1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 24 #include <sys/ioctl.h> 25 26 /* 27 * Helpers for CPU hotplug 28 * 29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 30 */ 31 typedef struct KVMEnabledCPU { 32 unsigned long vcpu_id; 33 QLIST_ENTRY(KVMEnabledCPU) node; 34 } KVMEnabledCPU; 35 36 static QLIST_HEAD(, KVMEnabledCPU) 37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 38 39 static bool kvm_cpu_is_enabled(CPUState *cs) 40 { 41 KVMEnabledCPU *enabled_cpu; 42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 43 44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 45 if (enabled_cpu->vcpu_id == vcpu_id) { 46 return true; 47 } 48 } 49 return false; 50 } 51 52 static void kvm_cpu_enable(CPUState *cs) 53 { 54 KVMEnabledCPU *enabled_cpu; 55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 56 57 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 58 enabled_cpu->vcpu_id = vcpu_id; 59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 60 } 61 62 static void kvm_cpu_disable_all(void) 63 { 64 KVMEnabledCPU *enabled_cpu, *next; 65 66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 67 QLIST_REMOVE(enabled_cpu, node); 68 g_free(enabled_cpu); 69 } 70 } 71 72 /* 73 * XIVE Thread Interrupt Management context (KVM) 74 */ 75 76 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 77 { 78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 79 uint64_t state[2]; 80 int ret; 81 82 assert(xive->fd != -1); 83 84 /* word0 and word1 of the OS ring. */ 85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 86 87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 88 if (ret != 0) { 89 error_setg_errno(errp, -ret, 90 "XIVE: could not restore KVM state of CPU %ld", 91 kvm_arch_vcpu_id(tctx->cs)); 92 return ret; 93 } 94 95 return 0; 96 } 97 98 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 99 { 100 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 101 uint64_t state[2] = { 0 }; 102 int ret; 103 104 assert(xive->fd != -1); 105 106 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 107 if (ret != 0) { 108 error_setg_errno(errp, -ret, 109 "XIVE: could not capture KVM state of CPU %ld", 110 kvm_arch_vcpu_id(tctx->cs)); 111 return ret; 112 } 113 114 /* word0 and word1 of the OS ring. */ 115 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 116 117 return 0; 118 } 119 120 typedef struct { 121 XiveTCTX *tctx; 122 Error *err; 123 } XiveCpuGetState; 124 125 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 126 run_on_cpu_data arg) 127 { 128 XiveCpuGetState *s = arg.host_ptr; 129 130 kvmppc_xive_cpu_get_state(s->tctx, &s->err); 131 } 132 133 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 134 { 135 XiveCpuGetState s = { 136 .tctx = tctx, 137 .err = NULL, 138 }; 139 140 /* 141 * Kick the vCPU to make sure they are available for the KVM ioctl. 142 */ 143 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 144 RUN_ON_CPU_HOST_PTR(&s)); 145 146 if (s.err) { 147 error_propagate(errp, s.err); 148 return; 149 } 150 } 151 152 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 153 { 154 ERRP_GUARD(); 155 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 156 unsigned long vcpu_id; 157 int ret; 158 159 assert(xive->fd != -1); 160 161 /* Check if CPU was hot unplugged and replugged. */ 162 if (kvm_cpu_is_enabled(tctx->cs)) { 163 return 0; 164 } 165 166 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 167 168 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 169 vcpu_id, 0); 170 if (ret < 0) { 171 error_setg_errno(errp, -ret, 172 "XIVE: unable to connect CPU%ld to KVM device", 173 vcpu_id); 174 if (ret == -ENOSPC) { 175 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 176 MACHINE(qdev_get_machine())->smp.max_cpus); 177 } 178 return ret; 179 } 180 181 kvm_cpu_enable(tctx->cs); 182 return 0; 183 } 184 185 /* 186 * XIVE Interrupt Source (KVM) 187 */ 188 189 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 190 Error **errp) 191 { 192 uint32_t end_idx; 193 uint32_t end_blk; 194 uint8_t priority; 195 uint32_t server; 196 bool masked; 197 uint32_t eisn; 198 uint64_t kvm_src; 199 200 assert(xive_eas_is_valid(eas)); 201 202 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 203 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 204 eisn = xive_get_field64(EAS_END_DATA, eas->w); 205 masked = xive_eas_is_masked(eas); 206 207 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 208 209 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 