1 /* 2 * QEMU PowerPC sPAPR XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2019, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "qemu/log.h" 12 #include "qemu/error-report.h" 13 #include "qapi/error.h" 14 #include "target/ppc/cpu.h" 15 #include "sysemu/cpus.h" 16 #include "sysemu/kvm.h" 17 #include "sysemu/runstate.h" 18 #include "hw/ppc/spapr.h" 19 #include "hw/ppc/spapr_cpu_core.h" 20 #include "hw/ppc/spapr_xive.h" 21 #include "hw/ppc/xive.h" 22 #include "kvm_ppc.h" 23 #include "trace.h" 24 25 #include <sys/ioctl.h> 26 27 /* 28 * Helpers for CPU hotplug 29 * 30 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE 31 */ 32 typedef struct KVMEnabledCPU { 33 unsigned long vcpu_id; 34 QLIST_ENTRY(KVMEnabledCPU) node; 35 } KVMEnabledCPU; 36 37 static QLIST_HEAD(, KVMEnabledCPU) 38 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus); 39 40 static bool kvm_cpu_is_enabled(CPUState *cs) 41 { 42 KVMEnabledCPU *enabled_cpu; 43 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 44 45 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) { 46 if (enabled_cpu->vcpu_id == vcpu_id) { 47 return true; 48 } 49 } 50 return false; 51 } 52 53 static void kvm_cpu_enable(CPUState *cs) 54 { 55 KVMEnabledCPU *enabled_cpu; 56 unsigned long vcpu_id = kvm_arch_vcpu_id(cs); 57 58 enabled_cpu = g_malloc(sizeof(*enabled_cpu)); 59 enabled_cpu->vcpu_id = vcpu_id; 60 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node); 61 } 62 63 static void kvm_cpu_disable_all(void) 64 { 65 KVMEnabledCPU *enabled_cpu, *next; 66 67 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) { 68 QLIST_REMOVE(enabled_cpu, node); 69 g_free(enabled_cpu); 70 } 71 } 72 73 /* 74 * XIVE Thread Interrupt Management context (KVM) 75 */ 76 77 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp) 78 { 79 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 80 uint64_t state[2]; 81 int ret; 82 83 assert(xive->fd != -1); 84 85 /* word0 and word1 of the OS ring. */ 86 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]); 87 88 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 89 if (ret != 0) { 90 error_setg_errno(errp, -ret, 91 "XIVE: could not restore KVM state of CPU %ld", 92 kvm_arch_vcpu_id(tctx->cs)); 93 return ret; 94 } 95 96 return 0; 97 } 98 99 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp) 100 { 101 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 102 uint64_t state[2] = { 0 }; 103 int ret; 104 105 assert(xive->fd != -1); 106 107 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state); 108 if (ret != 0) { 109 error_setg_errno(errp, -ret, 110 "XIVE: could not capture KVM state of CPU %ld", 111 kvm_arch_vcpu_id(tctx->cs)); 112 return ret; 113 } 114 115 /* word0 and word1 of the OS ring. */ 116 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0]; 117 118 return 0; 119 } 120 121 typedef struct { 122 XiveTCTX *tctx; 123 Error **errp; 124 int ret; 125 } XiveCpuGetState; 126 127 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu, 128 run_on_cpu_data arg) 129 { 130 XiveCpuGetState *s = arg.host_ptr; 131 132 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp); 133 } 134 135 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp) 136 { 137 XiveCpuGetState s = { 138 .tctx = tctx, 139 .errp = errp, 140 }; 141 142 /* 143 * Kick the vCPU to make sure they are available for the KVM ioctl. 