1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 #include "trace.h" 24 25 #include <sys/ioctl.h> 26 27 /* 28 * Helpers for CPU hotplug 29 * 30 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 31 */ 32 typedef struct KVMEnabledCPU { 33 unsigned long vcpu_id; 34 QLIST_ENTRY(KVMEnabledCPU) node; 35 } KVMEnabledCPU; 36 37 static QLIST_HEAD(, KVMEnabledCPU) 38 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 39 40 static bool kvm_cpu_is_enabled(CPUState *cs) 41 { 42 KVMEnabledCPU *enabled_cpu; 43 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 44 45 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 46 if (enabled_cpu->vcpu_id == vcpu_id) { 47 return true; 48 } 49 } 50 return false; 51 } 52 53 static void kvm_cpu_enable(CPUState *cs) 54 { 55 KVMEnabledCPU *enabled_cpu; 56 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 57 58 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 59 enabled_cpu->vcpu_id = vcpu_id; 60 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 61 } 62 63 static void kvm_cpu_disable_all(void) 64 { 65 KVMEnabledCPU *enabled_cpu, *next; 66 67 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 68 QLIST_REMOVE(enabled_cpu, node); 69 g_free(enabled_cpu); 70 } 71 } 72 73 /* 74 * XIVE Thread Interrupt Management context (KVM) 75 */ 76 77 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 78 { 79 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 80 uint64_t state[2]; 81 int ret; 82 83 assert(xive->fd != -1); 84 85 /* word0 and word1 of the OS ring. */ 86 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 87 88 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 89 if (ret != 0) { 90 error_setg_errno(errp, -ret, 91 "XIVE: could not restore KVM state of CPU %ld", 92 kvm_arch_vcpu_id(tctx->cs)); 93 return ret; 94 } 95 96 return 0; 97 } 98 99 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 100 { 101 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 102 uint64_t state[2] = { 0 }; 103 int ret; 104 105 assert(xive->fd != -1); 106 107 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 108 if (ret != 0) { 109 error_setg_errno(errp, -ret, 110 "XIVE: could not capture KVM state of CPU %ld", 111 kvm_arch_vcpu_id(tctx->cs)); 112 return ret; 113 } 114 115 /* word0 and word1 of the OS ring. */ 116 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 117 118 return 0; 119 } 120 121 typedef struct { 122 XiveTCTX *tctx; 123 Error **errp; 124 int ret; 125 } XiveCpuGetState; 126 127 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 128 run_on_cpu_data arg) 129 { 130 XiveCpuGetState *s = arg.host_ptr; 131 132 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp); 133 } 134 135 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 136 { 137 XiveCpuGetState s = { 138 .tctx = tctx, 139 .errp = errp, 140 }; 141 142 /* 143 * Kick the vCPU to make sure they are available for the KVM ioctl. 144 */ 145 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 146 RUN_ON_CPU_HOST_PTR(&s)); 147 148 return s.ret; 149 } 150 151 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 152 { 153 ERRP_GUARD(); 154 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 155 unsigned long vcpu_id; 156 int ret; 157 158 assert(xive->fd != -1); 159 160 /* Check if CPU was hot unplugged and replugged. */ 161 if (kvm_cpu_is_enabled(tctx->cs)) { 162 return 0; 163 } 164 165 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 166 167 trace_kvm_xive_cpu_connect(vcpu_id); 168 169 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 170 vcpu_id, 0); 171 if (ret < 0) { 172 error_setg_errno(errp, -ret, 173 "XIVE: unable to connect CPU%ld to KVM device", 174 vcpu_id); 175 if (ret == -ENOSPC) { 176 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 177 MACHINE(qdev_get_machine())->smp.max_cpus); 178 } 179 return ret; 180 } 181 182 kvm_cpu_enable(tctx->cs); 183 return 0; 184 } 185 186 /* 187 * XIVE Interrupt Source (KVM) 188 */ 189 190 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 191 Error **errp) 192 { 193 uint32_t end_idx; 194 uint32_t end_blk; 195 uint8_t priority; 196 uint32_t server; 197 bool masked; 198 uint32_t eisn; 199 uint64_t kvm_src; 200 201 assert(xive_eas_is_valid(eas)); 202 203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 205 eisn = xive_get_field64(EAS_END_DATA, eas->w); 206 masked = xive_eas_is_masked(eas); 207 208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 209 210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 