210 KVM_XIVE_SOURCE_PRIORITY_MASK; 211 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 212 KVM_XIVE_SOURCE_SERVER_MASK; 213 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 214 KVM_XIVE_SOURCE_MASKED_MASK; 215 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 216 KVM_XIVE_SOURCE_EISN_MASK; 217 218 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 219 &kvm_src, true, errp); 220 } 221 222 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 223 { 224 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 225 NULL, true, errp); 226 } 227 228 /* 229 * At reset, the interrupt sources are simply created and MASKED. We 230 * only need to inform the KVM XIVE device about their type: LSI or 231 * MSI. 232 */ 233 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 234 { 235 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 236 uint64_t state = 0; 237 238 assert(xive->fd != -1); 239 240 if (xive_source_irq_is_lsi(xsrc, srcno)) { 241 state |= KVM_XIVE_LEVEL_SENSITIVE; 242 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 243 state |= KVM_XIVE_LEVEL_ASSERTED; 244 } 245 } 246 247 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 248 true, errp); 249 } 250 251 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 252 { 253 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 254 int i; 255 256 for (i = 0; i < xsrc->nr_irqs; i++) { 257 int ret; 258 259 if (!xive_eas_is_valid(&xive->eat[i])) { 260 continue; 261 } 262 263 ret = kvmppc_xive_source_reset_one(xsrc, i, errp); 264 if (ret < 0) { 265 return ret; 266 } 267 } 268 269 return 0; 270 } 271 272 /* 273 * This is used to perform the magic loads on the ESB pages, described 274 * in xive.h. 275 * 276 * Memory barriers should not be needed for loads (no store for now). 277 */ 278 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 279 uint64_t data, bool write) 280 { 281 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 282 offset; 283 284 if (write) { 285 *addr = cpu_to_be64(data); 286 return -1; 287 } else { 288 /* Prevent the compiler from optimizing away the load */ 289 volatile uint64_t value = be64_to_cpu(*addr); 290 return value; 291 } 292 } 293 294 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 295 { 296 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 297 } 298 299 static void xive_esb_trigger(XiveSource *xsrc, int srcno) 300 { 301 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 302 303 *addr = 0x0; 304 } 305 306 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 307 uint64_t data, bool write) 308 { 309 if (write) { 310 return xive_esb_rw(xsrc, srcno, offset, data, 1); 311 } 312 313 /* 314 * Special Load EOI handling for LSI sources. Q bit is never set 315 * and the interrupt should be re-triggered if the level is still 316 * asserted. 317 */ 318 if (xive_source_irq_is_lsi(xsrc, srcno) && 319 offset == XIVE_ESB_LOAD_EOI) { 320 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 321 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) { 322 xive_esb_trigger(xsrc, srcno); 323 } 324 return 0; 325 } else { 326 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 327 } 328 } 329 330 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 331 { 332 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 333 int i; 334 335 for (i = 0; i < xsrc->nr_irqs; i++) { 336 uint8_t pq; 337 338 if (!xive_eas_is_valid(&xive->eat[i])) { 339 continue; 340 } 341 342 /* Perform a load without side effect to retrieve the PQ bits */ 343 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 344 345 /* and save PQ locally */ 346 xive_source_esb_set(xsrc, i, pq); 347 } 348 } 349 350 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 351 { 352 XiveSource *xsrc = opaque; 353 354 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 355 if (!val) { 356 return; 357 } 358 } else { 359 if (val) { 360 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED; 361 } else { 362 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED; 363 } 364 } 365 366 xive_esb_trigger(xsrc, srcno); 367 } 368 369 /* 370 * sPAPR XIVE interrupt controller (KVM) 371 */ 372 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 373 uint32_t end_idx, XiveEND *end, 374 Error **errp) 375 { 376 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 377 uint64_t kvm_eq_idx; 378 uint8_t priority; 379 uint32_t server; 380 int ret; 381 382 assert(xive_end_is_valid(end)); 383 384 /* Encode the tuple (server, prio) as a KVM EQ index */ 385 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 386 387 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 388 KVM_XIVE_EQ_PRIORITY_MASK; 389 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 390 KVM_XIVE_EQ_SERVER_MASK; 391 392 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 393 &kvm_eq, false, errp); 394 if (ret < 0) { 395 return ret; 396 } 397 398 /* 399 * The EQ index and toggle bit are updated by HW. These are the 400 * only fields from KVM we want to update QEMU with. The other END 401 * fields should already be in the QEMU END table. 