144 */ 145 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state, 146 RUN_ON_CPU_HOST_PTR(&s)); 147 148 return s.ret; 149 } 150 151 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp) 152 { 153 ERRP_GUARD(); 154 SpaprXive *xive = SPAPR_XIVE(tctx->xptr); 155 unsigned long vcpu_id; 156 int ret; 157 158 assert(xive->fd != -1); 159 160 /* Check if CPU was hot unplugged and replugged. */ 161 if (kvm_cpu_is_enabled(tctx->cs)) { 162 return 0; 163 } 164 165 vcpu_id = kvm_arch_vcpu_id(tctx->cs); 166 167 trace_kvm_xive_cpu_connect(vcpu_id); 168 169 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd, 170 vcpu_id, 0); 171 if (ret < 0) { 172 error_setg_errno(errp, -ret, 173 "XIVE: unable to connect CPU%ld to KVM device", 174 vcpu_id); 175 if (ret == -ENOSPC) { 176 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n", 177 MACHINE(qdev_get_machine())->smp.max_cpus); 178 } 179 return ret; 180 } 181 182 kvm_cpu_enable(tctx->cs); 183 return 0; 184 } 185 186 /* 187 * XIVE Interrupt Source (KVM) 188 */ 189 190 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas, 191 Error **errp) 192 { 193 uint32_t end_idx; 194 uint32_t end_blk; 195 uint8_t priority; 196 uint32_t server; 197 bool masked; 198 uint32_t eisn; 199 uint64_t kvm_src; 200 201 assert(xive_eas_is_valid(eas)); 202 203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 205 eisn = xive_get_field64(EAS_END_DATA, eas->w); 206 masked = xive_eas_is_masked(eas); 207 208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 209 210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT & 211 KVM_XIVE_SOURCE_PRIORITY_MASK; 212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT & 213 KVM_XIVE_SOURCE_SERVER_MASK; 214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) & 215 KVM_XIVE_SOURCE_MASKED_MASK; 216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) & 217 KVM_XIVE_SOURCE_EISN_MASK; 218 219 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn, 220 &kvm_src, true, errp); 221 } 222 223 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp) 224 { 225 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn, 226 NULL, true, errp); 227 } 228 229 /* 230 * At reset, the interrupt sources are simply created and MASKED. We 231 * only need to inform the KVM XIVE device about their type: LSI or 232 * MSI. 233 */ 234 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp) 235 { 236 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 237 uint64_t state = 0; 238 239 trace_kvm_xive_source_reset(srcno); 240 241 assert(xive->fd != -1); 242 243 if (xive_source_irq_is_lsi(xsrc, srcno)) { 244 state |= KVM_XIVE_LEVEL_SENSITIVE; 245 if (xive_source_is_asserted(xsrc, srcno)) { 246 state |= KVM_XIVE_LEVEL_ASSERTED; 247 } 248 } 249 250 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state, 251 true, errp); 252 } 253 254 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp) 255 { 256 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 257 int i; 258 259 for (i = 0; i < xsrc->nr_irqs; i++) { 260 int ret; 261 262 if (!xive_eas_is_valid(&xive->eat[i])) { 263 continue; 264 } 265 266 ret = kvmppc_xive_source_reset_one(xsrc, i, errp); 267 if (ret < 0) { 268 return ret; 269 } 270 } 271 272 return 0; 273 } 274 275 /* 276 * This is used to perform the magic loads on the ESB pages, described 277 * in xive.h. 278 * 279 * Memory barriers should not be needed for loads (no store for now). 280 */ 281 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 282 uint64_t data, bool write) 283 { 284 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) + 285 offset; 286 287 if (write) { 288 *addr = cpu_to_be64(data); 289 return -1; 290 } else { 291 /* Prevent the compiler from optimizing away the load */ 292 volatile uint64_t value = be64_to_cpu(*addr); 293 return value; 294 } 295 } 296 297 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset) 298 { 299 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3; 300 } 301 302 static void kvmppc_xive_esb_trigger(XiveSource *xsrc, int srcno) 303 { 304 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno); 305 306 *addr = 0x0; 307 } 308 309 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset, 310 uint64_t data, bool write) 311 { 312 if (write) { 313 return xive_esb_rw(xsrc, srcno, offset, data, 1); 314 } 315 316 /* 317 * Special Load EOI handling for LSI sources. Q bit is never set 318 * and the interrupt should be re-triggered if the level is still 319 * asserted. 