1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 24 #include <sys/ioctl.h> 25 26 /* 27 * Helpers for CPU hotplug 28 * 29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 30 */ 31 typedef struct KVMEnabledCPU { 32 unsigned long vcpu_id; 33 QLIST_ENTRY(KVMEnabledCPU) node; 34 } KVMEnabledCPU; 35 36 static QLIST_HEAD(, KVMEnabledCPU) 37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 38 39 static bool kvm_cpu_is_enabled(CPUState *cs) 40 { 41 KVMEnabledCPU *enabled_cpu; 42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 43 44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 45 if (enabled_cpu->vcpu_id == vcpu_id) { 46 return true; 47 } 48 } 49 return false; 50 } 51 52 static void kvm_cpu_enable(CPUState *cs) 53 { 54 KVMEnabledCPU *enabled_cpu; 55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 56 57 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 58 enabled_cpu->vcpu_id = vcpu_id; 59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 60 } 61 62 static void kvm_cpu_disable_all(void) 63 { 64 KVMEnabledCPU *enabled_cpu, *next; 65 66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 67 QLIST_REMOVE(enabled_cpu, node); 68 g_free(enabled_cpu); 69 } 70 } 71 72 /* 73 * XIVE Thread Interrupt Management context (KVM) 74 */ 75 76 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 77 { 78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 79 uint64_t state[2]; 80 int ret; 81 82 assert(xive->fd != -1); 83 84 /* word0 and word1 of the OS ring. */ 85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 86 87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 88 if (ret != 0) { 89 error_setg_errno(errp, -ret, 90 "XIVE: could not restore KVM state of CPU %ld", 91 kvm_arch_vcpu_id(tctx->cs)); 92 return ret; 93 } 94 95 return 0; 96 } 97 98 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 99 { 100 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 101 uint64_t state[2] = { 0 }; 102 int ret; 103 104 assert(xive->fd != -1); 105 106 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 107 if (ret != 0) { 108 error_setg_errno(errp, -ret, 109 "XIVE: could not capture KVM state of CPU %ld", 110 kvm_arch_vcpu_id(tctx->cs)); 111 return ret; 112 } 113 114 /* word0 and word1 of the OS ring. */ 115 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 116 117 return 0; 118 } 119 120 typedef struct { 121 XiveTCTX *tctx; 122 Error *err; 123 } XiveCpuGetState; 124 125 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 126 run_on_cpu_data arg) 127 { 128 XiveCpuGetState *s = arg.host_ptr; 129 130 kvmppc_xive_cpu_get_state(s->tctx, &s->err); 131 } 132 133 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 134 { 135 XiveCpuGetState s = { 136 .tctx = tctx, 137 .err = NULL, 138 }; 139 140 /* 141 * Kick the vCPU to make sure they are available for the KVM ioctl. 142 */ 143 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 144 RUN_ON_CPU_HOST_PTR(&s)); 145 146 if (s.err) { 147 error_propagate(errp, s.err); 148 return; 149 } 150 } 151 152 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 153 { 154 ERRP_GUARD(); 155 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 156 unsigned long vcpu_id; 157 int ret; 158 159 assert(xive->fd != -1); 160 161 /* Check if CPU was hot unplugged and replugged. */ 162 if (kvm_cpu_is_enabled(tctx->cs)) { 163 return 0; 164 } 165 166 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 167 168 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 169 vcpu_id, 0); 170 if (ret < 0) { 171 error_setg_errno(errp, -ret, 172 "XIVE: unable to connect CPU%ld to KVM device", 173 vcpu_id); 174 if (ret == -ENOSPC) { 175 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 176 MACHINE(qdev_get_machine())->smp.max_cpus); 177 } 178 return ret; 179 } 180 181 kvm_cpu_enable(tctx->cs); 182 return 0; 183 } 184 185 /* 186 * XIVE Interrupt Source (KVM) 187 */ 188 189 void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 190 Error **errp) 191 { 192 uint32_t end_idx; 193 uint32_t end_blk; 194 uint8_t priority; 195 uint32_t server; 196 bool masked; 197 uint32_t eisn; 198 uint64_t kvm_src; 199 Error *local_err = NULL; 200 201 assert(xive_eas_is_valid(eas)); 202 203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 205 eisn = xive_get_field64(EAS_END_DATA, eas->w); 206 masked = xive_eas_is_masked(eas); 207 208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 209 210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 211 KVM_XIVE_SOURCE_PRIORITY_MASK; 