402 */ 403 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 404 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 405 406 return 0; 407 } 408 409 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 410 uint32_t end_idx, XiveEND *end, 411 Error **errp) 412 { 413 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 414 uint64_t kvm_eq_idx; 415 uint8_t priority; 416 uint32_t server; 417 418 /* 419 * Build the KVM state from the local END structure. 420 */ 421 422 kvm_eq.flags = 0; 423 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 424 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 425 } 426 427 /* 428 * If the hcall is disabling the EQ, set the size and page address 429 * to zero. When migrating, only valid ENDs are taken into 430 * account. 431 */ 432 if (xive_end_is_valid(end)) { 433 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 434 kvm_eq.qaddr = xive_end_qaddr(end); 435 /* 436 * The EQ toggle bit and index should only be relevant when 437 * restoring the EQ state 438 */ 439 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 440 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 441 } else { 442 kvm_eq.qshift = 0; 443 kvm_eq.qaddr = 0; 444 } 445 446 /* Encode the tuple (server, prio) as a KVM EQ index */ 447 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 448 449 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 450 KVM_XIVE_EQ_PRIORITY_MASK; 451 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 452 KVM_XIVE_EQ_SERVER_MASK; 453 454 return 455 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 456 &kvm_eq, true, errp); 457 } 458 459 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 460 { 461 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 462 NULL, true, errp); 463 } 464 465 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 466 { 467 int i; 468 int ret; 469 470 for (i = 0; i < xive->nr_ends; i++) { 471 if (!xive_end_is_valid(&xive->endt[i])) { 472 continue; 473 } 474 475 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 476 &xive->endt[i], errp); 477 if (ret < 0) { 478 return ret; 479 } 480 } 481 482 return 0; 483 } 484 485 /* 486 * The primary goal of the XIVE VM change handler is to mark the EQ 487 * pages dirty when all XIVE event notifications have stopped. 488 * 489 * Whenever the VM is stopped, the VM change handler sets the source 490 * PQs to PENDING to stop the flow of events and to possibly catch a 491 * triggered interrupt occuring while the VM is stopped. The previous 492 * state is saved in anticipation of a migration. The XIVE controller 493 * is then synced through KVM to flush any in-flight event 494 * notification and stabilize the EQs. 495 * 496 * At this stage, we can mark the EQ page dirty and let a migration 497 * sequence transfer the EQ pages to the destination, which is done 498 * just after the stop state. 499 * 500 * The previous configuration of the sources is restored when the VM 501 * runs again. If an interrupt was queued while the VM was stopped, 502 * simply generate a trigger. 503 */ 504 static void kvmppc_xive_change_state_handler(void *opaque, int running, 505 RunState state) 506 { 507 SpaprXive *xive = opaque; 508 XiveSource *xsrc = &xive->source; 509 Error *local_err = NULL; 510 int i; 511 512 /* 513 * Restore the sources to their initial state. This is called when 514 * the VM resumes after a stop or a migration. 515 */ 516 if (running) { 517 for (i = 0; i < xsrc->nr_irqs; i++) { 518 uint8_t pq; 519 uint8_t old_pq; 520 521 if (!xive_eas_is_valid(&xive->eat[i])) { 522 continue; 523 } 524 525 pq = xive_source_esb_get(xsrc, i); 526 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 527 528 /* 529 * An interrupt was queued while the VM was stopped, 530 * generate a trigger. 