320 */ 321 if (xive_source_irq_is_lsi(xsrc, srcno) && 322 offset == XIVE_ESB_LOAD_EOI) { 323 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00); 324 if (xive_source_is_asserted(xsrc, srcno)) { 325 kvmppc_xive_esb_trigger(xsrc, srcno); 326 } 327 return 0; 328 } else { 329 return xive_esb_rw(xsrc, srcno, offset, 0, 0); 330 } 331 } 332 333 static void kvmppc_xive_source_get_state(XiveSource *xsrc) 334 { 335 SpaprXive *xive = SPAPR_XIVE(xsrc->xive); 336 int i; 337 338 for (i = 0; i < xsrc->nr_irqs; i++) { 339 uint8_t pq; 340 341 if (!xive_eas_is_valid(&xive->eat[i])) { 342 continue; 343 } 344 345 /* Perform a load without side effect to retrieve the PQ bits */ 346 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 347 348 /* and save PQ locally */ 349 xive_source_esb_set(xsrc, i, pq); 350 } 351 } 352 353 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val) 354 { 355 XiveSource *xsrc = opaque; 356 357 if (!xive_source_irq_is_lsi(xsrc, srcno)) { 358 if (!val) { 359 return; 360 } 361 } else { 362 xive_source_set_asserted(xsrc, srcno, val); 363 } 364 365 kvmppc_xive_esb_trigger(xsrc, srcno); 366 } 367 368 /* 369 * sPAPR XIVE interrupt controller (KVM) 370 */ 371 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk, 372 uint32_t end_idx, XiveEND *end, 373 Error **errp) 374 { 375 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 376 uint64_t kvm_eq_idx; 377 uint8_t priority; 378 uint32_t server; 379 int ret; 380 381 assert(xive_end_is_valid(end)); 382 383 /* Encode the tuple (server, prio) as a KVM EQ index */ 384 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 385 386 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 387 KVM_XIVE_EQ_PRIORITY_MASK; 388 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 389 KVM_XIVE_EQ_SERVER_MASK; 390 391 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 392 &kvm_eq, false, errp); 393 if (ret < 0) { 394 return ret; 395 } 396 397 /* 398 * The EQ index and toggle bit are updated by HW. These are the 399 * only fields from KVM we want to update QEMU with. The other END 400 * fields should already be in the QEMU END table. 401 */ 402 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) | 403 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex); 404 405 return 0; 406 } 407 408 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk, 409 uint32_t end_idx, XiveEND *end, 410 Error **errp) 411 { 412 struct kvm_ppc_xive_eq kvm_eq = { 0 }; 413 uint64_t kvm_eq_idx; 414 uint8_t priority; 415 uint32_t server; 416 417 /* 418 * Build the KVM state from the local END structure. 419 */ 420 421 kvm_eq.flags = 0; 422 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) { 423 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY; 424 } 425 426 /* 427 * If the hcall is disabling the EQ, set the size and page address 428 * to zero. When migrating, only valid ENDs are taken into 429 * account. 430 */ 431 if (xive_end_is_valid(end)) { 432 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12; 433 kvm_eq.qaddr = xive_end_qaddr(end); 434 /* 435 * The EQ toggle bit and index should only be relevant when 436 * restoring the EQ state 437 */ 438 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1); 439 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 440 } else { 441 kvm_eq.qshift = 0; 442 kvm_eq.qaddr = 0; 443 } 444 445 /* Encode the tuple (server, prio) as a KVM EQ index */ 446 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority); 447 448 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT & 449 KVM_XIVE_EQ_PRIORITY_MASK; 450 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT & 451 KVM_XIVE_EQ_SERVER_MASK; 