211 KVM_XIVE_SOURCE_PRIORITY_MASK; 212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 213 KVM_XIVE_SOURCE_SERVER_MASK; 214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 215 KVM_XIVE_SOURCE_MASKED_MASK; 216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 217 KVM_XIVE_SOURCE_EISN_MASK; 218 219 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 220 &kvm_src, true, errp); 221 } 222 223 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 224 { 225 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 226 NULL, true, errp); 227 } 228 229 /* 230 * At reset, the interrupt sources are simply created and MASKED. We 231 * only need to inform the KVM XIVE device about their type: LSI or 232 * MSI. 233 */ 234 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 235 { 236 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 237 uint64_t state = 0; 238 239 trace_kvm_xive_source_reset(srcno); 240 241 assert(xive->fd != -1); 242 243 if (xive_source_irq_is_lsi(xsrc, srcno)) { 244 state |= KVM_XIVE_LEVEL_SENSITIVE; 245 if (xive_source_is_asserted(xsrc, srcno)) { 246 state |= KVM_XIVE_LEVEL_ASSERTED; 247 } 248 } 249 250 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 251 true, errp); 252 } 253 254 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 255 { 256 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 257 int i; 258 259 for (i = 0; i < xsrc->nr_irqs; i++) { 260 int ret; 261 262 if (!xive_eas_is_valid(&xive->eat[i])) { 263 continue; 264 } 265 266 ret = kvmppc_xive_source_reset_one(xsrc, i, errp); 267 if (ret < 0) { 268 return ret; 269 } 270 } 271 272 return 0; 273 } 274 275 /* 276 * This is used to perform the magic loads on the ESB pages, described 277 * in xive.h. 278 * 279 * Memory barriers should not be needed for loads (no store for now). 280 */ 281 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 282 uint64_t data, bool write) 283 { 284 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 285 offset; 286 287 if (write) { 288 *addr = cpu_to_be64(data); 289 return -1; 290 } else { 291 /* Prevent the compiler from optimizing away the load */ 292 volatile uint64_t value = be64_to_cpu(*addr); 293 return value; 294 } 295 } 296 297 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 298 { 299 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 300 } 301 302 static void kvmppc_xive_esb_trigger(XiveSource *xsrc, int srcno) 303 { 304 xive_esb_rw(xsrc, srcno, 0, 0, true); 305 } 306 307 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 308 uint64_t data, bool write) 309 { 310 if (write) { 311 return xive_esb_rw(xsrc, srcno, offset, data, 1); 312 } 313 314 /* 315 * Special Load EOI handling for LSI sources. Q bit is never set 316 * and the interrupt should be re-triggered if the level is still 317 * asserted. 318 */ 319 if (xive_source_irq_is_lsi(xsrc, srcno) && 320 offset == XIVE_ESB_LOAD_EOI) { 321 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 322 if (xive_source_is_asserted(xsrc, srcno)) { 323 kvmppc_xive_esb_trigger(xsrc, srcno); 324 } 325 return 0; 326 } else { 327 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 328 } 329 } 330 331 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 332 { 333 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 334 int i; 335 336 for (i = 0; i < xsrc->nr_irqs; i++) { 337 uint8_t pq; 338 339 if (!xive_eas_is_valid(&xive->eat[i])) { 340 continue; 341 } 342 343 /* Perform a load without side effect to retrieve the PQ bits */ 344 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 345 346 /* and save PQ locally */ 347 xive_source_esb_set(xsrc, i, pq); 348 } 349 } 350 351 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 352 { 353 XiveSource *xsrc = opaque; 354 355 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 356 if (!val) { 357 return; 358 } 359 } else { 360 xive_source_set_asserted(xsrc, srcno, val); 361 } 362 363 kvmppc_xive_esb_trigger(xsrc, srcno); 364 } 365 366 /* 367 * sPAPR XIVE interrupt controller (KVM) 368 */ 369 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 370 uint32_t end_idx, XiveEND *end, 371 Error **errp) 372 { 373 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 374 uint64_t kvm_eq_idx; 375 uint8_t priority; 376 uint32_t server; 377 int ret; 378 379 assert(xive_end_is_valid(end)); 380 381 /* Encode the tuple (server, prio) as a KVM EQ index */ 382 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 383 384 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 385 KVM_XIVE_EQ_PRIORITY_MASK; 386 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 387 KVM_XIVE_EQ_SERVER_MASK; 388 389 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 390 &kvm_eq, false, errp); 391 if (ret < 0) { 392 return ret; 393 } 394 395 /* 396 * The EQ index and toggle bit are updated by HW. These are the 397 * only fields from KVM we want to update QEMU with. The other END 398 * fields should already be in the QEMU END table. 