531 */ 532 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 533 xive_esb_trigger(xsrc, i); 534 } 535 } 536 537 return; 538 } 539 540 /* 541 * Mask the sources, to stop the flow of event notifications, and 542 * save the PQs locally in the XiveSource object. The XiveSource 543 * state will be collected later on by its vmstate handler if a 544 * migration is in progress. 545 */ 546 for (i = 0; i < xsrc->nr_irqs; i++) { 547 uint8_t pq; 548 549 if (!xive_eas_is_valid(&xive->eat[i])) { 550 continue; 551 } 552 553 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 554 555 /* 556 * PQ is set to PENDING to possibly catch a triggered 557 * interrupt occuring while the VM is stopped (hotplug event 558 * for instance) . 559 */ 560 if (pq != XIVE_ESB_OFF) { 561 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 562 } 563 xive_source_esb_set(xsrc, i, pq); 564 } 565 566 /* 567 * Sync the XIVE controller in KVM, to flush in-flight event 568 * notification that should be enqueued in the EQs and mark the 569 * XIVE EQ pages dirty to collect all updates. 570 */ 571 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 572 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 573 if (local_err) { 574 error_report_err(local_err); 575 return; 576 } 577 } 578 579 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 580 { 581 assert(xive->fd != -1); 582 583 /* 584 * When the VM is stopped, the sources are masked and the previous 585 * state is saved in anticipation of a migration. We should not 586 * synchronize the source state in that case else we will override 587 * the saved state. 588 */ 589 if (runstate_is_running()) { 590 kvmppc_xive_source_get_state(&xive->source); 591 } 592 593 /* EAT: there is no extra state to query from KVM */ 594 595 /* ENDT */ 596 kvmppc_xive_get_queues(xive, errp); 597 } 598 599 /* 600 * The SpaprXive 'pre_save' method is called by the vmstate handler of 601 * the SpaprXive model, after the XIVE controller is synced in the VM 602 * change handler. 603 */ 604 int kvmppc_xive_pre_save(SpaprXive *xive) 605 { 606 Error *local_err = NULL; 607 int ret; 608 609 assert(xive->fd != -1); 610 611 /* EAT: there is no extra state to query from KVM */ 612 613 /* ENDT */ 614 ret = kvmppc_xive_get_queues(xive, &local_err); 615 if (ret < 0) { 616 error_report_err(local_err); 617 return ret; 618 } 619 620 return 0; 621 } 622 623 /* 624 * The SpaprXive 'post_load' method is not called by a vmstate 625 * handler. It is called at the sPAPR machine level at the end of the 626 * migration sequence by the sPAPR IRQ backend 'post_load' method, 627 * when all XIVE states have been transferred and loaded. 628 */ 629 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 630 { 631 Error *local_err = NULL; 632 CPUState *cs; 633 int i; 634 int ret; 635 636 /* The KVM XIVE device should be in use */ 637 assert(xive->fd != -1); 638 639 /* Restore the ENDT first. The targetting depends on it. */ 640 for (i = 0; i < xive->nr_ends; i++) { 641 if (!xive_end_is_valid(&xive->endt[i])) { 642 continue; 643 } 644 645 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 646 &xive->endt[i], &local_err); 647 if (ret < 0) { 648 goto fail; 649 } 650 } 651 652 /* Restore the EAT */ 653 for (i = 0; i < xive->nr_irqs; i++) { 654 if (!xive_eas_is_valid(&xive->eat[i])) { 655 continue; 656 } 657 658 /* 659 * We can only restore the source config if the source has been 660 * previously set in KVM. Since we don't do that for all interrupts 661 * at reset time anymore, let's do it now. 662 */ 663 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 664 if (ret < 0) { 665 goto fail; 666 } 667 668 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 669 if (ret < 0) { 670 goto fail; 671 } 672 } 673 674 /* 675 * Restore the thread interrupt contexts of initial CPUs. 676 * 677 * The context of hotplugged CPUs is restored later, by the 678 * 'post_load' handler of the XiveTCTX model because they are not 679 * available at the time the SpaprXive 'post_load' method is 680 * called. We can not restore the context of all CPUs in the 681 * 'post_load' handler of XiveTCTX because the machine is not 682 * necessarily connected to the KVM device at that time. 683 */ 684 CPU_FOREACH(cs) { 685 PowerPCCPU *cpu = POWERPC_CPU(cs); 686 687 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 688 if (ret < 0) { 689 goto fail; 690 } 691 } 692 693 /* The source states will be restored when the machine starts running */ 694 return 0; 695 696 fail: 697 error_report_err(local_err); 698 return ret; 699 } 700 701 /* Returns MAP_FAILED on error and sets errno */ 702 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 703 Error **errp) 704 { 705 void *addr; 706 uint32_t page_shift = 16; /* TODO: fix page_shift */ 707 708 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 709 pgoff << page_shift); 710 if (addr == MAP_FAILED) { 711 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 712 } 713 714 return addr; 715 } 716 717 /* 718 * All the XIVE memory regions are now backed by mappings from the KVM 719 * XIVE device. 