452 453 return 454 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx, 455 &kvm_eq, true, errp); 456 } 457 458 void kvmppc_xive_reset(SpaprXive *xive, Error **errp) 459 { 460 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET, 461 NULL, true, errp); 462 } 463 464 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp) 465 { 466 int i; 467 int ret; 468 469 for (i = 0; i < xive->nr_ends; i++) { 470 if (!xive_end_is_valid(&xive->endt[i])) { 471 continue; 472 } 473 474 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 475 &xive->endt[i], errp); 476 if (ret < 0) { 477 return ret; 478 } 479 } 480 481 return 0; 482 } 483 484 /* 485 * The primary goal of the XIVE VM change handler is to mark the EQ 486 * pages dirty when all XIVE event notifications have stopped. 487 * 488 * Whenever the VM is stopped, the VM change handler sets the source 489 * PQs to PENDING to stop the flow of events and to possibly catch a 490 * triggered interrupt occuring while the VM is stopped. The previous 491 * state is saved in anticipation of a migration. The XIVE controller 492 * is then synced through KVM to flush any in-flight event 493 * notification and stabilize the EQs. 494 * 495 * At this stage, we can mark the EQ page dirty and let a migration 496 * sequence transfer the EQ pages to the destination, which is done 497 * just after the stop state. 498 * 499 * The previous configuration of the sources is restored when the VM 500 * runs again. If an interrupt was queued while the VM was stopped, 501 * simply generate a trigger. 502 */ 503 static void kvmppc_xive_change_state_handler(void *opaque, bool running, 504 RunState state) 505 { 506 SpaprXive *xive = opaque; 507 XiveSource *xsrc = &xive->source; 508 Error *local_err = NULL; 509 int i; 510 511 /* 512 * Restore the sources to their initial state. This is called when 513 * the VM resumes after a stop or a migration. 514 */ 515 if (running) { 516 for (i = 0; i < xsrc->nr_irqs; i++) { 517 uint8_t pq; 518 uint8_t old_pq; 519 520 if (!xive_eas_is_valid(&xive->eat[i])) { 521 continue; 522 } 523 524 pq = xive_source_esb_get(xsrc, i); 525 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8)); 526 527 /* 528 * An interrupt was queued while the VM was stopped, 529 * generate a trigger. 530 */ 531 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) { 532 kvmppc_xive_esb_trigger(xsrc, i); 533 } 534 } 535 536 return; 537 } 538 539 /* 540 * Mask the sources, to stop the flow of event notifications, and 541 * save the PQs locally in the XiveSource object. The XiveSource 542 * state will be collected later on by its vmstate handler if a 543 * migration is in progress. 544 */ 545 for (i = 0; i < xsrc->nr_irqs; i++) { 546 uint8_t pq; 547 548 if (!xive_eas_is_valid(&xive->eat[i])) { 549 continue; 550 } 551 552 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET); 553 554 /* 555 * PQ is set to PENDING to possibly catch a triggered 556 * interrupt occuring while the VM is stopped (hotplug event 557 * for instance) . 558 */ 559 if (pq != XIVE_ESB_OFF) { 560 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10); 561 } 562 xive_source_esb_set(xsrc, i, pq); 563 } 564 565 /* 566 * Sync the XIVE controller in KVM, to flush in-flight event 567 * notification that should be enqueued in the EQs and mark the 568 * XIVE EQ pages dirty to collect all updates. 569 */ 570 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 571 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err); 572 if (local_err) { 573 error_report_err(local_err); 574 return; 575 } 576 } 577 578 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp) 579 { 580 assert(xive->fd != -1); 581 582 /* 583 * When the VM is stopped, the sources are masked and the previous 584 * state is saved in anticipation of a migration. We should not 585 * synchronize the source state in that case else we will override 586 * the saved state. 