399 */ 400 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 401 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 402 403 return 0; 404 } 405 406 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 407 uint32_t end_idx, XiveEND *end, 408 Error **errp) 409 { 410 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 411 uint64_t kvm_eq_idx; 412 uint8_t priority; 413 uint32_t server; 414 415 /* 416 * Build the KVM state from the local END structure. 417 */ 418 419 kvm_eq.flags = 0; 420 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 421 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 422 } 423 424 /* 425 * If the hcall is disabling the EQ, set the size and page address 426 * to zero. When migrating, only valid ENDs are taken into 427 * account. 428 */ 429 if (xive_end_is_valid(end)) { 430 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 431 kvm_eq.qaddr = xive_end_qaddr(end); 432 /* 433 * The EQ toggle bit and index should only be relevant when 434 * restoring the EQ state 435 */ 436 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 437 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 438 } else { 439 kvm_eq.qshift = 0; 440 kvm_eq.qaddr = 0; 441 } 442 443 /* Encode the tuple (server, prio) as a KVM EQ index */ 444 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 445 446 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 447 KVM_XIVE_EQ_PRIORITY_MASK; 448 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 449 KVM_XIVE_EQ_SERVER_MASK; 450 451 return 452 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 453 &kvm_eq, true, errp); 454 } 455 456 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 457 { 458 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 459 NULL, true, errp); 460 } 461 462 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 463 { 464 int i; 465 int ret; 466 467 for (i = 0; i < xive->nr_ends; i++) { 468 if (!xive_end_is_valid(&xive->endt[i])) { 469 continue; 470 } 471 472 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 473 &xive->endt[i], errp); 474 if (ret < 0) { 475 return ret; 476 } 477 } 478 479 return 0; 480 } 481 482 /* 483 * The primary goal of the XIVE VM change handler is to mark the EQ 484 * pages dirty when all XIVE event notifications have stopped. 485 * 486 * Whenever the VM is stopped, the VM change handler sets the source 487 * PQs to PENDING to stop the flow of events and to possibly catch a 488 * triggered interrupt occurring while the VM is stopped. The previous 489 * state is saved in anticipation of a migration. The XIVE controller 490 * is then synced through KVM to flush any in-flight event 491 * notification and stabilize the EQs. 492 * 493 * At this stage, we can mark the EQ page dirty and let a migration 494 * sequence transfer the EQ pages to the destination, which is done 495 * just after the stop state. 496 * 497 * The previous configuration of the sources is restored when the VM 498 * runs again. If an interrupt was queued while the VM was stopped, 499 * simply generate a trigger. 500 */ 501 static void kvmppc_xive_change_state_handler(void *opaque, bool running, 502 RunState state) 503 { 504 SpaprXive *xive = opaque; 505 XiveSource *xsrc = &xive->source; 506 Error *local_err = NULL; 507 int i; 508 509 /* 510 * Restore the sources to their initial state. This is called when 511 * the VM resumes after a stop or a migration. 512 */ 513 if (running) { 514 for (i = 0; i < xsrc->nr_irqs; i++) { 515 uint8_t pq; 516 uint8_t old_pq; 517 518 if (!xive_eas_is_valid(&xive->eat[i])) { 519 continue; 520 } 521 522 pq = xive_source_esb_get(xsrc, i); 523 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 524 525 /* 526 * An interrupt was queued while the VM was stopped, 527 * generate a trigger. 528 */ 529 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 530 kvmppc_xive_esb_trigger(xsrc, i); 531 } 532 } 533 534 return; 535 } 536 537 /* 538 * Mask the sources, to stop the flow of event notifications, and 539 * save the PQs locally in the XiveSource object. The XiveSource 540 * state will be collected later on by its vmstate handler if a 541 * migration is in progress. 