720 */ 721 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 722 Error **errp) 723 { 724 SpaprXive *xive = SPAPR_XIVE(intc); 725 XiveSource *xsrc = &xive->source; 726 size_t esb_len = xive_source_esb_len(xsrc); 727 size_t tima_len = 4ull << TM_SHIFT; 728 CPUState *cs; 729 int fd; 730 void *addr; 731 int ret; 732 733 /* 734 * The KVM XIVE device already in use. This is the case when 735 * rebooting under the XIVE-only interrupt mode. 736 */ 737 if (xive->fd != -1) { 738 return 0; 739 } 740 741 if (!kvmppc_has_cap_xive()) { 742 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 743 return -1; 744 } 745 746 /* First, create the KVM XIVE device */ 747 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 748 if (fd < 0) { 749 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 750 return -1; 751 } 752 xive->fd = fd; 753 754 /* Tell KVM about the # of VCPUs we may have */ 755 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 756 KVM_DEV_XIVE_NR_SERVERS)) { 757 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 758 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 759 errp); 760 if (ret < 0) { 761 goto fail; 762 } 763 } 764 765 /* 766 * 1. Source ESB pages - KVM mapping 767 */ 768 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp); 769 if (addr == MAP_FAILED) { 770 goto fail; 771 } 772 xsrc->esb_mmap = addr; 773 774 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 775 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 776 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 777 &xsrc->esb_mmio_kvm, 1); 778 779 /* 780 * 2. END ESB pages (No KVM support yet) 781 */ 782 783 /* 784 * 3. TIMA pages - KVM mapping 785 */ 786 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp); 787 if (addr == MAP_FAILED) { 788 goto fail; 789 } 790 xive->tm_mmap = addr; 791 792 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 793 "xive.tima", tima_len, xive->tm_mmap); 794 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 795 &xive->tm_mmio_kvm, 1); 796 797 xive->change = qemu_add_vm_change_state_handler( 798 kvmppc_xive_change_state_handler, xive); 799 800 /* Connect the presenters to the initial VCPUs of the machine */ 801 CPU_FOREACH(cs) { 802 PowerPCCPU *cpu = POWERPC_CPU(cs); 803 804 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp); 805 if (ret < 0) { 806 goto fail; 807 } 808 } 809 810 /* Update the KVM sources */ 811 ret = kvmppc_xive_source_reset(xsrc, errp); 812 if (ret < 0) { 813 goto fail; 814 } 815 816 kvm_kernel_irqchip = true; 817 kvm_msi_via_irqfd_allowed = true; 818 kvm_gsi_direct_mapping = true; 819 return 0; 820 821 fail: 822 kvmppc_xive_disconnect(intc); 823 return -1; 824 } 825 826 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 827 { 828 SpaprXive *xive = SPAPR_XIVE(intc); 829 XiveSource *xsrc; 830 size_t esb_len; 831 832 assert(xive->fd != -1); 833 834 /* Clear the KVM mapping */ 835 xsrc = &xive->source; 836 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs; 837 838 if (xsrc->esb_mmap) { 839 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 840 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 841 munmap(xsrc->esb_mmap, esb_len); 842 xsrc->esb_mmap = NULL; 843 } 844 845 if (xive->tm_mmap) { 846 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 847 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 848 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 849 xive->tm_mmap = NULL; 850 } 851 852 /* 853 * When the KVM device fd is closed, the KVM device is destroyed 854 * and removed from the list of devices of the VM. The VCPU 855 * presenters are also detached from the device. 856 */ 857 close(xive->fd); 858 xive->fd = -1; 859 860 kvm_kernel_irqchip = false; 861 kvm_msi_via_irqfd_allowed = false; 862 kvm_gsi_direct_mapping = false; 863 864 /* Clear the local list of presenter (hotplug) */ 865 kvm_cpu_disable_all(); 866 867 /* VM Change state handler is not needed anymore */ 868 if (xive->change) { 869 qemu_del_vm_change_state_handler(xive->change); 870 xive->change = NULL; 871 } 872 } 873