587 */ 588 if (runstate_is_running()) { 589 kvmppc_xive_source_get_state(&xive->source); 590 } 591 592 /* EAT: there is no extra state to query from KVM */ 593 594 /* ENDT */ 595 kvmppc_xive_get_queues(xive, errp); 596 } 597 598 /* 599 * The SpaprXive 'pre_save' method is called by the vmstate handler of 600 * the SpaprXive model, after the XIVE controller is synced in the VM 601 * change handler. 602 */ 603 int kvmppc_xive_pre_save(SpaprXive *xive) 604 { 605 Error *local_err = NULL; 606 int ret; 607 608 assert(xive->fd != -1); 609 610 /* EAT: there is no extra state to query from KVM */ 611 612 /* ENDT */ 613 ret = kvmppc_xive_get_queues(xive, &local_err); 614 if (ret < 0) { 615 error_report_err(local_err); 616 return ret; 617 } 618 619 return 0; 620 } 621 622 /* 623 * The SpaprXive 'post_load' method is not called by a vmstate 624 * handler. It is called at the sPAPR machine level at the end of the 625 * migration sequence by the sPAPR IRQ backend 'post_load' method, 626 * when all XIVE states have been transferred and loaded. 627 */ 628 int kvmppc_xive_post_load(SpaprXive *xive, int version_id) 629 { 630 Error *local_err = NULL; 631 CPUState *cs; 632 int i; 633 int ret; 634 635 /* The KVM XIVE device should be in use */ 636 assert(xive->fd != -1); 637 638 /* Restore the ENDT first. The targetting depends on it. */ 639 for (i = 0; i < xive->nr_ends; i++) { 640 if (!xive_end_is_valid(&xive->endt[i])) { 641 continue; 642 } 643 644 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i, 645 &xive->endt[i], &local_err); 646 if (ret < 0) { 647 goto fail; 648 } 649 } 650 651 /* Restore the EAT */ 652 for (i = 0; i < xive->nr_irqs; i++) { 653 if (!xive_eas_is_valid(&xive->eat[i])) { 654 continue; 655 } 656 657 /* 658 * We can only restore the source config if the source has been 659 * previously set in KVM. Since we don't do that for all interrupts 660 * at reset time anymore, let's do it now. 661 */ 662 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err); 663 if (ret < 0) { 664 goto fail; 665 } 666 667 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err); 668 if (ret < 0) { 669 goto fail; 670 } 671 } 672 673 /* 674 * Restore the thread interrupt contexts of initial CPUs. 675 * 676 * The context of hotplugged CPUs is restored later, by the 677 * 'post_load' handler of the XiveTCTX model because they are not 678 * available at the time the SpaprXive 'post_load' method is 679 * called. We can not restore the context of all CPUs in the 680 * 'post_load' handler of XiveTCTX because the machine is not 681 * necessarily connected to the KVM device at that time. 682 */ 683 CPU_FOREACH(cs) { 684 PowerPCCPU *cpu = POWERPC_CPU(cs); 685 686 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err); 687 if (ret < 0) { 688 goto fail; 689 } 690 } 691 692 /* The source states will be restored when the machine starts running */ 693 return 0; 694 695 fail: 696 error_report_err(local_err); 697 return ret; 698 } 699 700 /* Returns MAP_FAILED on error and sets errno */ 701 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len, 702 Error **errp) 703 { 704 void *addr; 705 uint32_t page_shift = 16; /* TODO: fix page_shift */ 706 707 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd, 708 pgoff << page_shift); 709 if (addr == MAP_FAILED) { 710 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping"); 711 } 712 713 return addr; 714 } 715 716 /* 717 * All the XIVE memory regions are now backed by mappings from the KVM 718 * XIVE device. 