542 */ 543 for (i = 0; i < xsrc->nr_irqs; i++) { 544 uint8_t pq; 545 546 if (!xive_eas_is_valid(&xive->eat[i])) { 547 continue; 548 } 549 550 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 551 552 /* 553 * PQ is set to PENDING to possibly catch a triggered 554 * interrupt occurring while the VM is stopped (hotplug event 555 * for instance) . 556 */ 557 if (pq != XIVE_ESB_OFF) { 558 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 559 } 560 xive_source_esb_set(xsrc, i, pq); 561 } 562 563 /* 564 * Sync the XIVE controller in KVM, to flush in-flight event 565 * notification that should be enqueued in the EQs and mark the 566 * XIVE EQ pages dirty to collect all updates. 567 */ 568 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 569 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 570 if (local_err) { 571 error_report_err(local_err); 572 return; 573 } 574 } 575 576 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 577 { 578 assert(xive->fd != -1); 579 580 /* 581 * When the VM is stopped, the sources are masked and the previous 582 * state is saved in anticipation of a migration. We should not 583 * synchronize the source state in that case else we will override 584 * the saved state. 585 */ 586 if (runstate_is_running()) { 587 kvmppc_xive_source_get_state(&xive->source); 588 } 589 590 /* EAT: there is no extra state to query from KVM */ 591 592 /* ENDT */ 593 kvmppc_xive_get_queues(xive, errp); 594 } 595 596 /* 597 * The SpaprXive 'pre_save' method is called by the vmstate handler of 598 * the SpaprXive model, after the XIVE controller is synced in the VM 599 * change handler. 600 */ 601 int kvmppc_xive_pre_save(SpaprXive *xive) 602 { 603 Error *local_err = NULL; 604 int ret; 605 606 assert(xive->fd != -1); 607 608 /* EAT: there is no extra state to query from KVM */ 609 610 /* ENDT */ 611 ret = kvmppc_xive_get_queues(xive, &local_err); 612 if (ret < 0) { 613 error_report_err(local_err); 614 return ret; 615 } 616 617 return 0; 618 } 619 620 /* 621 * The SpaprXive 'post_load' method is not called by a vmstate 622 * handler. It is called at the sPAPR machine level at the end of the 623 * migration sequence by the sPAPR IRQ backend 'post_load' method, 624 * when all XIVE states have been transferred and loaded. 625 */ 626 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 627 { 628 Error *local_err = NULL; 629 CPUState *cs; 630 int i; 631 int ret; 632 633 /* The KVM XIVE device should be in use */ 634 assert(xive->fd != -1); 635 636 /* Restore the ENDT first. The targeting depends on it. */ 637 for (i = 0; i < xive->nr_ends; i++) { 638 if (!xive_end_is_valid(&xive->endt[i])) { 639 continue; 640 } 641 642 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 643 &xive->endt[i], &local_err); 644 if (ret < 0) { 645 goto fail; 646 } 647 } 648 649 /* Restore the EAT */ 650 for (i = 0; i < xive->nr_irqs; i++) { 651 if (!xive_eas_is_valid(&xive->eat[i])) { 652 continue; 653 } 654 655 /* 656 * We can only restore the source config if the source has been 657 * previously set in KVM. Since we don't do that for all interrupts 658 * at reset time anymore, let's do it now. 659 */ 660 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 661 if (ret < 0) { 662 goto fail; 663 } 664 665 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 666 if (ret < 0) { 667 goto fail; 668 } 669 } 670 671 /* 672 * Restore the thread interrupt contexts of initial CPUs. 673 * 674 * The context of hotplugged CPUs is restored later, by the 675 * 'post_load' handler of the XiveTCTX model because they are not 676 * available at the time the SpaprXive 'post_load' method is 677 * called. We can not restore the context of all CPUs in the 678 * 'post_load' handler of XiveTCTX because the machine is not 679 * necessarily connected to the KVM device at that time. 680 */ 681 CPU_FOREACH(cs) { 682 PowerPCCPU *cpu = POWERPC_CPU(cs); 683 684 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 685 if (ret < 0) { 686 goto fail; 687 } 688 } 689 690 /* The source states will be restored when the machine starts running */ 691 return 0; 692 693 fail: 694 error_report_err(local_err); 695 return ret; 696 } 697 698 /* Returns MAP_FAILED on error and sets errno */ 699 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 700 Error **errp) 701 { 702 void *addr; 703 uint32_t page_shift = 16; /* TODO: fix page_shift */ 704 705 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 706 pgoff << page_shift); 707 if (addr == MAP_FAILED) { 708 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 709 } 710 711 return addr; 712 } 713 714 /* 715 * All the XIVE memory regions are now backed by mappings from the KVM 716 * XIVE device. 