212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 213 KVM_XIVE_SOURCE_SERVER_MASK; 214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 215 KVM_XIVE_SOURCE_MASKED_MASK; 216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 217 KVM_XIVE_SOURCE_EISN_MASK; 218 219 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 220 &kvm_src, true, &local_err); 221 if (local_err) { 222 error_propagate(errp, local_err); 223 return; 224 } 225 } 226 227 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 228 { 229 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 230 NULL, true, errp); 231 } 232 233 /* 234 * At reset, the interrupt sources are simply created and MASKED. We 235 * only need to inform the KVM XIVE device about their type: LSI or 236 * MSI. 237 */ 238 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 239 { 240 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 241 uint64_t state = 0; 242 243 assert(xive->fd != -1); 244 245 if (xive_source_irq_is_lsi(xsrc, srcno)) { 246 state |= KVM_XIVE_LEVEL_SENSITIVE; 247 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 248 state |= KVM_XIVE_LEVEL_ASSERTED; 249 } 250 } 251 252 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 253 true, errp); 254 } 255 256 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 257 { 258 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 259 int i; 260 261 for (i = 0; i < xsrc->nr_irqs; i++) { 262 int ret; 263 264 if (!xive_eas_is_valid(&xive->eat[i])) { 265 continue; 266 } 267 268 ret = kvmppc_xive_source_reset_one(xsrc, i, errp); 269 if (ret < 0) { 270 return ret; 271 } 272 } 273 274 return 0; 275 } 276 277 /* 278 * This is used to perform the magic loads on the ESB pages, described 279 * in xive.h. 280 * 281 * Memory barriers should not be needed for loads (no store for now). 282 */ 283 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 284 uint64_t data, bool write) 285 { 286 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 287 offset; 288 289 if (write) { 290 *addr = cpu_to_be64(data); 291 return -1; 292 } else { 293 /* Prevent the compiler from optimizing away the load */ 294 volatile uint64_t value = be64_to_cpu(*addr); 295 return value; 296 } 297 } 298 299 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 300 { 301 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 302 } 303 304 static void xive_esb_trigger(XiveSource *xsrc, int srcno) 305 { 306 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 307 308 *addr = 0x0; 309 } 310 311 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 312 uint64_t data, bool write) 313 { 314 if (write) { 315 return xive_esb_rw(xsrc, srcno, offset, data, 1); 316 } 317 318 /* 319 * Special Load EOI handling for LSI sources. Q bit is never set 320 * and the interrupt should be re-triggered if the level is still 321 * asserted. 322 */ 323 if (xive_source_irq_is_lsi(xsrc, srcno) && 324 offset == XIVE_ESB_LOAD_EOI) { 325 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 326 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 327 xive_esb_trigger(xsrc, srcno); 328 } 329 return 0; 330 } else { 331 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 332 } 333 } 334 335 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 336 { 337 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 338 int i; 339 340 for (i = 0; i < xsrc->nr_irqs; i++) { 341 uint8_t pq; 342 343 if (!xive_eas_is_valid(&xive->eat[i])) { 344 continue; 345 } 346 347 /* Perform a load without side effect to retrieve the PQ bits */ 348 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 349 350 /* and save PQ locally */ 351 xive_source_esb_set(xsrc, i, pq); 352 } 353 } 354 355 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 356 { 357 XiveSource *xsrc = opaque; 358 359 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 360 if (!val) { 361 return; 362 } 363 } else { 364 if (val) { 365 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 366 } else { 367 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 368 } 369 } 370 371 xive_esb_trigger(xsrc, srcno); 372 } 373 374 /* 375 * sPAPR XIVE interrupt controller (KVM) 376 */ 377 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 378 uint32_t end_idx, XiveEND *end, 379 Error **errp) 380 { 381 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 382 uint64_t kvm_eq_idx; 383 uint8_t priority; 384 uint32_t server; 385 int ret; 386 387 assert(xive_end_is_valid(end)); 388 389 /* Encode the tuple (server, prio) as a KVM EQ index */ 390 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 391 392 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 393 KVM_XIVE_EQ_PRIORITY_MASK; 394 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 395 KVM_XIVE_EQ_SERVER_MASK; 396 397 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 398 &kvm_eq, false, errp); 399 if (ret < 0) { 400 return ret; 401 } 402 403 /* 404 * The EQ index and toggle bit are updated by HW. These are the 405 * only fields from KVM we want to update QEMU with. The other END 406 * fields should already be in the QEMU END table. 