF_LIST(),
1892 };
1893
xive_router_class_init(ObjectClass * klass,void * data)1894 static void xive_router_class_init(ObjectClass *klass, void *data)
1895 {
1896 DeviceClass *dc = DEVICE_CLASS(klass);
1897 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1898 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1899
1900 dc->desc = "XIVE Router Engine";
1901 device_class_set_props(dc, xive_router_properties);
1902 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1903 dc->realize = xive_router_realize;
1904 xnc->notify = xive_router_notify;
1905
1906 /* By default, the router handles END triggers locally */
1907 xrc->end_notify = xive_router_end_notify;
1908 }
1909
1910 static const TypeInfo xive_router_info = {
1911 .name = TYPE_XIVE_ROUTER,
1912 .parent = TYPE_SYS_BUS_DEVICE,
1913 .abstract = true,
1914 .instance_size = sizeof(XiveRouter),
1915 .class_size = sizeof(XiveRouterClass),
1916 .class_init = xive_router_class_init,
1917 .interfaces = (InterfaceInfo[]) {
1918 { TYPE_XIVE_NOTIFIER },
1919 { TYPE_XIVE_PRESENTER },
1920 { }
1921 }
1922 };
1923
xive_eas_pic_print_info(XiveEAS * eas,uint32_t lisn,GString * buf)1924 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf)
1925 {
1926 if (!xive_eas_is_valid(eas)) {
1927 return;
1928 }
1929
1930 g_string_append_printf(buf, " %08x %s end:%02x/%04x data:%08x\n",
1931 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1932 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1933 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1934 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1935 }
1936
1937 /*
1938 * END ESB MMIO loads
1939 */
xive_end_source_read(void * opaque,hwaddr addr,unsigned size)1940 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1941 {
1942 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1943 uint32_t offset = addr & 0xFFF;
1944 uint8_t end_blk;
1945 uint32_t end_idx;
1946 XiveEND end;
1947 uint32_t end_esmask;
1948 uint8_t pq;
1949 uint64_t ret = -1;
1950
1951 /*
1952 * The block id should be deduced from the load address on the END
1953 * ESB MMIO but our model only supports a single block per XIVE chip.
1954 */
1955 end_blk = xive_router_get_block_id(xsrc->xrtr);
1956 end_idx = addr >> (xsrc->esb_shift + 1);
1957
1958 trace_xive_end_source_read(end_blk, end_idx, addr);
1959
1960 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1961 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1962 end_idx);
1963 return -1;
1964 }
1965
1966 if (!xive_end_is_valid(&end)) {
1967 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1968 end_blk, end_idx);
1969 return -1;
1970 }
1971
1972 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1973 pq = xive_get_field32(end_esmask, end.w1);
1974
1975 switch (offset) {
1976 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1977 ret = xive_esb_eoi(&pq);
1978
1979 /* Forward the source event notification for routing ?? */
1980 break;
1981
1982 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1983 ret = pq;
1984 break;
1985
1986 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1987 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1988 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1989 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1990 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1991 break;
1992 default:
1993 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1994 offset);
1995 return -1;
1996 }
1997
1998 if (pq != xive_get_field32(end_esmask, end.w1)) {
1999 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
2000 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
2001 }
2002
2003 return ret;
2004 }
2005
2006 /*
2007 * END ESB MMIO stores are invalid
2008 */
xive_end_source_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2009 static void xive_end_source_write(void *opaque, hwaddr addr,
2010 uint64_t value, unsigned size)
2011 {
2012 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
2013 HWADDR_PRIx"\n", addr);
2014 }
2015
2016 static const MemoryRegionOps xive_end_source_ops = {
2017 .read = xive_end_source_read,
2018 .write = xive_end_source_write,
2019 .endianness = DEVICE_BIG_ENDIAN,
2020 .valid = {
2021 .min_access_size = 1,
2022 .max_access_size = 8,
2023 },
2024 .impl = {
2025 .min_access_size = 1,
2026 .max_access_size = 8,
2027 },
2028 };
2029
xive_end_source_realize(DeviceState * dev,Error ** errp)2030 static void xive_end_source_realize(DeviceState *dev, Error **errp)
2031 {
2032 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
2033
2034 assert(xsrc->xrtr);
2035
2036 if (!xsrc->nr_ends) {
2037 error_setg(errp, "Number of interrupt needs to be greater than 0");
2038 return;
2039 }
2040
2041 if (xsrc->esb_shift != XIVE_ESB_4K &&
2042 xsrc->esb_shift != XIVE_ESB_64K) {
2043 error_setg(errp, "Invalid ESB shift setting");
2044 return;
2045 }
2046
2047 /*
2048 * Each END is assigned an even/odd pair of MMIO pages, the even page
2049 * manages the ESn field while the odd page manages the ESe field.
2050 */
2051 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
2052 &xive_end_source_ops, xsrc, "xive.end",
2053 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
2054 }
2055
2056 static Property xive_end_source_properties[] = {
2057 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
2058 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
2059 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
2060 XiveRouter *),
2061 DEFINE_PROP_END_OF_LIST(),
2062 };
2063
xive_end_source_class_init(ObjectClass * klass,void * data)2064 static void xive_end_source_class_init(ObjectClass *klass, void *data)
2065 {
2066 DeviceClass *dc = DEVICE_CLASS(klass);
2067
2068 dc->desc = "XIVE END Source";
2069 device_class_set_props(dc, xive_end_source_properties);
2070 dc->realize = xive_end_source_realize;
2071 /*
2072 * Reason: part of XIVE interrupt controller, needs to be wired up,
2073 * e.g. by spapr_xive_instance_init().
2074 */
2075 dc->user_creatable = false;
2076 }
2077
2078 static const TypeInfo xive_end_source_info = {
2079 .name = TYPE_XIVE_END_SOURCE,
2080 .parent = TYPE_DEVICE,
2081 .instance_size = sizeof(XiveENDSource),
2082 .class_init = xive_end_source_class_init,
2083 };
2084
2085 /*
2086 * XIVE Notifier
2087 */
2088 static const TypeInfo xive_notifier_info = {
2089 .name = TYPE_XIVE_NOTIFIER,
2090 .parent = TYPE_INTERFACE,
2091 .class_size = sizeof(XiveNotifierClass),
2092 };
2093
2094 /*
2095 * XIVE Presenter
2096 */
2097 static const TypeInfo xive_presenter_info = {
2098 .name = TYPE_XIVE_PRESENTER,
2099 .parent = TYPE_INTERFACE,
2100 .class_size = sizeof(XivePresenterClass),
2101 };
2102
2103 /*
2104 * XIVE Fabric
2105 */
2106 static const TypeInfo xive_fabric_info = {
2107 .name = TYPE_XIVE_FABRIC,
2108 .parent = TYPE_INTERFACE,
2109 .class_size = sizeof(XiveFabricClass),
2110 };
2111
xive_register_types(void)2112 static void xive_register_types(void)
2113 {
2114 type_register_static(&xive_fabric_info);
2115 type_register_static(&xive_source_info);
2116 type_register_static(&xive_notifier_info);
2117 type_register_static(&xive_presenter_info);
2118 type_register_static(&xive_router_info);
2119 type_register_static(&xive_end_source_info);
2120 type_register_static(&xive_tctx_info);
2121 }
2122
2123 type_init(xive_register_types)
2124