717 */ 718 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 719 Error **errp) 720 { 721 SpaprXive *xive = SPAPR_XIVE(intc); 722 XiveSource *xsrc = &xive->source; 723 uint64_t esb_len = xive_source_esb_len(xsrc); 724 size_t tima_len = 4ull << TM_SHIFT; 725 CPUState *cs; 726 int fd; 727 void *addr; 728 int ret; 729 730 /* 731 * The KVM XIVE device already in use. This is the case when 732 * rebooting under the XIVE-only interrupt mode. 733 */ 734 if (xive->fd != -1) { 735 return 0; 736 } 737 738 if (!kvmppc_has_cap_xive()) { 739 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 740 return -1; 741 } 742 743 /* First, create the KVM XIVE device */ 744 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 745 if (fd < 0) { 746 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 747 return -1; 748 } 749 xive->fd = fd; 750 751 /* Tell KVM about the # of VCPUs we may have */ 752 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 753 KVM_DEV_XIVE_NR_SERVERS)) { 754 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 755 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 756 errp); 757 if (ret < 0) { 758 goto fail; 759 } 760 } 761 762 /* 763 * 1. Source ESB pages - KVM mapping 764 */ 765 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp); 766 if (addr == MAP_FAILED) { 767 goto fail; 768 } 769 xsrc->esb_mmap = addr; 770 771 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 772 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 773 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 774 &xsrc->esb_mmio_kvm, 1); 775 776 /* 777 * 2. END ESB pages (No KVM support yet) 778 */ 779 780 /* 781 * 3. TIMA pages - KVM mapping 782 */ 783 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp); 784 if (addr == MAP_FAILED) { 785 goto fail; 786 } 787 xive->tm_mmap = addr; 788 789 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 790 "xive.tima", tima_len, xive->tm_mmap); 791 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 792 &xive->tm_mmio_kvm, 1); 793 794 xive->change = qemu_add_vm_change_state_handler( 795 kvmppc_xive_change_state_handler, xive); 796 797 /* Connect the presenters to the initial VCPUs of the machine */ 798 CPU_FOREACH(cs) { 799 PowerPCCPU *cpu = POWERPC_CPU(cs); 800 801 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp); 802 if (ret < 0) { 803 goto fail; 804 } 805 } 806 807 /* Update the KVM sources */ 808 ret = kvmppc_xive_source_reset(xsrc, errp); 809 if (ret < 0) { 810 goto fail; 811 } 812 813 kvm_kernel_irqchip = true; 814 kvm_msi_via_irqfd_allowed = true; 815 kvm_gsi_direct_mapping = true; 816 return 0; 817 818 fail: 819 kvmppc_xive_disconnect(intc); 820 return -1; 821 } 822 823 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 824 { 825 SpaprXive *xive = SPAPR_XIVE(intc); 826 XiveSource *xsrc; 827 uint64_t esb_len; 828 829 assert(xive->fd != -1); 830 831 /* Clear the KVM mapping */ 832 xsrc = &xive->source; 833 esb_len = xive_source_esb_len(xsrc); 834 835 if (xsrc->esb_mmap) { 836 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 837 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 838 munmap(xsrc->esb_mmap, esb_len); 839 xsrc->esb_mmap = NULL; 840 } 841 842 if (xive->tm_mmap) { 843 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 844 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 845 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 846 xive->tm_mmap = NULL; 847 } 848 849 /* 850 * When the KVM device fd is closed, the KVM device is destroyed 851 * and removed from the list of devices of the VM. The VCPU 852 * presenters are also detached from the device. 853 */ 854 close(xive->fd); 855 xive->fd = -1; 856 857 kvm_kernel_irqchip = false; 858 kvm_msi_via_irqfd_allowed = false; 859 kvm_gsi_direct_mapping = false; 860 861 /* Clear the local list of presenter (hotplug) */ 862 kvm_cpu_disable_all(); 863 864 /* VM Change state handler is not needed anymore */ 865 if (xive->change) { 866 qemu_del_vm_change_state_handler(xive->change); 867 xive->change = NULL; 868 } 869 } 870