407 */ 408 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 409 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 410 411 return 0; 412 } 413 414 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 415 uint32_t end_idx, XiveEND *end, 416 Error **errp) 417 { 418 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 419 uint64_t kvm_eq_idx; 420 uint8_t priority; 421 uint32_t server; 422 423 /* 424 * Build the KVM state from the local END structure. 425 */ 426 427 kvm_eq.flags = 0; 428 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 429 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 430 } 431 432 /* 433 * If the hcall is disabling the EQ, set the size and page address 434 * to zero. When migrating, only valid ENDs are taken into 435 * account. 436 */ 437 if (xive_end_is_valid(end)) { 438 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 439 kvm_eq.qaddr = xive_end_qaddr(end); 440 /* 441 * The EQ toggle bit and index should only be relevant when 442 * restoring the EQ state 443 */ 444 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 445 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 446 } else { 447 kvm_eq.qshift = 0; 448 kvm_eq.qaddr = 0; 449 } 450 451 /* Encode the tuple (server, prio) as a KVM EQ index */ 452 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 453 454 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 455 KVM_XIVE_EQ_PRIORITY_MASK; 456 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 457 KVM_XIVE_EQ_SERVER_MASK; 458 459 return 460 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 461 &kvm_eq, true, errp); 462 } 463 464 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 465 { 466 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 467 NULL, true, errp); 468 } 469 470 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 471 { 472 int i; 473 int ret; 474 475 for (i = 0; i < xive->nr_ends; i++) { 476 if (!xive_end_is_valid(&xive->endt[i])) { 477 continue; 478 } 479 480 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 481 &xive->endt[i], errp); 482 if (ret < 0) { 483 return ret; 484 } 485 } 486 487 return 0; 488 } 489 490 /* 491 * The primary goal of the XIVE VM change handler is to mark the EQ 492 * pages dirty when all XIVE event notifications have stopped. 493 * 494 * Whenever the VM is stopped, the VM change handler sets the source 495 * PQs to PENDING to stop the flow of events and to possibly catch a 496 * triggered interrupt occuring while the VM is stopped. The previous 497 * state is saved in anticipation of a migration. The XIVE controller 498 * is then synced through KVM to flush any in-flight event 499 * notification and stabilize the EQs. 500 * 501 * At this stage, we can mark the EQ page dirty and let a migration 502 * sequence transfer the EQ pages to the destination, which is done 503 * just after the stop state. 504 * 505 * The previous configuration of the sources is restored when the VM 506 * runs again. If an interrupt was queued while the VM was stopped, 507 * simply generate a trigger. 508 */ 509 static void kvmppc_xive_change_state_handler(void *opaque, int running, 510 RunState state) 511 { 512 SpaprXive *xive = opaque; 513 XiveSource *xsrc = &xive->source; 514 Error *local_err = NULL; 515 int i; 516 517 /* 518 * Restore the sources to their initial state. This is called when 519 * the VM resumes after a stop or a migration. 520 */ 521 if (running) { 522 for (i = 0; i < xsrc->nr_irqs; i++) { 523 uint8_t pq; 524 uint8_t old_pq; 525 526 if (!xive_eas_is_valid(&xive->eat[i])) { 527 continue; 528 } 529 530 pq = xive_source_esb_get(xsrc, i); 531 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 532 533 /* 534 * An interrupt was queued while the VM was stopped, 535 * generate a trigger. 536 */ 537 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 538 xive_esb_trigger(xsrc, i); 539 } 540 } 541 542 return; 543 } 544 545 /* 546 * Mask the sources, to stop the flow of event notifications, and 547 * save the PQs locally in the XiveSource object. The XiveSource 548 * state will be collected later on by its vmstate handler if a 549 * migration is in progress. 