719 */ 720 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers, 721 Error **errp) 722 { 723 SpaprXive *xive = SPAPR_XIVE(intc); 724 XiveSource *xsrc = &xive->source; 725 size_t esb_len = xive_source_esb_len(xsrc); 726 size_t tima_len = 4ull << TM_SHIFT; 727 CPUState *cs; 728 int fd; 729 void *addr; 730 int ret; 731 732 /* 733 * The KVM XIVE device already in use. This is the case when 734 * rebooting under the XIVE-only interrupt mode. 735 */ 736 if (xive->fd != -1) { 737 return 0; 738 } 739 740 if (!kvmppc_has_cap_xive()) { 741 error_setg(errp, "IRQ_XIVE capability must be present for KVM"); 742 return -1; 743 } 744 745 /* First, create the KVM XIVE device */ 746 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false); 747 if (fd < 0) { 748 error_setg_errno(errp, -fd, "XIVE: error creating KVM device"); 749 return -1; 750 } 751 xive->fd = fd; 752 753 /* Tell KVM about the # of VCPUs we may have */ 754 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 755 KVM_DEV_XIVE_NR_SERVERS)) { 756 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, 757 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true, 758 errp); 759 if (ret < 0) { 760 goto fail; 761 } 762 } 763 764 /* 765 * 1. Source ESB pages - KVM mapping 766 */ 767 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp); 768 if (addr == MAP_FAILED) { 769 goto fail; 770 } 771 xsrc->esb_mmap = addr; 772 773 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc), 774 "xive.esb-kvm", esb_len, xsrc->esb_mmap); 775 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0, 776 &xsrc->esb_mmio_kvm, 1); 777 778 /* 779 * 2. END ESB pages (No KVM support yet) 780 */ 781 782 /* 783 * 3. TIMA pages - KVM mapping 784 */ 785 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp); 786 if (addr == MAP_FAILED) { 787 goto fail; 788 } 789 xive->tm_mmap = addr; 790 791 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive), 792 "xive.tima", tima_len, xive->tm_mmap); 793 memory_region_add_subregion_overlap(&xive->tm_mmio, 0, 794 &xive->tm_mmio_kvm, 1); 795 796 xive->change = qemu_add_vm_change_state_handler( 797 kvmppc_xive_change_state_handler, xive); 798 799 /* Connect the presenters to the initial VCPUs of the machine */ 800 CPU_FOREACH(cs) { 801 PowerPCCPU *cpu = POWERPC_CPU(cs); 802 803 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp); 804 if (ret < 0) { 805 goto fail; 806 } 807 } 808 809 /* Update the KVM sources */ 810 ret = kvmppc_xive_source_reset(xsrc, errp); 811 if (ret < 0) { 812 goto fail; 813 } 814 815 kvm_kernel_irqchip = true; 816 kvm_msi_via_irqfd_allowed = true; 817 kvm_gsi_direct_mapping = true; 818 return 0; 819 820 fail: 821 kvmppc_xive_disconnect(intc); 822 return -1; 823 } 824 825 void kvmppc_xive_disconnect(SpaprInterruptController *intc) 826 { 827 SpaprXive *xive = SPAPR_XIVE(intc); 828 XiveSource *xsrc; 829 size_t esb_len; 830 831 assert(xive->fd != -1); 832 833 /* Clear the KVM mapping */ 834 xsrc = &xive->source; 835 esb_len = xive_source_esb_len(xsrc); 836 837 if (xsrc->esb_mmap) { 838 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm); 839 object_unparent(OBJECT(&xsrc->esb_mmio_kvm)); 840 munmap(xsrc->esb_mmap, esb_len); 841 xsrc->esb_mmap = NULL; 842 } 843 844 if (xive->tm_mmap) { 845 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm); 846 object_unparent(OBJECT(&xive->tm_mmio_kvm)); 847 munmap(xive->tm_mmap, 4ull << TM_SHIFT); 848 xive->tm_mmap = NULL; 849 } 850 851 /* 852 * When the KVM device fd is closed, the KVM device is destroyed 853 * and removed from the list of devices of the VM. The VCPU 854 * presenters are also detached from the device. 855 */ 856 close(xive->fd); 857 xive->fd = -1; 858 859 kvm_kernel_irqchip = false; 860 kvm_msi_via_irqfd_allowed = false; 861 kvm_gsi_direct_mapping = false; 862 863 /* Clear the local list of presenter (hotplug) */ 864 kvm_cpu_disable_all(); 865 866 /* VM Change state handler is not needed anymore */ 867 if (xive->change) { 868 qemu_del_vm_change_state_handler(xive->change); 869 xive->change = NULL; 870 } 871 } 872