550 */ 551 for (i = 0; i < xsrc->nr_irqs; i++) { 552 uint8_t pq; 553 554 if (!xive_eas_is_valid(&xive->eat[i])) { 555 continue; 556 } 557 558 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 559 560 /* 561 * PQ is set to PENDING to possibly catch a triggered 562 * interrupt occuring while the VM is stopped (hotplug event 563 * for instance) . 564 */ 565 if (pq != XIVE_ESB_OFF) { 566 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 567 } 568 xive_source_esb_set(xsrc, i, pq); 569 } 570 571 /* 572 * Sync the XIVE controller in KVM, to flush in-flight event 573 * notification that should be enqueued in the EQs and mark the 574 * XIVE EQ pages dirty to collect all updates. 575 */ 576 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 577 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 578 if (local_err) { 579 error_report_err(local_err); 580 return; 581 } 582 } 583 584 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 585 { 586 assert(xive->fd != -1); 587 588 /* 589 * When the VM is stopped, the sources are masked and the previous 590 * state is saved in anticipation of a migration. We should not 591 * synchronize the source state in that case else we will override 592 * the saved state. 593 */ 594 if (runstate_is_running()) { 595 kvmppc_xive_source_get_state(&xive->source); 596 } 597 598 /* EAT: there is no extra state to query from KVM */ 599 600 /* ENDT */ 601 kvmppc_xive_get_queues(xive, errp); 602 } 603 604 /* 605 * The SpaprXive 'pre_save' method is called by the vmstate handler of 606 * the SpaprXive model, after the XIVE controller is synced in the VM 607 * change handler. 608 */ 609 int kvmppc_xive_pre_save(SpaprXive *xive) 610 { 611 Error *local_err = NULL; 612 613 assert(xive->fd != -1); 614 615 /* EAT: there is no extra state to query from KVM */ 616 617 /* ENDT */ 618 kvmppc_xive_get_queues(xive, &local_err); 619 if (local_err) { 620 error_report_err(local_err); 621 return -1; 622 } 623 624 return 0; 625 } 626 627 /* 628 * The SpaprXive 'post_load' method is not called by a vmstate 629 * handler. It is called at the sPAPR machine level at the end of the 630 * migration sequence by the sPAPR IRQ backend 'post_load' method, 631 * when all XIVE states have been transferred and loaded. 632 */ 633 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 634 { 635 Error *local_err = NULL; 636 CPUState *cs; 637 int i; 638 639 /* The KVM XIVE device should be in use */ 640 assert(xive->fd != -1); 641 642 /* Restore the ENDT first. The targetting depends on it. */ 643 for (i = 0; i < xive->nr_ends; i++) { 644 if (!xive_end_is_valid(&xive->endt[i])) { 645 continue; 646 } 647 648 kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 649 &xive->endt[i], &local_err); 650 if (local_err) { 651 error_report_err(local_err); 652 return -1; 653 } 654 } 655 656 /* Restore the EAT */ 657 for (i = 0; i < xive->nr_irqs; i++) { 658 if (!xive_eas_is_valid(&xive->eat[i])) { 659 continue; 660 } 661 662 /* 663 * We can only restore the source config if the source has been 664 * previously set in KVM. Since we don't do that for all interrupts 665 * at reset time anymore, let's do it now. 666 */ 667 kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 668 if (local_err) { 669 error_report_err(local_err); 670 return -1; 671 } 672 673 kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 674 if (local_err) { 675 error_report_err(local_err); 676 return -1; 677 } 678 } 679 680 /* 681 * Restore the thread interrupt contexts of initial CPUs. 682 * 683 * The context of hotplugged CPUs is restored later, by the 684 * 'post_load' handler of the XiveTCTX model because they are not 685 * available at the time the SpaprXive 'post_load' method is 686 * called. We can not restore the context of all CPUs in the 687 * 'post_load' handler of XiveTCTX because the machine is not 688 * necessarily connected to the KVM device at that time. 689 */ 690 CPU_FOREACH(cs) { 691 PowerPCCPU *cpu = POWERPC_CPU(cs); 692 693 kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 694 if (local_err) { 695 error_report_err(local_err); 696 return -1; 697 } 698 } 699 700 /* The source states will be restored when the machine starts running */ 701 return 0; 702 } 703 704 /* Returns MAP_FAILED on error and sets errno */ 705 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 706 Error **errp) 707 { 708 void *addr; 709 uint32_t page_shift = 16; /* TODO: fix page_shift */ 710 711 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 712 pgoff << page_shift); 713 if (addr == MAP_FAILED) { 714 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 715 } 716 717 return addr; 718 } 719 720 /* 721 * All the XIVE memory regions are now backed by mappings from the KVM 722 * XIVE device. 723 */ 724 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 725 Error **errp) 726 { 727 SpaprXive *xive = SPAPR_XIVE(intc); 728 XiveSource *xsrc = &xive->source; 729 Error *local_err = NULL; 730 size_t esb_len = xive_source_esb_len(xsrc); 731 size_t tima_len = 4ull << TM_SHIFT; 732 CPUState *cs; 733 int fd; 734 void *addr; 735 736 /* 737 * The KVM XIVE device already in use. This is the case when 738 * rebooting under the XIVE-only interrupt mode. 739 */ 740 if (xive->fd != -1) { 741 return 0; 742 } 743 744 if (!kvmppc_has_cap_xive()) { 745 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 746 return -1; 747 } 748 749 /* First, create the KVM XIVE device */ 750 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 751 if (fd < 0) { 752 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 753 return -1; 754 } 755 xive->fd = fd; 756 757 /* Tell KVM about the # of VCPUs we may have */ 758 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 759 KVM_DEV_XIVE_NR_SERVERS)) { 760 if (kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 761 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 762 &local_err)) { 763 goto fail; 764 } 765 } 766 767 /* 768 * 1. Source ESB pages - KVM mapping 769 */ 770 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, 771 &local_err); 772 if (addr == MAP_FAILED) { 773 goto fail; 774 } 775 xsrc->esb_mmap = addr; 776 777 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 778 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 779 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 780 &xsrc->esb_mmio_kvm, 1); 781 782 /* 783 * 2. END ESB pages (No KVM support yet) 784 */ 785 786 /* 787 * 3. TIMA pages - KVM mapping 788 */ 789 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, 790 &local_err); 791 if (addr == MAP_FAILED) { 792 goto fail; 793 } 794 xive->tm_mmap = addr; 795 796 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 797 "xive.tima", tima_len, xive->tm_mmap); 798 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 799 &xive->tm_mmio_kvm, 1); 800 801 xive->change = qemu_add_vm_change_state_handler( 802 kvmppc_xive_change_state_handler, xive); 803 804 /* Connect the presenters to the initial VCPUs of the machine */ 805 CPU_FOREACH(cs) { 806 PowerPCCPU *cpu = POWERPC_CPU(cs); 807 808 kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, &local_err); 809 if (local_err) { 810 goto fail; 811 } 812 } 813 814 /* Update the KVM sources */ 815 kvmppc_xive_source_reset(xsrc, &local_err); 816 if (local_err) { 817 goto fail; 818 } 819 820 kvm_kernel_irqchip = true; 821 kvm_msi_via_irqfd_allowed = true; 822 kvm_gsi_direct_mapping = true; 823 return 0; 824 825 fail: 826 error_propagate(errp, local_err); 827 kvmppc_xive_disconnect(intc); 828 return -1; 829 } 830 831 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 832 { 833 SpaprXive *xive = SPAPR_XIVE(intc); 834 XiveSource *xsrc; 835 size_t esb_len; 836 837 assert(xive->fd != -1); 838 839 /* Clear the KVM mapping */ 840 xsrc = &xive->source; 841 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 842 843 if (xsrc->esb_mmap) { 844 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 845 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 846 munmap(xsrc->esb_mmap, esb_len); 847 xsrc->esb_mmap = NULL; 848 } 849 850 if (xive->tm_mmap) { 851 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 852 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 853 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 854 xive->tm_mmap = NULL; 855 } 856 857 /* 858 * When the KVM device fd is closed, the KVM device is destroyed 859 * and removed from the list of devices of the VM. The VCPU 860 * presenters are also detached from the device. 861 */ 862 close(xive->fd); 863 xive->fd = -1; 864 865 kvm_kernel_irqchip = false; 866 kvm_msi_via_irqfd_allowed = false; 867 kvm_gsi_direct_mapping = false; 868 869 /* Clear the local list of presenter (hotplug) */ 870 kvm_cpu_disable_all(); 871 872 /* VM Change state handler is not needed anymore */ 873 if (xive->change) { 874 qemu_del_vm_change_state_handler(xive->change); 875 xive->change = NULL; 876 } 877 } 878